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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph Waksberg, who 

has made many important contributions to survey methodology. Each year a prominent survey researcher is chosen to 

author an article as part of the Waksberg Invited Paper Series. The paper reviews the development and current state of 

a significant topic within the field of survey methodology, and reflects the mixture of theory and practice that 

characterized Waksberg’s work.  

This issue of Survey Methodology opens with the 17th paper of the Waksberg Invited Paper Series. The editorial 

board would like to thank the members of the selection committee Tommy Wright (Chair), Kirk Wolter, 

Danny Pfeffermann and Elizabeth Stuart for having selected Donald B. Rubin as the author of 2017 Waksberg Award 

paper. 

 
2017 Waksberg Invited Paper 

 
Author: Donald B. Rubin 

 

Donald B. Rubin is John L. Loeb Professor of Statistics, Department of Statistics, Harvard University. He 

was Chair of the department during 1985-1994 and 2000-2004. He is an Elected Fellow/Member of: the 

American Statistical Association (1977), the Institute of Mathematical Statistics (1977), the International 

Statistical Institute (1984), the American Association for the Advancement of Science (1984), and the 

American Academy of Arts and Sciences (1993). In 2008 Professor Rubin was elected an Honorary Member 

of the European Association of Methodology, in 2009 he was elected a Corresponding (foreign) Fellow of 

the British Academy, and in 2010 to the National Academy of Sciences. He has authored/coauthored over 

400 publications (including 10 books), and has made important contributions to statistical theory and 

methodology, particularly in causal inference, the design and analysis of experiments and sample surveys, 

the treatment of missing data, and Bayesian data analysis. Among his many awards and honors, Professor 

Rubin has received the Samuel S. Wilks Medal (American Statistical Association, 1995), the Parzen Prize 

for Statistical Innovation (1996), the Fisher Lectureship (2004) and the George W. Snedecor Award of the 

Committee of Presidents of Statistical Societies (2007). He was named Statistician of the Year, American 

Statistical Association, Boston Chapter (1995), and Statistician of the Year, American Statistical 

Association, Chicago Chapter (2001). He was Associate editor for: Journal of Educational Statistics (1976-

1979), Theory and Methods, The Journal of American Statistical Association (1975-1979), Coordinating 

Editor and Applications Editor, The Journal of American Statistical Association (1980-1982), Biometrika 

(1992-1995), Survey Methodology (1988-1993), Statistica Sinica (1993-2004). Professor Rubin has been, 

for many years, one of the most highly cited authors in mathematics in the world (according to ISI Science 

Watch); in 2002 he was ranked Seventh in the World for the Decade 1991-2000; he has 10 singly authored 

publications with over one thousand citations each. His biography is included in many places including, 

Who’ Who in The World.  
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1. Donald B. Rubin, Professor, Yau Mathematical Sciences Center, Tsinghua University; Murray Shusterman Senior Research Fellow, Fox School 

of Business; Professor Emeritus, Harvard University. E-mail: dbrubin@me.com. 

 

Conditional calibration and the sage statistician 

Donald B. Rubin1 

Abstract 

Being a calibrated statistician means using procedures that in long-run practice basically follow the guidelines of 
Neyman’s approach to frequentist inference, which dominates current statistical thinking. Being a sage (i.e., 
wise) statistician when confronted with a particular data set means employing some Bayesian and Fiducial modes 
of thinking to moderate simple Neymanian calibration, even if not doing so formally. This article explicates this 
marriage of ideas using the concept of conditional calibration, which takes advantage of more recent simulation-
based ideas arising in Approximate Bayesian Computation. 

 
Key Words: Approximate Bayesian Computation (ABC); Bayesian inference; Fiducial inference; Fisher; Frequentist 

methods; Neyman. 

 
 

1  Principled statisticians 
 

There are many possible definitions for what makes a principled statistician, where by “principled” I do 

not necessarily imply “good” or “sage”, but simply following clear principles of behavior. I think generally 

there are three major themes or philosophies of statistical inference. Neymanian frequentists, following 

ideas proposed originally by Neyman (1923, 1934), care about the operating characteristics of procedures 

(e.g., point estimates, interval estimates), under repeated sampling: point estimates should be approximately 

unbiased for their estimands (averaging over all possible samples), interval estimates should be conservative 

in the sense of having at least their nominal coverage of their estimands (again averaging over samples), 

and tests should be conservative in the sense of rejecting true null hypotheses at most at their nominal rates. 

These desiderata are widely viewed as being features of valid statistical inference (e.g., see Lehmann, 1959). 

Of course, all procedures that are valid are not equally desirable; valid point estimates with less variability 

are better, valid interval estimates that are shorter are better, and so forth.  

Bayesian statisticians (e.g., Savage, 1954; Lindley, 1971; de Finetti, 1972), in contrast to repeated-

sampling operating characteristics, care about correct conditioning on observed data under a particular 

probabilistic specification. Fisherian statisticians (in the sense of Fiducialists, at least as I view the most 

central idea of this approach, Fisher (1956)) avoid conclusions that appear to be contradicted by observed 

data, which is at the heart of Fisher’s randomization test in experiments; I have long resonated to the wisdom 

of this approach and its generalizations, as expressed in Rubin (1984). Nevertheless, I also think Bayesian 

thinking is critical to being a wise applied statistician in practice, for example by using posterior predictive 

p-values and checks, which assess whether a proposed model can (that is, is able to, not must) generate data 

that look like the observed data set we are facing – we return to this central idea later. 

There is little doubt that frequentist thinking dominates current statistical thinking even though Bayesian 

procedures are becoming more common largely because of current computational advances, which allow 
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many complicated models to be fit routinely. Nevertheless, I believe that Bayesian and fiducial thinking are 

fundamental to being a sage (i.e., wise, not necessarily principled in the narrow sense of the following 

specific principles) statistician. 

 
2  Should frequentists care about Bayesian procedures? 
 

For example, why should frequentists ever use the sample mean to estimate the population mean? After 

all, the sample mean is essentially the center of the Bayesian posterior distribution of the population mean 

under a Gaussian model with relatively diffuse prior distributions on parameters, and therefore derived using 

an “unreliable (i.e., Bayesian) methodology”. Of course this sentence is facetious, and not intended to be 

taken seriously, although there are serious points underlying it. 
 

Serious Point #1: The original motivation for any statistical procedure, whether Bayesian or Fiducial 

or the result of some amazing dream, is irrelevant to the frequentist operating characteristics of that 

procedure. I used to hear this criticism directed at Multiple Imputation (MI), Rubin (1978). Because 

MI’s initial justification was Bayesian, MI could never be trusted from a design-based (frequentist) 

perspective. 
 

Serious Point #2: For creating procedures, especially in complex situations, such as those that easily 

arise with unintended missing data, Bayesian methods are far more generative of sensible answers than 

standard, frequentist arguments, such as those based on “principles” such as unbiasedness or 

minimizing mean squared error. Again, I think that the relative success of MI for missing data illustrates 

this point nicely (e.g., as argued in many places, including Rubin (1996)). 
 

Serious Point #3: Nonetheless, frequentist evaluations (e.g., of bias of point estimates and coverage of 

interval estimates) are still highly relevant to the sage statistician because all idealizations, including 

Bayesian ones, are oversimplifications. As George Box said, “All models are wrong, but some are 

useful” (Box, 1976); also earlier, John von Neumann (1947) stated, “Truth is much too complicated to 

allow anything but approximations”. 
 

Two more Serious Points, an analogy, and some summarized points. 
 

Serious Point #4: Frequentist criteria based on operating characteristics can be used to evaluate any 

procedure (really the same as Serious Point #1). 
 

Serious Point #5: Therefore, we can, and moreover should, use Bayesian models to create procedures 

that appear to be appropriate under plausible assumptions, and use frequentist methods to evaluate these 

procedures in realistic situations, situations more general than those that were assumed when deriving 

the Bayesian answers. 
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Versions of these points have been made before, for example in Box (1980), Rubin (1984), and in Little 

(2008) and its discussions (e.g., Rubin, 2008), as well as earlier and later by various other authors. Many 

practicing statisticians would pretty much agree with all Serious Points, except perhaps Serious Points #2 

and #5. Being a “calibrated” statistician generally means choosing procedures that have good operating 

characteristics over a broad range of circumstances. Being sage when confronted with a particular data set 

is more difficult to define, because it depends on the immediate context of the problem being confronted, 

and the consequences of resulting decisions, which formally can lead to decision theory (Wald, 1950). My 

own view is that although this framework is theoretically appealing, real decisions are made in contexts 

with many fuzzy and perpetually changing considerations, which disable the utility of the full formal 

structure of decision theory. 

 
3  On the elusive goal of being calibrated and sage 
 

Bayesians condition on what is observed, and so in principle, try to be appropriate to the data at hand. 

True Bayesian calibration, however, in the sense of creating interval estimates that have accurate Bayesian 

coverage of the true posterior distribution no matter what “Truth” generated the observed data, is essentially 

impossible in practice. This was illustrated to me in fairly trivial examples, first in Rubin (1983) when I was 

attempting to demonstrate the superiority of the Bayesian approach in the context of survey inferences, then 

in Rosenbaum and Rubin (1984), which documented the relevance of stopping rules on the Bayesian validity 

of Bayesian inferences, unless all model and prior distributions were correct, and more recently in Ferriss 

(Harvard PhD. Thesis, 2018), which considered the implications of re-randomization in experiments on the 

Bayesian validity of Bayesian inference. But despite this inability to approach the Bayesian ideal when there 

is the absence of knowledge of correct models, a statistician can still seek to be calibrated, in some important 

sense, and sage in the fiducial sense of avoiding conclusions that are contradicted by the data set actually 

being analyzed. I refer to this as being “conditionally calibrated” and explicate this surprisingly elusive idea 

here. 

A personal aside relevant to this idea of being conditionally calibrated: When I was visiting the 

University of California, Berkeley in the 1970’s and had a visitor’s office next to, the then retired, but still 

intellectually vibrant and feisty, Jerzy Neyman, he clearly expressed to me his view that such conditioning 

for statistical inference was essentially impossible to define correctly, at least in the context of our 1970’s 

discussion of Fisher’s desiderata to condition on ancillary statistics when drawing inferences. 

Another relevant aside: my reading is that fundamentally, both Neyman and Fisher wanted, at least in 

their youths, to be effectively Bayesian in that they both sought a distribution for the estimand conditional 

on the observed data, but took very different mathematical approaches to finding that distribution, as 

discussed in (Rubin, 2016). Fisher (1956) was totally forthright about this fiducial objective: “The Fiducial 

argument uses the observations to change the logical status of the parameter [the unknown estimand] from 

one in which nothing is known of it, and no probability statement can be made, to the status of a random 
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variable having a well-defined distribution”. Values of the estimand with little support in this fiducial 

distribution, were those values that were stochastically contradicted by the observed data, that is, if true, 

they were unlikely to generate the observed data – a stochastic proof by contradiction. Despite the intuitive 

appeal of this approach, mathematical foundations for it have not enjoyed universal acceptance (e.g., 

Dempster, 1967; Martin and Liu, 2016). 

Neyman was not direct as Fisher when seeking a distribution for the estimand, but consider his original 

definition of “confidence intervals” (Neyman, 1934), which was openly based on some Bayesian logic: 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1  Neyman’s (1934, pages 589-590) definition of confidence intervals. 

 
4  Calibration ‒ A simulation perspective 
 

Consider how to evaluate a proposed procedure, generically called ,P  which is to be applied to a data 

set, generically called ,Y  yet to be collected from a population; P  is a specified function of the data Y  and 

will be used to estimate the estimand, here a scalar quantity, ,Q  which describes some aspect of the 

population from which Y  is drawn. For descriptive simplicity, suppose P  is a purported 95% interval for 

;Q  for P  to be exactly calibrated means that P  includes Q  in exactly 95% of repeated samples. Further, 

suppose Y  is drawn from its population using design ,D  which is known and fixed throughout this 

discussion; for concreteness, D  is simple random sampling. Although D  is known, at the design stage, the 

data set Y  is not yet known. Also suppose, again for simplicity, that all “experts” interested in this problem 

agree on a set of K  possible “Truths” for describing the unknown population to which D  will be applied 

to obtain data set ;Y  call these possible Truths 1 2, , ,, KT T T  and the values of their associated local (local 

to each Truth) estimands 1 2, , ,, KQ Q Q  where   ,k kQ Q T   for 1, , ,k K   for the function ,Q  

common to all possible truths. The estimand Q  is the value of the function Q  evaluated at the actual Truth. 
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The kQ  are here called local estimands, that is, local to the truths. As far as I can tell, Neyman never 

fomally considered such local estimands, but I see them as important bridges to the Bayesian perspective as 

well as to being a sage statistician. Only one of the possible truths is the actual truth. The inferential objective 

is the value of Q  for the Truth that generated the yet-to-be observed data .Y  

The collection of K  possible Truths can often be compactly described mathematically, so that K  can 

be essentially infinite. One example of such Truths, and their associated local estimands, could be K  

Gaussian univariate populations, with unknown local means, ,k  and with the scalar estimand Q  equal to 

the mean of the one true population. Or the Truths could be all possible -N dimensional vectors of real 

numbers; this is the standard finite population set-up for survey sampling with N  units and one scalar 

variable, as in Cochran (1963) and Kish (1965), where the estimand Q  is typically the mean of the N  

values for the true population. 

We continue by defining simple calibration using a simulation to fix ideas; this simulation will be used 

to define concepts throughout this manuscript, including the key concept of conditional calibration. Suppose 

that for each possible truth, , 1, , ,k k KT    with local estimand ,kQ  we have drawn J  data sets, labeled 

, 1, , ,jkY j J   each drawn using design .D  To each of these data sets, we apply procedure P  to the 

data to create an interval estimate for ,kQ  where for each , kk Q  is the same for all  1, ,jkY j J   

because all such jkY  arose from the same truth .kT  We then assess whether when P  is applied to ,jkY  the 

resulting interval includes the local estimand .kQ  The proportion of data sets,  , 1, , ,jkY j J   for 

which the interval P  includes kQ  is called here the local calibration (or local coverage) of the procedure 

P  for the thk  Truth, notationally written kC  for 1, , .k K   For evaluating point estimators, rather than 

interval estimators, the calibration of P  for kQ  could be replaced by the bias or mean squared error of the 

point estimate of .kQ  

This simulation is depicted in Table 4.1, where each column represents a possible truth, and the J  rows 

represent the J  data sets generated under each truth. 

 
Table 4.1 
Display of simulation (Each column represents a possible truth) 
 

Local estimands:  1 1Q Q T   …  k kQ Q T   …  K KQ Q T   

 11Y  … 1kY  … 1KY  

...     

...     

...    

1jY  … jkY  … jKY  

...     

...     

...    

1JY  … JkY  … JKY  

Calibration of P  for :kQ  1C  … kC  … KC  
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Now we define local calibration using 95% to represent any level of coverage. A 95% interval estimate 

of , ,Q P  is called “locally (for truth )kT  conservatively calibrated” if kC   95%; we could say that P  is 

“approximately locally calibrated” (for Truth )kT  if kC  is close to 95%, but this idea was never formally 

defined by Neyman, although in Fisher’s (1934) discussion of Neyman (1934), we can see Fisher had 

something like this in mind with his criticism of Neyman’s formulation. 

Next, following Neyman, the interval estimate P  is called “confidence calibrated” across the ensemble 

of possible truths,  , 1, , ,kT k K   if all >=kC  95%, or returning to Neyman’s original definition, P  

is then simply called a 95% confidence interval for .Q  The critical point here for calibration is that all that 

matters to a die-hard Neymanian frequentist, when evaluating a procedure, ,P  for its validity, is whether 

the collection of kC  values for procedure P  are all greater than the nominal level for .P  The word 

“confidence” arises because when confronted with the results of Table 4.1 for procedure P  and with a critic 

who selected one Truth from the collection of possible truths, you should be “confident” that the result of 

applying P  to *Y  will be an interval that includes .Q  

These assessments of 95% confidence calibration are well-defined no matter what the etiology of the 

procedure .P  BUT, are they statistically apposite for evaluating P  as a 95% interval estimate of the 

unknown Q  after seeing a specific data set, call it *Y ?  That is, after seeing a specific instance of ,Y  now 

known to be * ,Y  does the 95%-attached to P  necessarily reflect the judgment of a sage statistician? Maybe 

we should seek only procedures that are approximately calibrated for truths that plausibly could have 

generated the observed *Y ?  

We now consider the formal Bayesian perspective because it sheds light on this concept of being sage 

after seeing * .Y Y  

 
5  The Bayesian posterior distribution of Q  
 

The Bayesian approach differs from the Neymanian approach (and from Fisher’s fiducial approach) by 

formulating the problem so that a real conditional probability distribution for the estimand Q  can be 

calculated, using the laws of probability theory to condition on the fact that the observed data equals 
* -Y  this distribution is called the posterior distribution of ,Q  that is, posterior after seeing * .Y Y  To 

conduct this activity formally, Q  must be a random variable, and thus Q  needs to have a “starting” 

probability distribution, called its prior distribution, meaning prior to seeing any data; in the context of our 

setup, this prior distribution is a distribution over the possible local estimands, that is, a set of K  

probabilities (summing to one), one probability for each possible Truth. This prior distribution is essentially 

a set of K  weights  , 1, ,kW k K   reflecting the prior beliefs of experts that each of the K  possible 

local estimands is the correct one. The Neymanian frequentist has no use for such weights over the set of 

possible Truths, because the 95% is supposed to hold for any set of weights, and thus for each possible Truth 

(i.e., for all K  point mass prior distributions). 
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Now comes the part of the argument that hints at a departure from Neyman’s 1970’s claim to me that 

conditional inference is too difficult. In the context of the simulation just described, and admitting some 

Bayesian or fiducial logic, when confronted with actual observed data set * ,Y  attention should be focused 

on the parts of the simulation where the generated jkY  equals * ;Y  the other jkY  can be ignored (at least in 

the context of the idealized description here, where J  is essentially infinite) because, to be fully Bayesian, 

we want to condition on Y  equaling * .Y  

In fact, let us use the simulation itself to describe the Bayesian posterior distribution of ,Q  i.e., the 

distribution of Q  conditioning on the fact that * .Y Y  Let *  kM  be the proportion of the J  values of jkY  

that match * ,Y  for 1, , ;k K   that is, for truth ,kT *  kM  is the proportion of the generated data sets from 

truth kT  that match the actual data set * . Y  For example, if *  kM  is zero, then the a priori possible truth kT  

could not be the actual truth because it could not have generated observed data * .Y  The posterior probability 

that the estimand Q  equals ,kQ  the local value of Q  for Truth ,kT  is the weighted average of the 

proportions, * ,kM  weighted by ,kW  the prior probability that kT  is the correct truth. Here, this weighted 

average of proportions is generally labeled ,k  where k  for the observed data *Y  is labelled *
k  and 

equals  *
1

* ;
K

k k k kk
M W M W   we could call *

k  the estimated ability of Truth kT  to match observed data 
* .Y  This description of the posterior distribution of Q  using simulation is from Rubin (1984); see 

Figure 5.1. 

 
 

 
 
 
 
 
 

Figure 5.1  Description of posterior distribution from Rubin (1984). 

 
There are objections to this approach. First, where do the prior weights kW  come from and who are the 

experts providing these weights? Perhaps we should find some way to avoid using these potentially overly 

subjective prior weights? Second, perhaps the requirement for exact equality between a generated data set 

jkY  and the observed data set *Y  should be relaxed in some way so that a generated jkY  does not have to 

equal *Y  exactly but only “look like” it came from the same distribution as did * ,Y  and so match *Y  in 

some way? 
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More on this second point first, which is clearly important when trying to conduct an actual 

simulation like this idealized one with a finite budget. The approximate equality between generated 

data Y  and observed data *Y  can be achieved in situations with low-dimensional sufficient statistics, 

because only those statistics have to match. But this idea of generated data being “close to” observed 

data *Y  is the basis of all work using this description of the posterior distribution to conduct 

“ABC” – Approximate Bayesian Computation, apparently first described in the paragraph in Figure 5.1 

(https://en.wikipedia.org/wiki/Approximate_Bayesian_computation, Tavare, Balding, Griffiths and 

Donnelly, 1997). We simply assume at this point that we have chosen some such metric to define the 

function ,kM  and use it to define the ability of Truth kT  to generate data sets that match the observed 

data, * .Y  

 
6  The conditionally calibrated statistician’s evaluation of procedure P  
 

With the basic definitions of Sections 4 and 5 for kC  (the local calibration of P  for kQ  under )kT  and 

the *
kM  ( the matching ability of kT  for * )Y  now established, we are prepared to consider the concept of 

Conditional Calibration (CC) and to make the connection to being a sage statistician after having 

observed * .Y  

Conditional Calibration starts at the same place as Neymanian unconditional calibration, but is sensitive 

to the Bayesian and Fiducial arguments by discounting results from possible truths whose drawn data sets 

jkY  are not close to *Y  as assessed by their match rates * .kM  The point of doing this is: Why should we 

care about calibration for a priori possible Truths that could not have generated the observed * ,Y  i.e., truths 

that are a posteriori implausible? But this CC perspective does not go to the full Bayesian extreme, which, 

first, ignores all aspects of the simulation except the Truths that generated data sets exactly matching the 

observed data set, and second, explicitly uses the often weakly justified prior distribution,  ,kW  to weight 

the local matching rates. 

Hence, we are left summarizing our simulation, which evaluates a procedure P  for inference about the 

estimand Q  from observed data * ,Y  using a two dimensional criterion: The local calibration of P  for kQ  

under truth  ,kT  that is ;kC  and the local match rate for Truth ,kT  the proportion of generated jkY  under 

truth  ,kT  that are accepted as matching * ,Y *
kM   the fraction of jkY  that are considered equal to * .Y  

Those possible truths with *
kM  near one are clearly more relevant to the situation with observed data *Y  

than those truths with values of *
kM  near zero. 

Thus procedure P  applied to each possible truth with observed data *Y  can be displayed as K  points 

in a two-dimensional graph where the horizontal axis is the average match to *Y  of the data sets generated 

by truth ,kT * ,kM  and the vertical axis is the local calibration of P  for the data sets generated by Truth ,kT

.kC  We call this the “conditional calibration plot” and it is illustrated and discussed in the Section 7. Of 

major relevance to drawing sage inferences for possible truths from observed data * ,Y  many different 



Survey Methodology, June 2019 195 
 

 
Statistics Canada, Catalogue No. 12-001-X 

procedures can be displayed on the same conditional calibration plot for a fixed data set *Y  and a fixed set 

of possible truths. 

 
7  The conditional calibration plot and its use for sage selecting 

statistician with observed data *Y  

 
 

 

 

 

 

 

 

 

 

 
Figure 7.1  kC  versus *

kM  Plots for a fixed data set, with 9K   Truths (columns). 

 
The conditionally calibrated (CC) statistician faced with estimating Q  using procedure P  from data set 

*Y  cares about being approximately calibrated, i.e., close kC  to 95% especially for Truths with large values 

of * ,kM  indicating that such Truths could have plausibly generated * .Y  In other words, when comparing 

procedures for estimating Q  from * ,Y  the sage statistician, in addition to conservative unconditional 

calibration (i.e., confidence coverage), especially cares about accurate calibration for Truths that are 

plausible, and therefore implicitly ignores the calibration of procedures for Truths that are implausible 

given * .Y  

Figure 7.1 presents hypothetical simulation results with a fixed data set *Y  and a fixed set of nine 

possible Truths (with nine associated local match rates to * )Y  for three procedures, indicated by faces. The 

vertical axis is not linear in kC  but expanded for values of kC  closer to unity, which is where our interest 

is focused. One procedure is labeled “Smile” because it is approximately calibrated ( kC  close to 95%) for 

possible Truths that could have generated *Y *( kM  close to 1), even though poorly calibrated ( kC  well 

below 95%) for a priori possible Truths that are implausible given the observed *Y *( kM  much lower than 

1). A second procedure is labeled “Frown” because it is not CC, being invalid (meaning its local calibration 

is substantially less than 95%), including for truths that are plausible given * .Y  The third procedure is 

Three procedures:   CC       ,  Not CC        ,  CI 

                             100% 
 
Too inclusive 
 
        Nominal        95% 
 
 
 
 
 

          Invalid 
 
 
 
 
 

                                   0% 
                                          0.0                                                                                  1.0 
                                                                     Relevance of the nine truths 
                                               (unavailable at the design stage because involves Y*) 
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labeled as “Neutral [CI]” because, although it is a valid confidence interval in Neyman’s sense of having its 

minimum local calibration at least 95%, it is not approximately calibrated for Truths that are plausible given 

the observed data set, * .Y  This procedure could, for me, be described by a mild frown, but maybe not for 

Neyman, based on our 1970’s conversation. 

That is, to repeat, Neymanian (conservative = confidence) calibration for each procedure formally just 

cares about the procedures’ minimum kC  across the entire ensemble of a priori possible truths. Also, the 

rigid Bayesian just cares about the weighted average of the *
kM  across the possible truths, weighted by the 

prior possibly unreliable distribution for the truths, .kW  The sage CC statistician cares about approximate 

local calibration of procedures for those Truths that are plausible; if a confidence-valid 95% procedure P  

displays kC  values substantially bigger than 95% for plausible Truths, this suggests that there exist better 

CC procedures for this situation with data set * ;Y  that is, calibrated procedures that are more efficient and 

so result in shorter intervals. Notice for example, that the confidence-valid procedure in Figure 7.1 (Neutral 

face) has worse CC than Smile, and thus although a plausible competitor to Smile at the design stage should 

be seen as inferior to Smile after seeing data *Y  because it is too conservative for some of the relevant 

Truths. 

 
8  Implementing this idea in practice 
 

To implement this idea in practice would require work, certainly more intellectual effort than is currently 

expended in many statistical investigations. The implementation would begin at the same place as is 

standard in current carefully constructed studies. We would begin by considering a set of procedures, each 

of which is usually conservatively calibrated in the traditional sense, for the problem at hand. Then we 

would collect opinions from experts about the generally plausible Truths in the specific situation we are 

facing; this step is executed in some current problems, although typically informally. 

If possible, then we should gather some information for ,kW  the prior weights on the possible truths; 

these could be useful for later consideration of the construction of the matching averages kM  (no asterisk 

yet, because the data, * ,Y  are not yet observed). We should obtain agreement on how to define kM  and 

whether to use the prior weights .kW  This is the ABC task. Finally, agreement is needed on how to use the 

CC plot to compare the various procedures being considered. 

All of this effort should be conducted before the actual data set *Y  is observed. For this reason, alone, 

the implementation of this idea is more intellectually demanding than standard practice, but it is a component 

of being a sage statistician. 
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A bivariate hierarchical Bayesian  
model for estimating cropland cash rental  

rates at the county level 

Andreea Erciulescu, Emily Berg, Will Cecere and Malay Ghosh1 

Abstract 

The National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is 
responsible for estimating average cash rental rates at the county level. A cash rental rate refers to the market 
value of land rented on a per acre basis for cash only. Estimates of cash rental rates are useful to farmers, 
economists, and policy makers. NASS collects data on cash rental rates using a Cash Rent Survey. Because 
realized sample sizes at the county level are often too small to support reliable direct estimators, predictors based 
on mixed models are investigated. We specify a bivariate model to obtain predictors of 2010 cash rental rates for 
non-irrigated cropland using data from the 2009 Cash Rent Survey and auxiliary variables from external sources 
such as the 2007 Census of Agriculture. We use Bayesian methods for inference and present results for Iowa, 
Kansas, and Texas. Incorporating the 2009 survey data through a bivariate model leads to predictors with smaller 
mean squared errors than predictors based on a univariate model. 

 
Key Words: Hierarchical Bayes; Bivariate mixed model; Benchmarking. 

 
 

1  Introduction 
 

The National Agricultural Statistics Service (NASS) of the United States Department of Agriculture 

(USDA) conducts hundreds of surveys each year to obtain estimates related to diverse aspects of US 

agriculture. Examples of parameters that NASS estimates include total production, harvested area, and crop 

yield. Estimation for sub-state domains, such as counties, is difficult due to small sample sizes. Our interest 

is in estimation of the county-level cash rental rate, the market value of land rented on a per acre basis for 

cash only. 

Estimates of county-level cash rental rates serve many purposes. Farmers use the estimates for guidance 

in determining rental agreements (Dhuyvetter and Kastens, 2009). Agronomists use the estimates to study 

research questions related to the interplay between cash rental rates and other economic characteristics such 

as commodity prices and fuel costs (Woodard, Paulson, Baylis and Woddard, 2010). NASS’s published 

estimates of mean cash rental rates at the county level have implications for the Conservation Reserve 

Program, a policy that encourages agricultural landowners to conserve their land. The 2008 and 2014 Farm 

Bills require NASS to collect data on cash rental rates for three land use categories – non-irrigated cropland, 

irrigated cropland, and permanent pasture – for counties with at least 20,000 acres of cropland or 

pastureland. 

To satisfy the requirements of the 2008 and 2014 Farm Bills, NASS conducts a Cash Rent Survey. A 

concern is that direct estimators of county means from the Cash Rent Surveys may be unstable due to small 
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realized sample sizes. We investigate the use of mixed models (Rao and Molina, 2015) to stabilize the 

estimators of average cash rental rates at the county level. NASS publishes estimates of average cash rental 

rates at the state level before county level estimation from the Cash Rent Survey is complete. To maintain 

internal consistency, the county predictors must satisfy a benchmarking restriction.  

In a frequentist framework, Berg, Cecere and Ghosh (2014) use area-level models to predict county-

level cash rental rates for all states and for the three land use categories of non-irrigated cropland, irrigated 

cropland, and permanent pasture. For each combination of land use category and state, the method of Berg 

et al. (2014) uses data from two years. An assumption that the variances for the two years are the same 

motivates the Pitman-Morgan transformation, which converts the vector of observations for the two time 

points into an average and a difference. After separate univariate models are applied to the average and the 

difference, the predictor for each time point is obtained by adding the predictor of the average to half of the 

predictor of the difference. The method of Berg et al. (2014) is demonstrated to provide a practical approach 

to obtaining reasonable predictions across a diverse range of conditions. Nonetheless, the effects of 

simplifying assumptions warrant additional investigation. If the variances for the two time-points differ, 

then, as discussed in Berg et al. (2014), the mean squared error (MSE) estimator based on the Pitman-

Morgan transformtion can have a negative bias. Further, the Berg et al. (2014) method does not account for 

the effect of benchmarking when estimating the MSE. 

This study addresses the issues of non-constant variances across time and the effect of benchmarking on 

efficiency in the context of the NASS Cash Rent Surveys through the use of a bivariate hierarchical Bayesian 

(HB) model for the unit-level data. The model is sufficiently flexible to allow the variances to differ between 

the two time-points. The use of Bayesian methods for inference facilitates estimation of the increase in 

posterior MSE due to benchmarking. Another innovation of the bivariate HB approach is that it incorporates 

the survey weights in the variance model. We also aim to improve the efficiency of the predictors for 

particular situations, relative to Berg et al. (2014), by allowing the covariates to differ across states. Datta, 

Day and Maiti (1998) examine HB bivariate models for the county crop acreage data of Battese, Harter and 

Fuller (1988). Our model extends the Datta et al. (1998) model to account for a relationship between the 

weight and the variance as well as an unbalanced data structure. 

We focus on prediction of county level cash rental rates for non-irrigated cropland using the responses 

to the 2009 and 2010 Cash Rent Surveys as well as external sources of auxiliary information. In Section 2, 

we discuss the survey data and the auxiliary information in detail. We describe the bivariate HB model in 

Section 3. In Section 4, we summarize results for non-irrigated cropland in Iowa, Kansas, and Texas. In 

Section 5, we summarize and discuss possible future research applicable to both estimation of cropland cash 

rental rates and small area estimation more generally. 
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2  Data for modeling non-irrigated cropland cash rental rates 
 

2.1  NASS Cash Rent Survey 
 

NASS implemented a Cash Rent Survey in response to the 2008 Farm Bill. The specific objective of the 

Cash Rent Survey is to obtain county level estimates of average cash rental rates in three land use categories: 

non-irrigated cropland, irrigated cropland, and permanent pasture. The data for our study are from the 2009 

and 2010 Cash Rent Surveys. 

 
2.1.1  NASS Cash Rent Survey sample design  
 

The 2009 and 2010 Cash Rent Surveys used a stratified sample design. To define the stratification, nine 

groups were formed on the basis of the dollars rented that an operation reported on previous surveys and 

censuses. The strata are the intersections of the nine groups and agricultural statistics districts. An 

agricultural statistics district is a group of contiguous counties within a state that are thought to have similar 

agricultural characteristics. The sampling fractions within strata are defined so that operations with higher 

dollars rented on previous surveys and censuses have greater probabilities of selection. The same sample 

was used for the 2009 and 2010 Cash Rent Surveys, which had a national sample size of approximately 

224,000 operations. A unit may respond in only one year either because of nonresponse or because the 

operation only participated in a rental agreement in one of the two years. 

 
2.1.2  Relationships between 2009 and 2010 non-irrigated cropland cash rents 
 

A direct survey estimator for a particular land use category is a ratio of a weighted sum of the dollars 

rented to a weighted sum of acres rented. The weight associated with a respondent is the population size of 

the stratum containing the respondent divided by the number of responding units in that stratum. Berg et al. 

(2014) explore relationships between direct estimates for two years. For the states considered in Berg et al. 

(2014), the correlations between the direct estimates for the two years range from 0.20 to 0.99, where the 

correlation is across counties for a particular state. Because our emphasis is on unit level models, we focus 

on relationships over time at the unit level. 

To measure the correlation between the reported 2009 and 2010 cash rental rates at the unit (farm 

operator) level, we compute differences between unit-level cash rental rates for non-irrigated cropland and 

the sample mean for a county. Only individuals that report a cash rental rate for non-irrigated cropland in 

both years are used to compute the differences. The difference for year t  is . ,ijt i ty y  where ijty  is the 

cash rent per acre for non-irrigated cropland reported by operator j  in county i  and year ,t  and .i ty  is the 

sample average of the ijty  in county i  that reported a non-irrigated cropland cash rental rate in both 2009 

and 2010. The deviations between individual cash rental rates and the county means for Kansas are plotted 

in Figure 2.1. The deviations for 2009 and 2010 for Kansas are linearly related, and the correlation between 

the deviations for 2009 and the deviations for 2010 is 0.7. The extreme values in Figure 2.1 reflect the high 

variability among the non-irrigated cropland cash rental rates within a county in Kansas. 
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Figure 2.1 Deviations of unit-level cash rental rates from county means for 2009 (x-axis) and 2010 (y-axis) for 
units reporting non-irrigated cash rental rates in both years. 

 
2.2  Auxiliary information 
 

In an effort to improve the precision of the estimators of average cash rental rates at the county level, 

auxiliary variables were desired that would explain both the variability among the county means as well as 

the variability among units within a county. Auxiliary information for modeling cash rental rates is available 

from several sources external to the Cash Rent Survey. The potential covariates divide into three broad 

categories, depending on whether the covariate relates principally to land quality, the commodity value sold, 

or other farm characteristics. The list below summarizes the three categories of covariates, indicates whether 

each covariate is recorded at the county level or the unit level, and specifies if the covariate is only available 

for a particular state. Unit-level covariates are only available for units in the Cash Rent Survey sample, 

while area level covariates are treated as population means. 
 

1. Land quality 

• Four National Commodity Crop Productivity Indexes (NCCPIs) are county-level covariates 

available for all states. Three climate-specific indexes called NCCPI-corn, NCCPI-wheat, 

and NCCPI-cotton reflect the quality of the soil for growing non-irrigated crops in three 

different climate conditions (Dobos, Sinclair and Robotham, 2012). The fourth index, Max-

NCCPI, is the maximum of the three climate-specific indexes. The indexes are originally 

constructed at the level of a “mapunit,” an area that has relatively homogeneous soil 
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properties. The county-level covariates are averages of the indexes across all mapunits in a 

county. 

• An average corn yield across years 2005-2009 is available at the county level for Iowa only. 

All counties in Iowa have a corn yield estimate available for at least one of the years between 

2005 and 2009, and years for which a yield estimate is missing for a county are excluded 

from the average for that county. 

• Because Kansas is more agriculturally diverse than Iowa, no single crop yield is published in 

at least one year between 2005 and 2009 for all counties of interest. To obtain a covariate that 

is measured for all counties, we constructed a non-irrigated yield index for Kansas. We first 

averaged NASS published yields for corn, wheat, and sorghum using the method described 

for the Iowa corn yields. The average yields were then standardized to have mean zero and 

variance one. The non-irrigated yield index for a county is defined as the largest of the three 

standardized yields. (For Texas, availability of crop yield information was too sparse to use 

to define a covariate). 

 
2. Value of the commodity sold 

• Total value of production for a county based on the 2007 Census of Agriculture is available 

for all states. 

• Expected sales for an operation (unit) recorded on the NASS list frame are available for all 

states at the unit-level. 

 
3. Other farm characteristics 

• Farm type is a unit level categorical covariate, available for all states. Farms are partitioned 

into 17 farm types on the NASS list frame. To define a covariate, the farm types are 

aggregated into two groups: (1) grains/oilseeds, and (2) other. 

• Acres rented for non-irrigated cropland recorded on the NASS Cash Rent Survey are 

available at the unit level for all states. 

 
3  Bivariate hierarchical Bayesian model 
 

The correlation between the 2009 and 2010 cash rental rates observed in Section 2.1.1 suggests that 

using the information in the data from 2009 has the potential to improve the predictions for 2010. A bivariate 

hierarchical model for a state is specified as a way to incorporate the data for both years. Let ,ij ta  and ,ij ty  

be the acres and dollars per acre, respectively, rented by operator j  in county i  and year  = 09, 10 ,t t  

and let ,ij tx  be the associated column vector of auxiliary variables with dimension .tp  For covariates that 

are constant across years and individuals, , 109= .ij t ix x  Let    
1

, ,= ,ij t ij t g ijt g ijtw a N n   where  g ijtN  and  g ijtn  



204 Erciulescu et al.: A bivariate hierarchical Bayesian model for estimating cropland cash rental rates at the county level 
 

 
Statistics Canada, Catalogue No. 12-001-X 

are the population size and number of respondents, respectively, in year t  for the stratum g  that contains 

unit   .ij  

To specify the model, we divide the respondents into three sets: 

• Set 1 consists of units  ij  that report a non-irrigated cash rental rate in both 2009 and 2010.  

• Set 2 consists of units  ij  that only report a non-irrigated cash rental rate in 2009.  

• Set 3 consists of units  ij  that only report a non-irrigated cash rental rate in 2010.  
 

We assume that observations in set 1 satisfy the bivariate model  

                                                            
, 09 , 09 09 , 09 , 09

,10 ,10 10 ,10 ,10

= ,
ij ij i ij

ij ij i ij

y e

y e





   
        

x β

x β
 (3.1) 

where  

  , 09
0.5 0.5

,10

N , ,
ij

wij ee wij

ij

e

e
 


 

 
0 D Σ D  (3.2) 

 , 09 ,10= diag , ,wij ij ijw wD  and  

                                                              , 09

10

N , .
i

i










 
0 Σ  (3.3) 

We denote the diagonal elements of eeΣ  corresponding to 2009 and 2010 by 09ee  and 10 ,ee  

respectively. For units  ij  in set 2 or 3, we assume  

                                                                *
, , , ,= ,ij t ij t t i t ij ty e  x β  (3.4) 

where  * 1 2
, , ,N 0, ,ij t ij t e te w  = 09t  for set 2, and = 10t  for set 3. The model not only allows the variances 

for the unit-level errors to differ across time points but also allows the variances of unit-level errors for units 

that respond in both time points to differ from the variances for units that only respond in one time-point. 

The quantity to predict for 2010 is  

                                                                ,10 ,10 10 ,10= ,
ii N i  x β  (3.5) 

where ,10iNx  is the population mean of the covariates for county .i  

The variances of the unit-level errors, ,ij te  and *
, ,ij te  are assumed to be inversely proportional to the 

weight, , ,ij tw  for two reasons. First, incorporating the weights in the model aims to reduce bias that could 

arise if the design is informative for the model. As explained in Section 2, the weights depend on the dollar 

value of the land rented from the previous year. Therefore, the possibility that the sample design may be 

informative for a model without the weights is plausible. If eeΣ  and vvΣ  are diagonal, and if 2
, = ,e t eet   

then in a frequentist framework, an empirical best linear unbiased predictor for the county i  mean in year 
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t  is the design-consistent pseudo-eblup of You and Rao (2002). The second reason to incorporate the 

weights is that the variances of residuals from preliminary analyses decrease as the acres increase. 

Diffuse, proper priors are specified for the unknown regression coefficients and variances. Specifically, 

 6N , 10 ,tβ 0 I  and  2
, inverse gamma 0.001, 0.001 .e t   The covariance matrices, eeΣ  and Σ  

have inverse-Wishart prior distributions with shape parameter 0.01 and a diagonal scale matrix with 

diagonal elements 0.001. The parameterizations for the inverse-gamma and inverse-Wishart distributions 

are from Gelman, Carlin, Stern and Rubin (2009). We choose priors with conjugate forms for computational 

simplicity. The choices of the hyperparameters are selected to be un-informative relative to the data for the 

Cash Rents Survey application. 

 
3.1  Gibbs sampling and posteriors 
 

We use Gibbs sampling to obtain a Monte Carlo approximation to the posterior distribution. An analysis 

of BGR statistics (Gelman et al., 2009) based on three MCMC chains, each with 20,000 iterations, indicated 

that 1,000 iterations is sufficient for burn-in. The analyses in Section 4 are based on one chain of length 

20,000 for each of the three states, Iowa, Kansas and Texas, where the first 1,000 iterations are discarded 

for burn-in. By the choices of the likelihood and the priors, the full conditional distributions are known 

distributions. See Appendix A.  

 
3.2  Prediction and MSE estimation 
 

If ,10iNx  is known, the Bayes predictor of ,10i  for squared error loss is  

                                             ,10 ,10 ,10 ,10 10 ,10
ˆ= , , = , ,

i i

B
i i N N iE E v        y x x x β y x  (3.6) 

where     10 10
ˆ = , , ,Eβ β y x y x  denotes the observed cash rental rates and covariates for the two years, 

and the second equality in (3.6) follows from (3.5) and linearity of expectation. The posterior mean squared 

error of ,10
B

i  is  

       2

,10 ,10 ,10 ,10 ,10, , = , , .
i i

B
i i N i NE V    y x x y x x  (3.7) 

As discussed in Section 2, the population mean of the covariates, ,10 ,
iNx  is not available for unit-level 

covariates in the Cash Rent Survey application. To define a predictor, we add a model for the covariate 

mean. See Lohr and Prasad (2003) for an approach that begins with a model specification for the unit 

level covariates. Partition ,10ijx  into two sub-vectors,  1
,10ijx  and  2

,10 ,ijx  where  1
,10ijx  contains county-level 

covariates, and  2
,10ijx  contains unit-level covariates. Assume  10 ,10 ,10 ,10N , ,

i iwi N N xxix x x V  where 

   10 10
1

10 ,10 ,10 ,10=1 =1
= ,i in n

wi ij ij ijj j
w w



 x x 10in  is the sum of the number of units in set 1 and in set 3, and ,10xxiV  

is known. The elements of ,10xxiV  corresponding to  1
,10ijx  are 0, and we explain how we obtain the elements 

of ,10xxiV  corresponding to unit-level covariates in Appendix B. The Central Limit Theorem supports the 

assumption of normality for 10wix  even if the distribution of the unit-level covariate values is not normal 
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(Kim, Park and Lee, 2017). Assuming ,10iNx  has a flat prior,  ,10 10 10 ,10N , .
iN wi wi xxix x x V  The Bayes 

predictor of ,10i  for squared error loss under the extended model in which the population mean of the 

covariates is unknown is  

                                                           ,10 10 10 ,10
ˆ ˆ= , .B

i wi iE v     x β y x  (3.8) 

The posterior mean squared error of ,10
ˆ B

i  is  
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(3.9)

 

where the final approximation assumes that the     10 10 ,10 ,10 10 10, ,
iwi i N wiv   Cov x β x x β y x  is 

negligible. A comparison of (3.7) and (3.9) shows that the term  10 ,10 10 10
ˆ ˆ

iN wiVβ x x β  accounts for the 

increase in posterior MSE due to replacing ,10iNx  in (3.6) with 10wix  in (3.8). To quantify the posterior MSE 

of ,10
ˆ ,B

i  we use  

    
1 2,10

ˆMSE = MSE MSE ,B
i ii   (3.10) 

where    1 10 10 ,10MSE = , ,i wi iV  x β y x  and  2 10 ,10 10
ˆ ˆMSE =i xxiβ V β . In the application of Section 4, we 

evaluate the effect of including the term  2MSE ,i  which accounts for the increase in posterior MSE due to 

use of the sample mean of the covariate instead of the population mean, on the posterior MSE of the 

predictor. 

 
3.3  Two-stage benchmarking 
 

NASS obtains estimates of cash rental rates at the state level using data from a national survey conducted 

in June (the June Area Survey) in addition to the Cash Rent Survey. The state estimates are published before 

the county-level data from the Cash Rent Survey are fully processed. NASS also establishes estimates of 

cash rental rates for agricultural statistics districts. To retain internal consistency, appropriately weighted 

sums of county estimates must equal the district estimates and appropriately weighted sums of district 

estimates must equal the previously published state estimate. Letting 10î  be the benchmarked predictor for 

2010, the benchmarking restrictions for a single time-point are defined by  
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 10 10 10
ˆ ˆ= ,

k

i i k
i d

w  

  (3.11) 

and  

   10 10 pub10
=1

ˆ = ,
K

k k
k

    (3.12) 

where = 1, ,k K  index the districts,   1

10 10 10= ,
k

i i ii d
w z z



  

 
1

10 10 10
=1

= ,
k k

K

k i i
k i d i d

z z


 




 
    

10iz  is the direct estimator of the acres rented in county i  in year 2010, kd  is the index set for the counties 

in district ,k 10
ˆ

k  is the final estimate of the average cash rental rate for district ,k  and pub10  is the published 

estimate of the state-level cash rent per acre. We consider estimates for the year 2010 in (3.11) and (3.12) 

because we focus on estimation for 2010 in the analysis of Section 4. 

We use the two-stage benchmarking procedure proposed by Ghosh and Steorts (2013) to define 

benchmarked estimates. The benchmarked estimates minimize the quadratic form  

                                            2 2

10 10,
=1 =1

ˆ ˆ, =
k

K K
B B

i i i k k w k
k i d k

g c b   


   c b  (3.13) 

subject to the constraints in (3.11) and (3.12), where  1= , , ,Dc cc  D  denotes the total number of 

counties,  1= , , ,Kb bb  10, 10 10
ˆ ˆ= ,

k

B B
k w i ii d

w 
  and  ,k i   are constants selected by the analyst. We 

set 10=i iw  and 10= ,k k   which gives the benchmarked estimates  

                                                10 10 10 10,
ˆ ˆ ˆ ˆ= ,B B

i i k i k i w      (3.14) 

with  
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   
 

 







 



 (3.15) 

for county i  and district   ,k i  respectively, where  k i  is the district containing county .i  In (3.15), 

10 10 10,=1
ˆ ˆ= .

K
B B
w k k wk

    Each of the benchmarked estimates in (3.14) and (3.15) is a sum of the hierarchical 

Bayes predictor and an adjustment term. If the hierarchical Bayes predictor for the state is larger (smaller) 

than the previously published state total, then the adjustment is negative (positive), and the benchmarked 

county and district estimates are smaller (larger) than the hierarchical Bayes predictors. The posterior mean 

squared error of the benchmarked predictor for year t  is  

     2
Bench

10 10 10 10
ˆ ˆ ˆMSE = MSE ,B B B

i i i i     (3.16) 
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where  10
ˆMSE B

i  is defined in (3.10). See (You, Rao and Dick, 2004) for a derivation of the posterior MSE 

of a benchmarked predictor. 

 
4  Results for non-irrigated cropland in Iowa, Kansas, and Texas 
 

The model of Section 3 was fit to the non-irrigated cropland cash rental rates reported on the 2009 and 

2010 Cash Rent Surveys for Iowa, Kansas, and Texas. These three states were chosen to reflect a range of 

situations. All counties in Iowa have estimates for corn yields, and cash renting is a relatively common way 

to rent non-irrigated cropland. Kansas is more agriculturally diverse than Iowa. According to agricultural 

specialists at NASS, share-renting is a more common way to rent land than cash renting in many parts of 

Texas, which may explain why realized sample sizes for some Texas counties are as small as zero or one 

report. 

 
4.1  Covariate selection 
 

The potential covariates for Iowa, Kansas, and Texas are listed in Section 2.2. For each state, the 

covariates include four variables related to the NCCPI, the total value of production for a county based on 

the 2007 Census of Agriculture, the expected sales for an operation recorded on the NASS list frame, the 

farm type recorded on the NASS list frame, and the acres rented for non-irrigated cropland recorded on the 

NASS Cash Rent Survey. For Iowa, an additional covariate is the corn yield for the county. For Kansas, an 

additional covariate is the non-irrigated yield index. 

The covariates for each state were selected according to the following procedure. First, univariate models 

were fit to the data for 2009 and 2010 separately using maximum likelihood estimation. The univariate 

model used for covariate selection is of the form  

 = ,ijt ijt t it ijty   x α   (4.1) 

where  2
,N 0, ,ijt t   and  2

,N 0, .it t   The data for each farm operator who reported a non-

irrigated cropland cash rental rate in year t  were used to fit the univariate model for year ,t  regardless of 

whether or not the unit also reported a cash rental rate in year   .s s t  The R function lmer in the package 

nlme is used for maximum likelihood estimation. For each year, step-wise selection using the R function 

stepAIC is performed using the BIC measure. The selected covariates are the variables that are in the 

minimum BIC models for both the 2009 and 2010 univariate models. We acknowledge that the minimum 

BIC model is a local minimum identified by the stepAIC procedure rather than a global minimum. The 

selected covariates for Iowa, Kansas, and Texas are as follows: 

• Iowa: corn yield, expected sales, non-irrigated acres rented for cash.  

• Kansas: non-irrigated yield index, expected sales, farm type.  

• Texas: max-NCCPI, expected sales, farm type.  
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4.2  Estimates of correlation parameters 
 

The exploratory analysis of Section 2.1 suggests a substantial correlation between the non-irrigated 

cropland cash rental rates for 2009 and 2010. Table 4.1 contains summaries of the posterior distributions of 

the correlations in the bivariate HB model defined in Section 3.1. The columns labeled “Median” are the 

posterior medians of the correlations, and lower and upper endpoints of the 95% credible intervals are the 

2.5 and 97.5 percentiles of the posterior distributions of the correlations. Even though the variances of 09ije  

and 10ije  are proportional to the inverses of the weights, the correlation is a constant because the weights 

cancel in the definition of the correlation. 

 
Table 4.1 
Posterior distributions of correlations between 2009 and 2010 
 

State 

 09 10Cor ,i i    09 10Cor ,ij ije e  

Median 95% Credible Interval Median 95% Credible Interval 
Iowa 0.746 [0.611, 0.839] 0.570 [0.548, 0.592] 
Kansas 0.919 [0.870, 0.950] 0.727 [0.701, 0.751] 
Texas 0.884 [0.831, 0.921] 0.691 [0.667, 0.714] 

 
The posterior medians of the county-level and unit-level correlations exceed 0.74 and 0.57, respectively. 

The lower endpoints of the 95% credible intervals exceed 0.61 and 0.54 for the county-level and unit-level 

correlations, respectively. For each state, the correlations at the level of the county are larger than the 

correlations for individual units. The significant correlations suggest the potential for an efficiency gain for 

the predictors relative to a univariate model. 

 
4.3  Comparison of 2010 predictors for bivariate and univariate models 
 

To demonstrate the gain in efficiency due to the use of the bivariate model relative to a univariate model, 

we compare the posterior mean squared errors of the predictors from the bivariate model to the posterior 

mean squared errors of the predictors from a corresponding univariate model. The assumptions of the 

univariate models are the same as the assumptions of the bivariate models except that the covariance 

parameters in eeΣ  and Σ  are assumed to equal zero. To fit the univariate models, we use inverse-gamma 

prior distributions for eet  and t  = 09,10 .t  

To compare the bivariate and univariate models, we define the relative posterior MSE (RelMSE) for 

county i  by  

 
Bench

10
,10 UNIBench

10

MSE
RelMSE = ,

MSE

B
i

i
i

 (4.2) 

where Bench
10MSE B

i  is defined in (3.16) and UNIBench
10MSE i  is the posterior MSE based on the corresponding 

univariate model. The average relative MSEs for Iowa, Kansas, and Texas are 88.71%, 97.27%, and 88.65%, 

respectively, where the average relative mean squared error for a state is 1
,10=1

RelMSE .
D

ii
D    Note that 

the effects of both estimating the covariate mean and benchmarking are incorporated in the forms for the 
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posterior MSE for both the bivariate and univariate models. Because of the significant correlations in the 

model errors for the two time points, the posterior MSE from a bivariate model is smaller than the posterior 

MSE from the corresponding univariate model, and the average relative efficiencies are less than one. 

To assess the effect of estimating the covariate population mean on the MSE of the predictor, we 

calculate the average of the ratios   1

2 1MSE MSEi i


 for = 1, , ,i D  where  2MSE i  and  1MSE i  are defined 

following (3.10). The ratios are 18.21%, 28.20%, and 21.07% for Iowa, Kansas, and Texas, respectively. 

Compared to Iowa and Texas, the contribution to the prediction MSE due to using the sample covariate 

mean instead of the population covariate mean is higher in Kansas, and this makes sense since Kansas is 

more agriculturally diverse. The relatively large average relative MSE for Kansas (97.27%) reflects the 

relatively large increase in posterior MSE due to estimating the covariate mean. 

 
4.4  Model assessment 
 

To assess model fit, we use the posterior predictive p value, which measures departures between the 

observed data and the model. The posterior predictive p value compares the posterior predictive 

distribution of selected summary statistics to the corresponding values obtained using the original sample. 

For the analysis below, we use only the elements observed in both 2009 and 2010 (set 1). 

We consider two summary statistics: the mean for each year and the multivariate skewness. The mean 

for year t  is the mean of the observations in set 1 for year t  and is defined  

                                                          
1

=1 =1

= ,
i

D D

t i ijt
i i j A

y A y





 
 
    

where iA  denotes the elements in set 1 for county .i  The multivariate skewness is defined by  
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, 09 ,10 09 10= ( ) ( ), = ( , ) , = ( , ) ,ijk ij k ij ij ijm y y y y    y y S y y y y   and   1
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i
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)( ) .ij y y y  

The posterior predictive p value is defined as the proportion of summary statistics calculated with 

samples generated from the posterior predictive distribution that exceed the corresponding value based on 

the original sample. To be specific, let   rT y  be the summary statistic based on the thr  data set generated 

from the posterior predictive distribution, where the procedure to generate data from the posterior predictive 

distribution is defined in Appendix C. Let  T y  be the corresponding statistic based on the original sample. 

The posterior predictive p value is      1
=1

> .
R

r
r

R I T T  y y  A p value close to 0.5 indicates that 

the model provides a reasonable fit to the sample data. 

Table 4.2 contains the posterior predictive p values for Iowa, Kansas, and Texas. For Kansas, the 

posterior predictive values indicate that the model is a good fit to the data. For Iowa and Texas, the posterior 
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predictive p values indicate lack of fit. A further analysis of residuals suggests that the lack of fit may 

result from outliers. The posterior predictive p values far from 0.5 may also arise because we only use the 

observations sampled in both 2009 and 2010 to calculate the posterior predictive p values, while we use 

the full data set to fit the model. 

 
Table 4.2 
Posterior predictive P values  

State   Statistic   P  value  

IA Mean = 09t  1.000 

Mean = 10t  1.000 
Skewness 0.931 

KS Mean = 09t  0.291 

Mean = 10t  0.507 
Skewness 0.371 

TX Mean = 09t  0.025 

Mean = 10t  0.039 
Skewness 0.004 

 
5  Conclusions and future work 
 

We use a bivariate HB model to obtain predictors of county-level cash rental rates for non-irrigated 

cropland in Iowa, Kansas, and Texas. The model incorporates auxiliary information related to land quality, 

commodity values, and farm characteristics. Significant correlations exist between the 2009 and 2010 model 

random effects at both the unit and county levels. As a consequence, using the information in the 2009 cash 

rent estimates reduces the posterior MSE relative to a univariate model. The analysis of the bivariate HB 

model provides support that a more refined approach than that of Berg et al. (2014) is possible. To 

incorporate unit-level covariates with unknown population means, we add a level to the hierarchical model 

that justifies adding a term to the posterior mean squared error to account for uncertainty in the unknown 

population means of the unit-level covariates. Unlike Berg et al. (2014), the proposed bivariate HB model 

allows variability to change over time and accounts for effects of benchmarking on the MSE. 

The analysis of the residuals and the posterior predictive p values suggests that accounting for outliers 

may be an important way to substantially improve the model fit. One option is to consider a heavy-tailed 

distribution, such as a t  distribution or a mixture of normal distributions, that may represent the observed 

responses more appropriately than the assumed normal distribution. An extension of Gershunskaya (2010) 

to bivariate framework and Bayesian estimation is one possible way to approach the issue of outliers. 
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Appendix A 
 

To specify the full conditional distributions for Gibbs sampling, we introduce notation. Let   be the 

set of parameters except for the parameter denoted by .  Let  , 09 ,10= , ,ij ij ij
X z z  where , 09 =ijz  

 
10, 09 , ,ij p
 x 0  and  

09,10 ,10= , .ij p ij
 z 0 x  Let  , 09 ,10= , .ij ij ijy yy  Let iA  be the set of units (farm operators) 

in county i  that are in set 1, , 09iB  be the set of units in county i  that are in set 2, and ,10iB  be the set of units 

in county i  that are in set 3, where set 1, set 2, and set 3 are defined in Section 3. Full conditionals are as 

follows. 
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Appendix B 
 

We define an estimator of the diagonal elements of  10 ,10 ,10:=
iwi N xxiV x x V  corresponding to unit-level 

covariates, 10ijkx  for 10= 1, , .k p  The variance estimator is based on a working assumption that a 

probability proportional to size with replacement (PPSWR) sample is a reasonable approximation for the 

cash rent survey design. As discussed in Cochran (1977), use of a PPSWR approximation is often reasonable 

if the sampling fraction is less than 10%. Suppose the draw probability for element j  in area i  for the 

PPSWR design is 1 1
10 ,10= .ij i ijp n w   Because 10 1in   for some counties, we define the estimator of the 

diagonal elements of 10xxiV  corresponding to unit level covariates as a convex combination of a direct 

estimator of the within-area variance and a variance estimator that pools information across all counties in 
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a state. For area i  with 10 > 1,in  the estimate of the within-area variance of 10ijkx  under the assumed 

PPSWR design (Särndal, Swensson and Wretman, 1992) is given by  
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where 10wikx  is the thk  element of 10 .wix  The pooled estimator of the variance is defined by  
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element of the diagonal covariance matrix ,10xxiV  corresponding to the thk  unit level covariate is then given 

by  
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We provide a heuristic justification for the combination in (B.2), which is related to Haff (1980). Let 
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In application to estimation of county-level cash rental rates, 2
10ikS  plays the role of 2S  and 2

10pkS  plays 

the role of .v  Taking = 1.5  gives the desired multiplier. 

 
Appendix C 
 
Data simulation from the posterior distributions 
 

Consider the posterior samples for 09 10, , β β Σ  and ,eeΣ  denoted by 09 10, ,s s s
β β Σ  and ,s

eeΣ  

respectively, for = 1, , .s S  Define  
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eeij wij ee wij
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for = 1, , .s S  Draw replicates 09 10 09, ,r r r
i i ijy   and 10 ,r

ijy  for = 1, , ,r R  following model (1-3) and 

properties of the multivariate conditional normal distribution as follows:  
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Although the number of posterior samples is =S  20,000, we construct =R  1,901 replicates, where r  

is selected from the sequence 1,000 to T  by skipping every 10 samples. 
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Estimation of response propensities and indicators of 
representative response using population-level information 

Annamaria Bianchi, Natalie Shlomo, Barry Schouten,  
Damião N. Da Silva and Chris Skinner1 

Abstract 

In recent years, there has been a strong interest in indirect measures of nonresponse bias in surveys or other forms 
of data collection. This interest originates from gradually decreasing propensities to respond to surveys parallel 
to pressures on survey budgets. These developments led to a growing focus on the representativeness or balance 
of the responding sample units with respect to relevant auxiliary variables. One example of a measure is the 
representativeness indicator, or R-indicator. The R-indicator is based on the design-weighted sample variation of 
estimated response propensities. It pre-supposes linked auxiliary data. One of the criticisms of the indicator is 
that it cannot be used in settings where auxiliary information is available only at the population level. In this 
paper, we propose a new method for estimating response propensities that does not need auxiliary information 
for non-respondents to the survey and is based on population auxiliary information. These population-based 
response propensities can then be used to develop R-indicators that employ population contingency tables or 
population frequency counts. We discuss the statistical properties of the indicators, and evaluate their 
performance using an evaluation study based on real census data and an application from the Dutch Health 
Survey. 

 
Key Words: Nonresponse; Missing data; Nonresponse bias; Balanced response. 

 
 

1  Introduction 
 

Nonresponse bias in surveys is of increasing concern with declining response rates and tighter budgets. 

National Statistics Institutes (NSIs) charged with conducting national surveys to convey the state of their 

country’s economic, social and demographic characteristics are facing increasing challenges in maintaining 

the quality of their survey response. In this paper, we focus on one particular survey conducted since 1998 

by Statistics Netherlands, The Dutch Health Survey, which up until 2010 was a face-to-face survey. In 2010, 

online data collection was added as a sequential mode before the face-to-face interviews. The response rates 

have gradually declined from values close to 70% to values around 60%. Other NSIs and survey 

organizations have reported declining response rates, particularly when moving to mixed modes of data 

collection in order to reduce budgets, with respondents pushed towards cheaper modes. However, response 

rates alone are not enough to judge the quality of the survey response, as nonresponse bias results from the 

contrast between those responding and not responding to the surveys. Nonresponse bias in the Dutch Health 

Survey is conjectured to arise from persons with weaker health, certain habits like smoking or fewer dentist 

visits, and poorer living conditions. Important predictors are age, marital status, income and ethnicity. 

A number of indirect measures of nonresponse bias have been developed recently to supplement the 

traditional response rate. Wagner (2012) provides a taxonomy of such measures: indicators that include only 

observed auxiliary variables and indicators that also include observed survey variables which may or may 
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not account for nonresponse weighting. The most prominent indicators that only use observed auxiliary 

variables are R-indicators (Schouten, Cobben and Bethlehem, 2009; Schouten, Shlomo and Skinner, 2011) 

and balance indicators (Särndal, 2011; Lundquist and Särndal, 2013).  

The development of these measures comes at a time when there is an increased interest in adapting data 

collection (Schouten, Calinescu and Luiten, 2013; Wagner, 2013; Wagner and Hubbard, 2014; Beaumont, 

Bocci and Haziza, 2014) so that the level of effort targeted at different subgroups as defined by auxiliary 

variables may be varied over time, possibly through a change of strategy, according to patterns of response 

(Schouten, Bethlehem, Beulens, Kleven, Loosveldt, Rutar, Shlomo and Skinner, 2012; Särndal and 

Lundquist, 2014). Both R-indicators and balance indicators must be viewed in conjunction with the auxiliary 

data that is employed. Different auxiliary variables may lead to different values of the indicators.  

In addition, Schouten, Cobben, Lundquist and Wagner (2016) present empirical evidence that it is 

beneficial for samples to be more balanced with respect to auxiliary variables, even when these variables 

are used in nonresponse adjustment afterwards. Based on 14 survey data sets they show that, on average, a 

design with a more representative response has smaller nonresponse biases, even after adjustments on the 

characteristics for which representativeness was evaluated. Särndal and Lundquist (2014) also found gains 

in balancing the respondents set, over and beyond those obtained by calibrating the sample. Further, it is 

worth noting that a more balanced sample leads to less variability in adjustment weights, which is a desirable 

property as large variation in adjustment weights may inflate standard errors of estimates. Of course, 

nonresponse adjustment weighting will still be necessary as there will always be some imbalance remaining 

in the final response dataset.  

The auxiliary data used for the response indicator measures may stem from sampling frame data, 

administrative data and data about the data collection process, called paradata (Kreuter, 2013). Balance 

indicators and R-indicators are very similar and are often proportional in size. In this paper, we focus on R-

indicators. However, much of the discussion and results can easily be translated to balance indicators.  

R-indicators presume the availability of auxiliary variables obtained by linking data from, for example, 

sample frames or registers, to the survey sample. This presumption of linked survey samples may be 

infeasible in many settings and hampers application. While national statistical institutes often have access 

to government registrations, university and market researchers usually do not. For indicators to become 

useful for these researchers, they must be based on different forms of auxiliary information. The only form 

of auxiliary information that is generally accessible are the sets of statistics produced by the national 

statistical institutes. These institutes disseminate tables on a wide range of population statistics. This paper 

develops R-indicators that are based solely on such population statistics and that can be computed without 

any knowledge about the non-respondents. As an example, market research companies compare the 

response distributions of a fixed, prescribed set of auxiliary variables to national statistics, termed the gold 

standard. The R-indicator estimators proposed here allow for monitoring and evaluating gold standard 

variables during and after data collection.  

Although the R-indicators based on population auxiliary information are motivated in this paper from 

survey data collection practice, they can be applied to any setting with missing data on variables of interest 
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and (almost) complete auxiliary data. They can for instance, be used to monitor and evaluate the completion 

of administrative data, which is useful if the data is streamed and gradually accumulated over time. In this 

case, population based R-indicators would provide an assessment of the representativeness of the streamed 

administration data. Another useful application for such indicators is to assess the representativeness of 

linked records. Van der Laan and Bakker (2015) proposed a Linkage Representativeness Indicator (LR-

indicator) which examines the similarity of linked records to the target population under investigation.  

R-indicators and their statistical properties, as discussed in Shlomo, Skinner and Schouten (2012), relate 

to the case where we have linked sample level auxiliary information for non-respondents. To develop R-

indicators based on population statistics, we propose a new method for estimating response propensities that 

does not require auxiliary information for non-respondents to the survey. They will be called population-

based response propensities. To our knowledge, there is no record in the literature about models for response 

propensities that employ population information only. In this respect, the current paper is innovative and 

may be valuable and relevant to other statistical areas as well. In this paper, we concentrate on the use of 

population-based response propensities in the computation of R-indicators. 

With respect to adapting data collection, it is clear that settings where population-based R-indicators are 

needed are harder for the implementation of these types of adaptive designs as we do not know the values 

of the covariates for nonrespondents. However, using these types of R-indicators based on population-based 

auxiliary information, we can make design features more salient to those that are lagging behind in terms of 

response. So, for example, if young people have lower response rates, we can send a general reminder with 

more focus on young persons or alternatively instruct interviewers to monitor more carefully those addresses 

where they expect younger persons. 

The auxiliary information for population-based response propensities is obtained from population tables 

and population counts. In order to do so, we first propose estimating response propensities based on 

population values, by replacing sample covariance matrices and sample means by known population 

covariances and population means. Next, using population-based response propensities, we compute 

estimates for the R-indicator. We call the resulting indicator a population-based R-indicator, and we call the 

traditional R-indicator a sample-based R-indicator. We focus on three research questions:  

 How to extend sample-based response propensities and R-indicators to population-based 

response propensities and R-indicators?  

 What are the statistical properties of population-based R-indicators? 

 Are the population-based R-indicators practicable in real survey settings? 

 

In Section 2, we propose a new method for estimating population-based response propensities. In 

Section 3, we briefly review the definitions and methodology behind R-indicators and then consider their 

estimation in the population-based setting. In Section 4, we present an evaluation study that is based on 

drawing samples from real Census data under realistic assumptions about nonresponse in social surveys and 

evaluate the properties of the population-based R-indicators. In Section 5, we demonstrate the proposed 
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R-indicators on an application from the Dutch Health Survey of the Netherlands. In Section 6, we end with 

a discussion and present some caveats related to the proposed indicators and future work. 

 
2  Population-based response propensities 
 

2.1  General notation 
 

We suppose that a sample survey is undertaken, where a sample s  is selected from a finite population 

.U  The sizes of s  and U  are denoted by n  and ,N  respectively. The units in U  are labelled 

1, 2, , .i N   The sample is assumed to be drawn by a probability sampling design  . ,p  where the 

sample s  is selected with probability   .p s  The first order inclusion probability of unit i  is denoted i  

and 1
i id    is the design weight. The evaluation study is based on simple random sampling without 

replacement. Although large-scale national surveys may use more complex two-stage designs, many are 

generally planned so that all survey units have an equal inclusion probability. We also provide theoretical 

expressions under more general complex survey designs.  

We suppose that the survey is subject to unit nonresponse. The set of responding units is denoted by ,r  

so .r s U   We denote summation over the respondents, sample and population by ,r s  and ,U  

respectively. Let ir  be the response indicator variable so that 1ir   if unit i  responds and 0,ir   

otherwise. Hence,  ; 1 .ir i s r    We shall suppose that the typical target of inference is a population 

mean 1
iU

Y N y   of a survey variable, taking value iy  for unit .i  

We suppose that the data available for estimation purposes consists first of the values  ;iy i r  of the 

survey variable, observed only for respondents. Secondly, we suppose that information is available on the 

values  1, 2, ,, , ,
T

i i i K ix x xx   of a vector of auxiliary variables .X  We shall usually suppose each ,k ix  

is a binary indicator variable, where ix  represents one or more categorical variables, since this will be the 

case in the applications we consider, but our presentation allows for general ,k ix  values. We assume that 

values of ix  are observed for all respondents so that  , ;i iy x i r  is observed.  

We distinguish two settings: one in which ix  is known for all sample units, i.e., for both respondents 

and non-respondents, and one in which ix  is known only at the aggregate level: the population total iU x  

and/or the population cross-products .T
i iU x x  We refer to the two types of information as sample-based 

auxiliary information and aggregate population-based auxiliary information. The first setting is relevant if 

the variables making up X  are available on a register. However, as outlined in the introduction, in many 

countries and surveys the availability of auxiliary information on non-respondents may be limited and the 

second setting using population-based auxiliary information may be more useful.  

 

2.2  Definition of response propensities 
 

The theory of propensity scores was introduced by Rosenbaum and Rubin (1983) and discussed in the 

context of survey nonresponse by Little (1986; 1988). Response propensities are defined as the conditional 
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expectation of the response indicator variable ir  given the values of specified variables and survey 

conditions:     ,X i m i iE r x x  where the vector of auxiliary variables is defined as in Section 2.1. For 

simplicity, we shall write  i X i  x  and hence denote the response propensity just by .i  .mE  

denotes expectation with respect to the model underlying the response mechanism. A detailed discussion of 

response propensities and their properties is presented in Shlomo et al. (2012). They argue that it is desirable 

to select auxiliary variables constituting ix  in such a way that the missing at random assumption, denoted 

MAR (Little and Rubin, 2002), holds as closely as possible.  

 

2.3  Estimation of response propensities using population-level information 
 

In the case of sample-based auxiliary information, it is possible to estimate response propensities for all 

sampled units by means of regression models   ,T
i ig   x β  where  .g  is a link function, ir  is the 

dependent variable, and ix  is a vector of explanatory variables. Generally, the response propensities are 

modelled by generalized linear models. Shlomo et al. (2012) use a logistic link function.  

In the population-based setting, it is convenient to consider the identity link function. The identity link 

function is a good approximation to the more widely used logistic link function when response rates are 

mid-range, between 30% and 70%, which is the typical response rate obtained in national and other surveys. 

We demonstrate this fact in the evaluation study presented in Section 4 where three ranges of response rates 

are investigated: low, medium and high. The identity link function also forms the basis for other 

representativeness indicators in the literature, such as the imbalance and distance indicators proposed by 

Särndal (2011) some of which are similar to the g-weights calculated in the Generalized Regression 

Estimators (GREG). 

Under the identity link function we assume that the true response propensities satisfy the “linear 

probability model” 

                                                           , .T
i i i U  x β  (2.1) 

The linear probability model in (2.1) can be estimated by weighted least squares, where id  is the design 

weight. The implied estimator of i  is given by 

                 1
OLSˆ , .T T
i i i i i i i is s

d d r i s


  x x x x  (2.2) 

In the case of population-based auxiliary information, we first note that i is
d x  and T

i i is
d x x  are 

unbiased for iU x  and ,T
i iU x x  respectively and that in large samples we may expect that 

i i is U
d  x x  and .T T

i i i i is U
d  x x x x  It follows from (2.2) that, in the population-based setting, 

we may approximate OLSˆ i  by 

                                                        1
, 1 1 ,T

i T i k kr
d i r  x T x  (2.3) 

where 1 .T
j jU

 T x x  We note that , 1i T  is computed only on the set of responding units. 

The estimator in (2.3) requires knowledge of the population sums of squares and cross-products 
T

i iU x x  of the elements of .ix  However the cross-products might be unknown. In that case, we can 

estimate T
i i is

d x x  in (2.2) by rewriting 
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                                             ,TT T
i i i i i s i s s ss s

d d N    x x x x x x x x  (2.4) 

where .s i is
d N x x sx  may be replaced by Ux  and the covariance matrix 

                                                           1 T
xx i i s i ss

N d  S x x x x  (2.5) 

may be replaced by its estimate using the response set 

                                                             
1ˆ .T

xx j j i i i U i Us s
d r d r


   S x x x x  (2.6) 

We can also estimate (2.6) using propensity weighting by 1
i   to adjust for nonresponse bias in the 

variance of the response propensities relative to a set of X  variables.  

Combining (2.3), (2.4) and (2.6), we obtain the following estimator:  

                                                     1
, 2 2

ˆ , ,T
i T i k kr

d i r  x T x  (2.7) 

where 2
ˆˆ .T

xx U UN N T S x x  

We therefore distinguish between two types of aggregated population-based auxiliary information as 

denoted by the indices 1T“ ”  in (2.3) and 2T“ ”  in (2.7):  

TYPE 1 Full aggregate population-based auxiliary information: the population cross products 

are available, i.e., T
i iU x x  or     ,T

i U i UU
  x x x x  where ;U iU

N x x  

TYPE 2 Marginal aggregate population-based auxiliary information: only the population 

marginal counts are available, i.e., .iU x  
 

The first type implies that we have available all two-by-two tables, e.g., age times gender, age times 

marital status and gender times marital status. This information might be available to a national statistical 

institute which has access to population registers or detailed population demographics and wishes to use 

population-based information to monitor data collection due to a lack of sample-based information on the 

sample frames. The second type is more restrictive as we have only frequency counts, e.g., age, gender, 

marital status, without any knowledge about the interactions. This information would be routinely available 

through websites of national statistical institutes and therefore can be used by marketing and other data 

collection agencies to monitor their data collection.  

 
3  Estimation of R-indicators based on population totals 
 

In this section, we first briefly review the definition and concepts of R-indicators, and their estimation 

based on sample-level auxiliary information. Details can be found in Shlomo et al. (2012). Next, applying 

the theory introduced in Section 2.3, we adapt the sample-based R-indicator to the case where auxiliary 

information is obtained from population tables and population counts. Further, we investigate the statistical 

properties of this estimator. 
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3.1  R-indicators 
 

Schouten et al. (2009) introduce the concept of representative response. A response to a survey is said 

to be representative with respect to X  when response propensities are constant for ,X  i.e., 

   , ,i X i i    x x   

where   denotes the average response propensity in the population.  

The overall measure of representative response is the R-indicator. The R-indicator associated with a set 

of population response propensities  :i i U   is defined as 

 1 2 ,R S    (3.1) 

where S   denotes the standard deviation of the individual response propensities  

  
2

22 2
1 1 1

,
1 1i U i iU U U

N
S

N N N N    
             

    (3.2) 

where .U iU
N    

The R-indicator takes values on the interval 11 , 1N
N     with the upper value 1 indicating the most 

representative response, where the ’si  display no variation, and the lower value 11 N
N   (which is close 

to 0 for large surveys) indicating the least representative response, where the ’si  display maximum 

variation.  

An important related measure of representativeness is the coefficient of variation of the response 

propensities 

 CV .
U

S 
 
  (3.3) 

This is a relevant measure when considering population means or totals as parameters of interest. In 

those cases, it may be used instead of the R-indicator. For other types of parameters of interest, such as the 

median or a ratio, other indicators can be used (Brick and Jones, 2008).  

The coefficient of variation in (3.3) bounds the absolute nonresponse bias of unadjusted response means 

for a variable Y  divided by its standard deviation. Schouten et al. (2016) also used the coefficient of 

variation to assess “worst case” nonresponse bias intervals for standard nonresponse adjusted post-survey 

estimators, such as the generalized regression estimator (GREG) (Deville and Särndal, 1992) and inverse 

propensity weighting (IPW) (Little, 1988).  

 

3.2 Sample-based R-indicators 
 

In the case of sample-based auxiliary information, it is possible to estimate response propensities for all 

sampled units. In the following, let ˆ i  be an estimator for .i  The sample-based estimator for the R-

indicator is  
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                                                              ˆ ˆ
ˆˆ 1 2 ,R S    (3.4) 

where 2
ˆŜ   is the design-weighted sample variance of the estimated response propensities computed using 

the first expression in (3.2) 

                                                                2
2
ˆ

1ˆ ˆˆ ,
1 i i Us

S d
N   
    

where  ˆ ˆ .U i is
d N    

The sample-based R-indicator defined by (3.4) is a statistic with a certain precision and bias. Shlomo 

et al. (2012) discuss bias adjustments and confidence intervals for ˆ
ˆ .R  These are available in SAS and R 

code at www.risq-project.eu, and a manual is provided by De Heij, Schouten and Shlomo (2015). We return 

to the statistical properties in Section 3.4. 

 
3.3  Population-based R-indicators 
 

We demonstrate in Section 4 that the R-indicators depend only mildly on the type of link function when 

estimating response propensities if response rates are not in the tails, i.e., very high or very low. Furthermore, 

we obtain similar estimation of R-indicators when population-based response propensities are estimated 

according to the Type 1 or Type 2 types of information.  

In the population-based setting, an estimator for the R-indicator is then 

                                                              1 2 ,R S   
  (3.5) 

where  

                                                              
2

2
1 1

,
1 i i ir r

N
S d d

N N N 
         

 
   (3.6) 

and i  denotes either response propensities computed under Type 1 information  , 1i T  or response 

propensities estimated under Type 2 information  , 2 .i T  

Notice that the estimation of the R-indicator is based on the second expression for 2S   in (3.2). This 

choice indeed makes the estimator 2S 
  linear in ,i  which provides an advantage for bias computations as 

described in Section 3.4. The evaluation study in Section 4 empirically demonstrates that the two 

expressions for 2S   are similar for the types of large-scale national surveys under consideration. 

Furthermore, we use propensity-weighting by 1
i   to adjust for nonresponse bias. As for standard 

nonresponse weighting, the validity of this correction depends on the validity of the estimates .i  

We remark that any adjustment technique for nonresponse can be applied to construct estimators for 

,R  e.g., calibration estimators such as linear or multiplicative weighting (Särndal and Lundström, 2005) 

or weighting class adjustments (Little, 1986). It is generally known that propensity weighting may lead to 

larger standard errors. It may, therefore, be more efficient to use parsimonious models to estimate the 
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R-indicator. For instance, this can be done by stratifying on response propensity classes. However, we did 

not explore such estimators, and restricted ourselves to the propensity-weighted estimator (3.5). This is a 

topic for future research. 

The estimation of the coefficient of variation (3.3) in the population-based setting is straightforward 

 CV ,
U

S 
 
 




   

where .U ir
d N  

 
Despite being straightforward estimators, the population-based R-indicators based on (2.3) and (2.7) are 

problematic. Their standard errors and biases increase with higher response rates. We will demonstrate this 

tendency in the evaluation study in Section 4.2. Clearly, more respondents should provide smaller standard 

errors and reduce bias since the auxiliary variables will not vary as much among the remaining non-

respondents. The reason that (2.3) and (2.7) have these properties is that they are natural but naïve estimators 

that ignore the sampling which causes sample covariances in the denominator of the estimated response 

propensities to vary along with the numerator. By “plugging” in a fixed population covariance in the 

denominator, variation from sampling is avoided.  

One way to moderate this effect would be to use a composite estimator, i.e., to employ a linear 

combination of the estimated propensity and the response rate,  

  , 1 , 11 ,C
i T i T U         (3.7) 

with ,U ir
d N    and similarly for Type 2. The composite estimate in (3.7) is similar to a “shrinkage” 

estimator, e.g., Copas (1983 and 1993), for the variance of the response propensities 2S 
  given by (3.6). In 

that case, the optimal   is usually chosen to minimize the MSE by solving the derivative of the MSE with 

respect to .  We return to the choice of   in Section 3.4 and note here that, given the observed bias and 

variance properties,   should be an increasing function of the response rate and should converge to 1 with 

higher response rates. Estimated response propensities greater than 1 will be drawn closer to 1 by such a   

due to the use of the linear link function under high response rates.  

We explored several other possible alternatives to the composite estimator in (3.7), for example, a 

composite estimator of the population covariance matrix and the response covariance matrix of the ,ix  and 

response propensities truncated to the interval [0, 1] for high response rates, but this gave worse results 

compared to the composite estimator in (3.7). In addition, we also investigated a Hájek-type estimate but 

this gave similar results to those provided by the proposed estimator in (3.6). Another advantage to using 

the composite estimator in (3.7) is that we can easily construct bias adjustments of the R-indicators similar 

to the bias adjustments constructed based on the propensities in (2.3) or (2.7).  

A promising alternative may be to adopt an EM-algorithm approach in which the missing auxiliary 

variables for nonrespondents are imputed. Such an approach is, however, very different in nature and we 

leave this to future research. 
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3.4  Bias and standard error of the population-based R-indicators 
 

Shlomo et al. (2012) derive analytic approximations for the bias and standard errors of the sample-based 

estimate of the R-indicator (3.4). The bias in this estimator arises mostly from “plugging in” estimated 

response propensities in the sample variances. This source of bias is referred to as small sample bias. A 

much smaller and usually negligible contribution to the bias originates from using sample means rather than 

population means. Even if the response is representative, i.e., has equal response propensities, some 

variation in estimated response propensities is found. The bias is inversely proportional to the sample size 

meaning that the larger the sample, the smaller the bias. Schouten et al. (2009) investigate the bias for 

different sample sizes. From their analyses, it follows that the bias is relatively small for typical sample 

sizes used in large-scale surveys in comparison to the standard error of the R-indicators. Also, the bias 

adjustment is successful in removing the bias. 

For the estimated population-based R-indicators, we expect that statistical properties will be quite 

different from their sample-based counterparts. As these estimators use less information, the standard errors 

will be larger. The bias of the population-based estimators may also be larger since in addition to the bias 

that was evident for small sample sizes in the sample-based estimators, the population-based estimators will 

likely have bias arising from the estimation of the sample means and covariances and from the restriction 

to (propensity-weighted) response means.  

To reduce the bias of the population-based estimators, we propose to adjust 
1

2
T

S 
  and 

2

2
T

S 
  for bias. This 

leads to the adjusted version of the estimator for the R-indicator under Type 1 information: 

                                                         
1 1 1 1

1 2
ADJ 2 21 2 .

T T T T
R S B S          

    (3.8) 

Appendix A derives the general expression for  2
1 1T TB S 
  under both simple random sampling and a 

more general expression under complex sampling. From Appendix A, the response-set based estimator for 

the bias under simple random sampling is: 

                                             

 

 

1 1

1

SRS 2 1
, 1 12

2

, 12 2

1
1

1 1

1
1 ,

1

T T

T

T
i T i i

i r

r
i T

i r

N N n
B S

N n N

Sn n n

n N N n n

 













      

         





x T x 



 




 

(3.9)

 

where rn  denotes the size of the response set .r  

In the case of Type 2 information, the adjusted version of the estimator for the R-indicator is as (3.8) 

with the Type 2 terms replacing the Type 1 information.  

Appendix B derives the general expression for the bias of 
2

2 ,
T

S 
  2

2 2 ,T TB S 
  under simple random 

sampling and the more general case of complex sampling. From Appendix B, the response-set based 

estimator for the bias under simple random sampling is:  
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






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 


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




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

  

where 1ˆ ,T
k kr

N n  F z z 1ˆ ,kr
Nn  t x  and   .i i U z x x  

Turning to the composite estimator, it is straightforward to show that (3.7) can be rewritten as 

  
11

2 21 ,C
TT

S S    
   (3.10) 

and its bias equals 

      
11

2 2 21 .C
TT

B S B S S     
   (3.11) 

A response-set based estimator for  
1

2
C
T

B S 
  is obtained using the response-set based estimator developed 

for  
1

2 .
T

B S 
  For the Type 1 estimator and under simple random sampling: 
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   




   




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(3.12)

 

The same approach applies for Type 2 estimator. 

The variance of (3.10) is equal to 

      
11

22 21 .C
TT

V S V S    
   (3.13) 

To estimate the variance of ADJ
1TR

  in (3.8) as well as the variance of the composite estimator in (3.13) we 

need to estimate the variance of 
1

2
T

S 
  defined in (3.6) and denoted by  

1

2 .
T

V S 
  To estimate this variance 

we use resampling methods. More specifically, we employ bootstrap methods (see: Efron and Tibshirani, 

1993; Booth, Butler and Hall, 1994 and Wolter, 2007 for the use of bootstrapping methods for finite 

populations) and assess their performance in the evaluation study in Section 4. 

We return now to the choice of   for the composite estimator in (3.7). The optimal   can be derived 

by combining (3.11) and (3.13), and then taking derivatives. Letting B  and V  denote  
1

2
T

B S 
  and 

 
1

2 ,
T

V S 
  respectively, it follows that the optimal   is 
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 

 
2

opt 2
2

λ .
B B S V

B S V





 


 
 (3.14) 

We note that as the sample size increases, both the B  and V  terms tend to zero and it is possible that 

opt  might be negative. However, based on the evaluation study for the types of large-scale national surveys 

under consideration, this problem does not arise in practice.  

In order to estimate opt ,  the quantities ,B V  and 2S   need to be estimated. Under Type 1 information 

and simple random sampling, we propose to estimate B  by  
1 1

SRS 2
T T

B S  
  as in (3.9), 2S   by 

1

2 ,
T

S 
  and V  by 

the bootstrap variance estimator of 
1

2 .
T

S 
  This leads to the population-based Type 1 estimator for opt ,  

denoted by opt , 1 ,T  and the population-based composite propensities 

 PC
, 1 opt , 1 , 1 opt , 11 .i T T i T T U           

The corresponding population-based R-indicator is then computed as in (3.5) and its bias-adjusted 

version as in (3.8), where the bias adjustment is given by (3.12).  

We propose to estimate the variance of the population-based composite estimator by linearization 

   
1

1

2
2BT

opt , 1

2

1
,T

T

TV S

S









  

where  
1

2BT
T

V S 
  is the bootstrap variance estimator for  

1

2 .
T

V S 
  

The same approach applies for Type 2 information. 

 
4  Evaluation study 
 

In this section, we carry out an evaluation study on real census data from the 1995 Israel Census Sample 

to assess the sampling properties of the estimation procedures introduced in Section 3. 

The aim of the evaluation is two-fold: a) to study the sampling properties of the unadjusted and bias 

adjusted population-based R-indicators, comparing them to those of their sample-based counterpart and 

assessing the effect of sample size, number of auxiliary variables in the model, and response rate; b) to 

investigate the performance of the bootstrap estimator for estimating the variance of the population-based 

R-indicator.  

 
4.1  Data and design of evaluation study 
 

The 1995 20% Israel Census Sample contains 753,711 individuals aged 15 and over in 322,411 

households. The census sample design is a random systematic sample where every fifth household was 

delivered a long questionnaire covering a range of socio-economic questions. The sample units are 

households and all persons over the age of 15 in the sampled households are interviewed. Typically a proxy 
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questionnaire is used and therefore there is no individual nonresponse within the household. In this study, 

we assume that every household has an equal probability to be included in the sample. This evaluation study 

uses data at the household level  322,411 .N   

We carried out a two-step design to define response propensities in the population (census) data. This 

procedure ensures that we have a known model generating the response propensities. Moreover, in order to 

explore the effect of varying response rates and the number of auxiliary variables in the model on the 

performance of the estimators, we considered six scenarios defined by the level of response rates 

(3 categories) and the type of model (2 categories). 

A. First, probabilities of response were defined according to variables: Type of locality (4 categories 

defined by rural/urban and type of population), number of persons in household grouped to 

3 categories (1-2, 3-5, 6+), children in the household indicator (yes, no), region (7 categories 

dividing the country from north to south), and density (3 categories: less than 1.5, 1.5-3.0, greater 

than 3.0). These variables define groups that are known to have differential response rates for 

social surveys in practice. To study the effect of response rates on the performance of the 

estimators, probabilities of response p  were defined according to 1 2 3 4 5p p p p p p    with 

three choices 0.15   (RR1), 0.55   (RR2), and 0.75   (RR3), where the probabilities 

1 2 3 4 5, , , ,p p p p p  are given in Table 4.1. We generate three response indicator variables using 

the Bernoulli distribution for each of the response scenarios defined under RR1, RR2, and RR3.  

B. For each of the response scenarios from step (A), we use the response indicator as the dependent 

variable and fit both a linear and a logistic regression model to the population to predict “true” 

response propensities for our evaluation study under both link functions. Two different models 

were considered for prediction of “true” response propensities. In Model 1, independent variables 

are exactly the explanatory variables used in step A for the definition of response probabilities 

(child indicator, number of persons in the household, region, type of locality, density). In Model 

2, independent variables are type of locality, number of persons in household, child indicator. 

Notice that we use the same response indicator variables to fit the two models. This allows the 

effect of the model to be isolated, excluding differences due to random variability in the response 

indicator. 

 

Response rates for the variables defining probabilities as well as the overall response rates and true 

population values of the R-indicator under the two models are shown in Table 4.1. For comparison purposes, 

we report population values of the R-indicator based on both linear and logistic regression models where 

the response rates range between 25.1% and 35.1% under RR1, between 64.7% and 75.4% under RR2 and 

between 84.7% and 94.6% under RR3. RR2 represents the type of response rate seen in large-scale national 

social surveys. As can be seen in Table 4.1, there is little difference in the population values of the R-

indicators based on the linear and logistic link function for RR1 and RR2 and a slight difference for RR3 
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under both models where response rates are in the upper tail of the distribution. We also note that across the 

very different overall response rates, the population values of the R-indicator are generally high.  

 
Table 4.1 
Probabilities of response and percent response generated in the evaluation population dataset according to 
auxiliary variables 
 

   Percentage response 

Variable Category Probability of response RR1 RR2 RR3 

Children in Household  
None 0.6 25.7 65.6 85.7 

1+ 0.8 35.1 75.4 94.6 

Number of Persons in Household  

1-2 0.5 24.6 64.5 84.7 

3-5 0.8 32.9 72.8 92.5 

6+ 0.7 29.9 70.3 90.0 

Type of Locality  

Type 1 0.6 25.1 64.9 85.0 

Type 2 0.7 28.3 68.5 88.4 

Type 3 0.8 31.5 71.7 91.2 

Type 4 0.75 28.9 69.2 88.9 

Region  

1 0.6 25.1 65.1 84.7 

2 0.8 31.2 71.5 91.0 

3 0.7 28.1 67.6 87.8 

4 0.6 26.7 66.5 86.4 

5 0.6 24.8 64.7 84.9 

6 0.7 27.6 67.8 88.0 

7 0.8 30.3 70.4 90.9 

Density  

<=1.5 0.6 26.1 66.0 86.2 

1.5-3.0 0.8 28.9 68.9 88.8 

>3 0.7 24.7 64.7 84.7 

Overall response rate   27.1 67.0 87.0 

“True” Population R-indicator (logistic) Model 1  0.9031 0.9005 0.9063 

 Model 2  0.9103 0.9074 0.9137 

“True” Population R-indicator (linear) Model 1  0.9033 0.9006 0.9076 

 Model 2  0.9104 0.9074 0.9145 

 
When using Model 2, the true R-indicator is always around 0.007 points greater than the corresponding 

value under Model 1. This is due to the fact that Model 2 for estimating the response propensities is mis-

specified. There are fewer auxiliary variables and hence smaller variation in the estimated response 

propensities which leads to a higher R-indicator. As a consequence we obtain a slightly higher R-indicator 

for Model 2 as some of the variation is not captured. For this reason, it is always important to report R-

indicators together with the auxiliary information used to calculate them since their values depend on the 

nonresponse model. In addition, we should use covariates that correlate to the survey variables (Schouten 

et al., 2012).  
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For each response scenario, five hundred samples were drawn from the population under simple random 

sampling (SRS) at three different sampling rates 1%  3,224 ,n   2%  6,448n   and 4%  12,896 .n   

For each sample drawn, a sample response indicator was generated from the “true” population response 

probability based on the logistic link function. This determines the response set .r  Response propensities 

and R-indicators were then estimated from each sample for both sample and population-based auxiliary 

variables. Response propensities are estimated in the sample using the “true” model (either Model 1 or 

Model 2, depending on the scenario). 

In order to estimate the variance of population-based estimators, we employ a non-parametric bootstrap 

algorithm. From each response set, we drew 500B   bootstrap samples using simple random sampling 

(SRS) with replacement. Subsequently, nonresponse was generated in the bootstrap sample by copying the 

0-1 sample response indicator values. A replicate of the estimator was computed over each bootstrap sample.  

 
4.2  Results 
 

Table 4.2 presents results of the evaluation study for each response rate scenario, type of model and each 

sampling rate. We contrast the sample-based R-indicators (under both link functions to highlight any 

differences) with the population-based R-indicators. In the evaluation, we also investigate the performance 

of the population-based composite estimator (PC) as shown in (3.7).  

For each estimator, Table 4.2 shows: a) the percentage Relative Bias (%RB) calculated as 

  500

ˆ1
ˆ100 500 ,jj
R R R  

    where ˆ
ˆ

jR  is the value of the estimator computed for the thj  sample 

and R  is the true R-indicator based on the linear regression model (from Table 4.1), and similarly for 
1
,

T
R
  

2
,

T
R
  and the composite estimator; b) the Relative Root Mean Square Error (RRMSE) calculated as 

  2500
1

ˆ1
ˆ100 500 .jj

R R R  



  

Table 4.2 shows that differences between the sample-based estimators computed using the linear and the 

logistic link functions are very small in general, except when the response rates get very close to 1 (RR3). 

For sample-based and population-based Type 1 and Type 2 estimators there is a general downward bias 

in the unadjusted R-indicators and this tends to decrease as the sample size increases for both Models 1 and 

2. This is as expected. Sampling error tends to lead to overestimation of the variability of the estimated 

response propensities and this leads to underestimation of the R-indicator. The degree of underestimation is 

generally larger for population-based estimators than for the sample-based estimators, especially for higher 

response rates. The variation of response propensities is larger in this case than the variation under sample-

based auxiliary variables. In addition, the RRMSE of the estimators decreases as sample size increases and 

is generally larger for population-based estimators. Thus, the population-based R-indicators are in general 

less accurate than their sample-based counterparts and allow for weaker conclusions regarding the nature of 

response. 
 



232 Bianchi et al.: Estimation of response propensities and indicators of representative response using population-level information 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 4.2 
Properties of the estimated R-indicators for sample and population-based auxiliary variables for 500 samples 
in the evaluation study 
 

Response Rate Sample Rate  Estimator  
Model 1 Model 2 

Unadjusted Adjusted Unadjusted Adjusted
%RB %RRMSE %RB %RRMSE %RB %RRMSE %RB %RRMSE

RR1 1% Sample-based (log) -1.73 2.39 0.32 2.01 -0.77 1.88 0.34 1.96
  Sample-based (lin) -1.71 2.37 0.33 2.01 -0.75 1.87 0.35 1.95
  Type 1 -2.32 3.08 0.32 2.54 -1.08 2.32 0.30 2.39
  Type 1 - PC 0.04 2.28 0.22 2.42 0.59 2.44 0.38 2.41
  Type 2  -1.47 2.29 1.06 2.50 -0.20 1.74 1.01 2.27
  Type 2 - PC 0.71 2.11 0.94 2.34 1.19 2.32 1.05 2.28
 2% Sample-based (log) -0.90 1.53 0.14 1.36 -0.41 1.30 0.14 1.31
  Sample-based (lin) -0.89 1.51 0.16 1.36 -0.40 1.29 0.15 1.31
  Type 1 -1.24 1.89 0.12 1.61 -0.51 1.57 0.17 1.59
  Type 1 - PC 0.04 1.56 0.10 1.59 0.38 1.68 0.21 1.62
  Type 2  -0.45 1.30 0.84 1.64 0.26 1.31 0.86 1.63
  Type 2 - PC 0.72 1.53 0.82 1.61 1.02 1.75 0.89 1.66
 4% Sample-based (log) -0.48 1.00 0.05 0.93 -0.27 0.90 0.00 0.88
  Sample-based (lin) -0.46 0.99 0.06 0.92 -0.26 0.89 0.01 0.88
  Type 1 -0.63 1.23 0.05 1.12 -0.34 1.13 -0.01 1.11
  Type 1 - PC 0.15 1.14 0.07 1.12 0.18 1.18 0.01 1.13
  Type 2  0.12 0.92 0.78 1.25 0.40 1.01 0.69 1.19
  Type 2 - PC 0.83 1.29 0.79 1.26 0.83 1.30 0.70 1.20
RR2 1% Sample-based (log) -1.81 2.44 0.33 2.01 -0.76 1.83 0.34 1.94
  Sample-based (lin) -1.79 2.42 0.34 2.01 -0.75 1.82 0.35 1.94
  Type 1 -5.17 5.95 -0.01 3.95 -2.45 3.77 0.25 3.43
  Type 1 - PC -1.50 3.58 -0.47 3.69 0.69 3.37 0.49 3.46
  Type 2  -4.76 5.50 0.27 3.75 -1.95 3.29 0.58 3.23
  Type 2 - PC -1.13 3.28 -0.12 3.51 0.74 3.13 0.71 3.25
 2% Sample-based (log) -1.00 1.59 0.08 1.37 -0.40 1.29 0.14 1.30
  Sample-based (lin) -0.98 1.57 0.09 1.36 -0.40 1.28 0.14 1.30
  Type 1 -2.89 3.55 0.07 2.59 -1.19 2.58 0.37 2.72
  Type 1 - PC -0.57 2.37 -0.12 2.49 0.53 2.67 0.41 2.69
  Type 2  -2.52 3.19 0.39 2.50 -0.79 2.28 0.69 2.63
  Type 2 - PC -0.26 2.19 0.19 2.37 0.81 2.58 0.71 2.60
 4% Sample-based (log) -0.48 0.98 0.07 0.90 -0.16 0.81 0.12 0.83
  Sample-based (lin) -0.46 0.97 0.08 0.90 -0.15 0.81 0.12 0.82
  Type 1 -1.42 2.12 0.13 1.81 -0.60 1.66 0.16 1.67
  Type 1 - PC 0.16 1.77 0.14 1.80 0.37 1.76 0.20 1.69
  Type 2  -1.07 1.82 0.46 1.78 -0.25 1.47 0.47 1.63
  Type 2 - PC 0.45 1.72 0.46 1.75 0.65 1.73 0.50 1.66
RR3 1% Sample-based (log) -1.07 1.59 0.10 1.30 -0.52 1.21 0.02 1.16
  Sample-based (lin) -0.85 1.40 0.24 1.26 -0.41 1.13 0.10 1.13
  Type 1 -6.60 7.32 -0.76 4.24 -3.20 4.61 0.06 4.12
  Type 1 - PC -2.22 4.15 -0.88 4.16 -0.28 3.70 0.09 3.92
  Type 2  -6.29 6.99 -0.53 4.08 -2.85 4.25 0.27 3.95
  Type 2 - PC -2.12 3.97 -0.67 4.02 -0.04 3.52 0.33 3.78
 2% Sample-based (log) -0.73 1.13 -0.14 0.92 -0.30 0.88 -0.03 0.85
  Sample-based (lin) -0.54 0.98 0.01 0.87 -0.20 0.82 0.06 0.82
  Type 1 -3.70 4.31 0.12 2.93 -1.74 2.98 0.20 2.86
  Type 1 - PC -0.78 2.60 -0.15 2.78 0.42 2.81 0.36 2.94
  Type 2  -3.46 4.07 0.30 2.87 -1.46 2.73 0.41 2.77
  Type 2 - PC -0.61 2.47 0.02 2.70 0.64 2.74 0.57 2.87
 4% Sample-based (log) -0.46 0.77 -0.16 0.66 -0.18 0.57 -0.05 0.55
  Sample-based (lin) -0.29 0.66 -0.01 0.61 -0.09 0.53 0.04 0.53
  Type 1 -1.96 2.62 0.12 2.12 -0.89 1.81 0.13 1.76
  Type 1 - PC -0.03 1.97 0.07 2.06 0.38 1.84 0.19 1.79
  Type 2  -1.74 2.42 0.31 2.07 -0.66 1.65 0.31 1.71
  Type 2 - PC 0.11 1.89 0.25 2.00 0.56 1.81 0.38 1.75

 

In general, the unadjusted population-based composite estimators have a better performance than the 

corresponding unadjusted population-based estimators, both in terms of %RB and RRMSE, especially for 

higher response rates. They still show some degree of overestimation under the correct Model 1 for low 

response rates and underestimation for high response rates. However, for Model 2 we see overestimation.  
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We now turn to the bias-adjusted estimated R-indicators in Table 4.2. For Type 1, the bias adjustment is 

able to remove the bias. The analytical bias adjustment for Type 1 population-based estimator works well 

and generally outperforms the analytical bias adjustment for Type 2 population-based estimates. It seems to 

pick up most of the bias and provides adjusted estimates that are closer to sample-based R-indicators. The 

RRMSE for the bias-adjusted estimator is generally similar to the corresponding RRMSE for the unadjusted 

estimator, meaning that the increase in variability is compensated by the bias reduction. For higher response 

rates, the adjusted population-based composite estimate reduces the bias and RRMSE of their corresponding 

population based R-indicators. 

In unadjusted form, the Type 2 R-indicator behaves better than the Type 1 R-indicator. This is rather 

surprising as we seem to be able to have more accurate estimation of the true R-indicator when using less 

information. The reason for this is that for the Type 1 estimator we do not include any of the sampling 

variation when we “plug in” the population covariance matrix, whilst for the Type 2 estimator we use only 

the marginal information and “plug in” the response covariance matrix which accounts for more of the 

sampling variation. After the bias adjustment, the Type 2 estimators have higher %RB (especially for lower 

response rates) but similar RRMSE. Type 2 bias adjustment performs worse than the bias adjustment for 

Type 1 and overcompensates for the bias. This result was expected as the Type 2 bias adjustment is based 

on a linear approximation, while Type 1 bias adjustment is computed exactly.  

Regarding increasing response rates, surprisingly, for the population-based unadjusted estimators, we 

observe a better performance for lower response rates, both in terms of percentage relative bias (%RB) and 

RRMSE. The RRMSE of RR3 are 2 to 3 times larger than for RR1. Analytical bias adjustments work very 

well under all response rates, although with higher RRMSEs for higher response rates. These RRMSEs are 

reduced by the use of the composite estimators. 

Regarding the effect of the number of variables in the model, a lower %RB and RRMSE are observed 

under Model 2 for unadjusted population-based estimators compared to Model 1. The composite estimators 

show in general an opposite pattern. The bias-adjusted versions show similar performance under the two 

models. 

Table 4.3 shows the mean of the estimated opt  for the composite population-based Type 1 and Type 2 

estimators compared to the true value obtained from the population under the two extreme response rate 

scenarios, RR1 and RR3. It can be seen that the mean estimated opt  does not deviate greatly from their true 

values in the evaluation study. 
 

Table 4.3 
Mean opt  for population-based auxiliary variables for 500 samples in the evaluation study 
 

Response Rate Sample Rate 
Model 1 Model 2 

Type 1 Type 2 Type 1 Type 2 
True Pop-based True Pop-based True Pop-based True Pop-based 

RR1 1% 0.40 0.33 0.36 0.33 0.31 0.29 0.26 0.28 

 2% 0.25 0.21 0.22 0.21 0.19 0.22 0.15 0.19 

 4% 0.14 0.13 0.13 0.13 0.10 0.10 0.08 0.09 
RR3 1% 0.68 0.44 0.67 0.44 0.57 0.51 0.55 0.48 

 2% 0.51 0.39 0.50 0.38 0.41 0.43 0.39 0.41 

 4% 0.35  0.27 0.34 0.27 0.25  0.23 0.24 0.22 
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Table 4.4 analyses the performance of the bootstrap estimators for estimating the variance of population-

based R-indicators under the two extreme response rate scenarios, RR1 and RR3. Analytical expressions 

for the variance of sample-based R-indicators have been developed and used in the evaluation study (see 

Shlomo et al., 2012). Simulation means of the variance estimators are compared in Table 4.4 with the 

simulation variances (calculated across the replicated samples), using percentage relative bias. The table 

also includes the Coverage Rate defined as the percentage of times that the true R  is contained in the 

confidence interval    500

ˆ ˆ1
ˆ ˆ ˆ100 1.96 500 ,j j jj

I R R V R  
     where  ˆ

ˆ ˆ
j jV R  is the estimated 

variance for the thj  sample (linearization variance estimator for sample-based estimator and bootstrap 

variance estimator for population-based estimators) and I  is the indicator function. The bootstrap variance 

estimators for population-based estimators work well. The sample-based estimator show better coverage 

than the corresponding population-based versions. Type 1 and Type 2 population-based estimators have 

similar coverages. The coverage always improves as the sample size gets larger.  

The behaviour under different response rates is mixed. There seems to be an interaction between sample 

size and response rate. The number of variables in the model does not have a large impact on coverage. 

However, we observe problems with coverage for the population-based estimators under the highest 

response rate (RR3), especially for the 1% sample rate. 

Figures 4.1, 4.2 and 4.3 present box plots comparing the estimators and their bias adjusted versions when 

fitting Model 1, under different response rate scenarios RR1, RR2 and RR3 respectively. The gains from 

the bias adjustments are evident for Type 1 and Type 2 R-indicators. Standard errors for RR3 are much 

larger than for RR1 under the same sampling rates. The variability of the bias-adjusted estimator increases 

and it is larger for smaller sample sizes.  

 
Table 4.4 
Properties of variance estimators for R-indicators under sample and population-based auxiliary variables for 
500 samples 
 

Response rate Sampling rate Estimator 
Model 1 Model 2 

%RB Coverage %RB Coverage 
RR1 1% Sample-based 1.84 0.95 -5.74 0.95
  Type 1 4.35 0.95 11.12 0.96
  Type 2 4.99 0.94 7.72 0.95
 2% Sample-based 1.43 0.96 1.15 0.95
  Type 1 8.62 0.96 5.31 0.95
  Type 2 7.03 0.93 2.10 0.92
 4% Sample-based 7.93 0.97 -4.58 0.95
  Type 1 13.23 0.96 3.42 0.95
    Type 2 13.38 0.89 2.53 0.90
RR3 1% Sample-based -1.05 0.95 -9.48 0.92
  Type 1 2.87 0.78 11.47 0.86
  Type 2 4.97 0.78 10.26 0.85
 2% Sample-based -4.34 0.94 -7.96 0.94
  Type 1 -7.61 0.92 2.37 0.91
  Type 2 -8.07 0.92 1.02 0.90
 4% Sample-based 3.31 0.94 -3.54 0.95
  Type 1 -8.33 0.93 12.32 0.96
    Type 2 -8.13 0.93 10.89 0.96
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Figure 4.1  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR1. (SLOG) 

denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR2. (SLOG) 
denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 
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Figure 4.3  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR3. (SLOG) 

denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 

 
5  Application to the Dutch Health Survey 
 

In this section, we apply the population-based Type 1 and Type 2 estimators to the Dutch Health Survey 

conducted by Statistics Netherlands. We employ three auxiliary variables that are part of the gold standard 

for Dutch market research companies and compare population-based performance to sample-based 

performance. 

The Dutch Health Survey (HS) was commissioned in 1998 as a repeated cross-sectional survey among 

the full population registered in the Dutch Population Register, but excluding the institutionalized 

population. It uses a two-stage, self-weighting sampling design in which the first stage is formed by 

municipalities and the second stage by persons living in the selected municipalities. Until 2012, the HS was 

a face-to-face survey. In 2012, it changed to a mixed-mode design involving online and face-to-face 

interviews. Over the years, the sample size was reduced considerably from around 35,000 to around 18,000. 

We use the 2002 HS data, one of the last years with the original sample size. The net sample size is 33,584 

persons. 

To calibrate national and regional samples, Dutch market research companies use the so-called Gold 

Standard population statistics produced by Statistics Netherlands (MOA, 2015). The Gold Standard is an 

explicitly defined set of auxiliary variables that affiliated companies include in their survey questionnaires. 

Three of these variables are age, gender and marital status. We focus on these three in the application.  
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Table 5.1 contains the HS sample and response distributions, and the Statistics Netherlands’ population 

distributions for the three variables. Joint population distributions, needed to estimate the Type 1 population-

based covariance matrices, are also available, but not given here. In practice, the sample distribution is, of 

course, unknown. The three variables show a different picture: for age and marital status, the response 

distribution is closer to the sample distribution than to the population distribution, and population-based 

response propensities give more variation. For gender, the population distribution is closer to the response 

distribution and less variation is found.  

 

Table 5.1 
Age, gender, and marital status distributions for the sample, respondents, and population 
 

Variables Categories Respondents Sample Population 

Age 20-24 7.5 7.9 8.1 

 25-29 7.3 8.2 8.9 

 30-34 9.9 10.2 10.9 

 35-39 10.9 10.8 11 

 40-44 10.3 10.3 10.4 

 45-49 9.7 9.4 9.6 

 50-54 9.4 9.6 9.5 

 55-59 8.8 8.9 8 

 60-64 7.1 6.7 6.3 

 65-69 5.9 5.6 5.4 

 70-74 5.4 4.7 4.6 

 75+ 7.7 7.8 7.2 

Gender Male 48.9 49.8 49.2 

 Female 51.1 50.2 50.8 

Marital status Not married 23.7 26.8 26.9 

 Married 63.3 59.3 58.8 

 Widowed 6.5 6.7 6.7 
  Divorced 6.4 7.2 7.6 

 
We estimate Type 1 and Type 2 population-based R-indicators in Table 5.3. For the composite estimator, 

we used the estimated smoothing parameter opt  based on the population-based response propensities. We 

also include an estimate for opt  calculated using sample-based response propensities. The latter cannot 

normally be computed and is included for comparison only. Table 5.2 contains the estimated smoothing 

parameter opt  based on both the population-based response propensities and the sample-based response 

propensities. The sample-based opt  are larger and tend to have a stronger smoothing effect. However, all 

opt  are relatively small.  

Table 5.3 contains the various population-based R-indicators. For comparison, the sample-based R-

indicator is also provided where we used the logistic link function. The linear link function produced the 

same result. We can conclude that the population-based R-indicators, using only response and population 

distributions, are different from the sample-based R-indicators, using response and sample distributions. 

This difference increases, as expected, when Type 2 indicators are used. The composite estimators perform 

slightly better than the non-composite estimators, but there is still a considerable difference. This is not due 
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to a biased smoothing parameter, as the difference is only modestly smaller when sample-based propensities 

are used to estimate the smoothing parameter. Furthermore, after bias adjustment, the differences between 

the composite estimators for sample-based and population-based propensities vanish.  

 

Table 5.2 
Values for smoothing parameter opt  based on population-based response propensities and on sample-based 
response propensities for Type 1 and 2 composite estimators 
 

 

Smoothing parameter opt  

Type 1 Type 2 

Population-based response propensities 0.043 0.038 

Sample-based response propensities 0.076 0.095 

 
Table 5.3 
Unadjusted and bias-adjusted sample-based and Type 1 and Type 2 population-based R-indicators for the HS 
2002 data. The population-based composite R-indicators are based on the smoothing parameter opt  using 
population-based and sample-based response propensities. 95% confidence intervals (CI) by normal 
approximation are provided 
 

  Unadjusted Bias-adjusted 

 Estimator R-indicator 95% CI R-indicator 95% CI 

Sample-based 0.899 0.888 0.909 0.901 0.890 0.912 
Type 1 – original 0.876 0.860 0.891 0.879 0.864 0.895 
Type 1 – composite population-based 0.880 0.865 0.896 0.880 0.864 0.895 
Type 1 – composite sample-based 0.883 0.868 0.898 0.880 0.865 0.895 
Type 2 – original 0.873 0.858 0.889 0.877 0.861 0.894 
Type 2 – composite population-based 0.878 0.863 0.894 0.878 0.862 0.893 
Type 2 – composite sample-based 0.881 0.866 0.897 0.878 0.863 0.893 

 
A conclusion from the application is that the lower population-based R-indicators result from the large 

differences between sample and population distributions of the auxiliary variables. For a sample size of 

33,584 persons, a test of the differences between sample and population distributions is significant for all 

three variables at the 5% level. The available Dutch Health Survey net sample does not contain sampling 

units with frame and/or other administrative errors as well as out-of-scope populations such as 

institutionalized persons. This modification plus some additional, small tailoring to interviewer workloads, 

most likely caused sample distributions to differ from the original population counts. This points at the 

“Achilles heel” of population-based R-indicators: it is imperative that there is no disparity between 

definitions and populations. 

 
6  Discussion 
 

The extension of sample-based to population-based estimators of R-indicators is comprised of two steps: 

1) the estimation of response propensities, and 2) the estimation of the R-indicators based on these 
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propensities. The population-based estimation of response propensities is straightforward when linear 

models are assumed for response propensities and response influences. The linear link function is reasonable 

when estimating response propensities under typical response rates seen for large-scale national social 

surveys as shown in the evaluation study in Section 4. The sample-based estimators contain sample 

covariance matrices and sample frequencies that can be replaced by population covariance matrices or 

population frequencies. We identified two types of settings: when population cross-products are available 

or when auxiliary information is restricted to marginal population counts only. We labelled the 

corresponding estimators as Type 1 and Type 2 estimators, respectively. The Type 2 setting is more 

restrictive than the Type 1 setting.  

Following the estimation of population-based response propensities, we have constructed population-

based estimators for the R-indicator and examined their properties both theoretically and empirically. The 

estimators are applied to samples drawn from real data from the 1995 Israel Census Data where “true” 

propensities were calculated according to realistic assumptions for national household social surveys. Thus, 

we have addressed the first two research questions at the beginning of the paper: How to extend sample-

based response propensities and R-indicators to population-based response propensities and R-indicators? 

and What are the statistical properties of population-based R-indicators? 

There are many options for the estimation of R-indicators depending on the response to the survey. We 

used propensity weighted response means as the propensities are available. However, any calibration 

method can be used such as linear weighting or adjustment classes. In fact, the set of auxiliary variables 

used for the estimation of the R-indicators may be a subset of the auxiliary variables used for the estimation 

of propensities and influences. Parsimonious models may prove to be more efficient as it is known that 

propensity-weighting may seriously affect the precision of the estimators. This is a topic for future research.  

The two properties we examined are the bias and standard errors of the proposed population-based R-

indicators. As expected the bias and standard errors are dependent on the size of the sample and the type of 

auxiliary information available where the smaller the sample, the larger the bias and the standard error. 

When samples are smaller, it becomes more difficult to distinguish sampling variation from response 

variation. Clearly, the confidence intervals become larger as there is less information in small samples.  

The bias-adjusted Type 1 estimators (population cross-products) perform better than the bias-adjusted 

Type 2 estimators (population marginal counts). This is as expected given that they employ more 

information. However, the unadjusted Type 2 estimators have better RRMSE properties than the unadjusted 

Type 1 estimators. This is a surprising result and points to a suboptimal use of the population cross-products 

when they are used as “plug-ins” and do not account for any sampling variation. The standard errors of the 

population-based estimators are larger than their sample-based counterparts. 

The evaluation study in scenario RR3 shows that, for very high response rates, the population-based R-

indicators provide higher standard errors and larger bias, mainly due to propensities being estimated outside 

of the interval [0, 1]. For this reason, we proposed a composite estimator with varying smoothing parameters 

dependent on the response rate. Standard errors were reduced but at the cost of increased bias.  
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From the analyses it becomes apparent that the bias of the Type 1 and Type 2 estimators depends on the 

number of auxiliary variables, but this dependence was modest in our evaluations. The bias may increase 

when using detailed models with many variables for the estimation of response propensities. The rationale 

behind this is that detailed models allow for more sampling variation to be picked up as bias.  

The population-based R-indicators have a number of caveats:  

Firstly, the choice of auxiliary information that is available at a national level may be more limiting than 

sample-based auxiliary information depending on the availability of registers and administrative data. The 

selection of auxiliary variables should depend on whether they are correlated with the survey target 

variables. Also, it is strongly recommended that population statistics that are based on registers or 

administrative data are used rather than those based on weighted survey counts from other surveys since 

these statistics may not reflect the true population distribution accurately. One would draw erroneous 

conclusions about the representativeness of the response if the population estimates are biased. 

Secondly, we make the assumption that the survey measures the same quantities as in the population 

information and we do not investigate the effect of possible departures from this assumption. However, we 

note that there is an imminent risk of measurement errors when comparing the representativeness of survey 

questions to population statistics. It must be ascertained that the survey questions that are employed have 

the same definitions and classifications as the population tables. Hence, it is best to avoid questions that are 

prone to measurement errors, such as questions that require a strong cognitive effort or that may lead to 

socially desirable answers.  

Thirdly, in settings where only population information is available, options to improve representativeness 

during data collection are much more limited since there is no individual auxiliary information available for the 

nonrespondents. Nonetheless, in these settings, assessments of representativeness may still be useful in the design 

of advance and reminder letters, in interviewer training and in paradata collection. 

Finally, we do not consider hybrid settings where the R-indicator is based on both linked data and 

population tables. In addition, we do not deal with the case where we could use weighted survey estimates 

if there is no aggregated population information available. This will impact on both the bias and variance 

estimates for the population based R-indicators. Such extensions are relatively straightforward but will be 

left to future papers. 

The research into population-based R-indicators is still at the beginning stage and it is too early to provide 

a definitive answer to the last research question presented in the introduction regarding the feasibility and 

practicability of R-indicators based on aggregate population auxiliary information. As mentioned in the 

introduction, further usage of these R-indicators are being explored in the context of evaluating and 

monitoring streamed administrative data and assessing the representativeness of linked records. In addition, 

Schouten et al. (2011) introduced partial R-indicators under sample-based auxiliary information for 

evaluating the lack of representativeness due to a specific auxiliary variable or category. These were used 

for monitoring and evaluating data collection. Schouten and Shlomo (2017) demonstrate the use of partial 
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R-indicators for adaptive survey designs. It is straightforward, similarly, to define population-based partial 

R-indicators and this will be a subject of future work.  

Regarding the evaluation study presented in Section 4 on survey representativeness, it is based on real 

data under realistic assumptions of response probabilities typically found in social surveys conducted at 

national statistical institutes. Future research needs to assess whether alternative estimators can be 

constructed that are more precise, and, consequently, allow for stronger conclusions regarding the nature of 

response. A natural avenue to explore is an iterative approach through a modification of the EM-algorithm, 

in which the score of the nonrespondents on the auxiliary variables is estimated and used to update response 

propensity estimates. 

We did not consider population-based estimation for other types of models such as logistic or probit 

regression. As shown in the numerical evaluation in Section 4, differences in sample-based estimators 

between the linear and logistic link function are in general small, but when the response rates get very close 

to 1, they become more evident. For these cases, developing other link functions for population-based 

estimation is a subject of future research. This would be a useful and natural extension to the theory of R-

indicators as these models are often used in practice and avoid propensities outside the [0, 1] interval.  
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Appendix A 
 
Analytic approximation to the bias of Type 1 

1T
R
  estimators 

 

First, we compute the bias of 
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where ik ik i k      and ik  are the second-order sample inclusion probabilities. Hence, the bias of 
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Under simple random sampling without replacement, (A.2) can be simplified to 
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More generally, the Horvitz-Thompson response-set estimator for (A.2) under complex sampling is 

given by 
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Appendix B 
 
Analytic approximation to the bias of Type 2 

2T
R
  estimators 

 

The strategy to compute an analytical bias adjustment for 
2

2
T

S 
  is to first approximate , 2i T  by a linear 

estimator using Taylor linearization techniques. Next, compute an approximate bias adjustment for 
2

2 ,
T

S 
  

by inserting the linear approximation for , 2i T  into 2ˆ .m  

In the following, define, for 1, ,j p   and 1, , ,j p    the estimated totals 

 0
ˆ ˆ ˆ,      , and ,k k jj k k jk j k j k k jks s s
t d r t d r z z t d r x        

where  k k U z x x  and   .jk jk jUz x x   Let t̂  be a p -vector with components ˆ ,jt  and F̂  be the 

symmetric  p p -matrix with elements ˆ .jjt   We may write 

1
1 1

, 2 0 2
ˆ ˆˆ ˆˆ .T T T

i T i U U iNt N


     x F x x t x T t  

Define now the population totals 

0 ,      , and .T
k k k k k kU U U

t       F z z t x  

Notice that 0t̂  is unbiased for 0 ,t F̂  is unbiased for ,F  and t̂  is unbiased for .t  Let 1
2 0Nt  T F  

.T
U UN x x  

 

Proposition 1. The estimator , 2i T  defined in (2.7) may be approximated by 

                                   1 2 1 1 1 1 1
, 2 2 0 2 0 0 2 0 2 2

ˆ ˆˆ .T T T
i T i i iNt t t Nt           x T F T t x T F F T t x T t   

Proof. Following standard Taylor linearization (see Särndal, Swensson and Wretman, 1992 and Bethlehem, 

1988), the estimator , 2i T  may be approximated by 

                                   *
, 2 , 2 0 0 0

1 1

ˆ ˆ ˆ ,
p p

i T i T jj jj jj j j j
j j j j

a t t a t t a t t    
  

         (B.1) 
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where 1*
, 2 2 ,T
i T i  x T t  and  
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where jjΛ  is a   -p p matrix with ones in positions  ,j j  and  ,j j  and zeros elsewhere and jλ  is 

a p -vector with the thj  component equal to one and zeros elsewhere. Inserting the partial derivatives into 

(B.1) gives the result.  
 

Proposition 2. Under simple random sampling, an approximate bias for 
2

2
T

S 
  with respect to the joint 

distribution of sampling design and the response mechanism is given by 
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where 1 1
2 2 ,T

i ic   x T FT t 1
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T
i i

b x T  and 1*
, 2 2 .T
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A response-set based estimator of  
2

2SRS
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Proof. Thanks to Proposition 1, 2m̂  defined in Appendix A may be approximated as follows 
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The expected values of the terms , ,A B  and C  are 
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It follows that, under simple random sampling,  2ˆE m  becomes 

                         

 

 

2 1 1SRS
2 0 0 2

1 *
2 , 2

1 1
ˆ 1 1

1 1

1 1 1
1 .

1 1

T
i i i i i i i i

U U

T
i i i i i i T

U U

N n N n
E m t c t

n N n N

n n

n N n N

   

   

  



              
     
  

 

 

b z z T t

x T x

 

So the total bias under simple random sampling is obtained by inserting  SRS
2ˆE m  computed above into 

(A.1) and following the proof in Appendix A for the other terms. 

The response-set based estimator  
2 2

SRS 2
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developed for 
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  with two additional terms due to the linearization of 2T̂ . 

More generally, the Horvitz-Thompson response-set estimator under complex sampling for the bias 

adjustment of Type 2 population-based R-indicator is given by 
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Semiparametric quantile regression imputation for a 
complex survey with application to the Conservation Effects 

Assessment Project 

Emily Berg and Cindy Yu1 

Abstract 

Development of imputation procedures appropriate for data with extreme values or nonlinear relationships to 
covariates is a significant challenge in large scale surveys. We develop an imputation procedure for complex 
surveys based on semiparametric quantile regression. We apply the method to the Conservation Effects 
Assessment Project (CEAP), a large-scale survey that collects data used in quantifying soil loss from crop fields. 
In the imputation procedure, we first generate imputed values from a semiparametric model for the quantiles of 
the conditional distribution of the response given a covariate. Then, we estimate the parameters of interest using 
the generalized method of moments (GMM). We derive the asymptotic distribution of the GMM estimators for 
a general class of complex survey designs. In simulations meant to represent the CEAP data, we evaluate variance 
estimators based on the asymptotic distribution and compare the semiparametric quantile regression imputation 
(QRI) method to fully parametric and nonparametric alternatives. The QRI procedure is more efficient than 
nonparametric and fully parametric alternatives, and empirical coverages of confidence intervals are within 1% 
of the nominal 95% level. An application to estimation of mean erosion indicates that QRI may be a viable option 
for CEAP. 

 
Key Words: Informative sample design; B-spline; Erosion. 

 
 

1  Introduction 
 

Missing data have important implications for analyses of survey data. Missing data can arise because 

sampled units refuse to participate in the survey, are difficult to locate, do not respond to sensitive questions, 

or drop out of longitudinal studies. If the missing values are related to the variable of interest, an analysis 

of the complete data with no modification for missing values, is biased. Weighting and imputation are two 

broad classes of missing data adjustments. 

Two types of weighting adjustments are calibration (D’arrigo and Skinner, 2010 and Kott, 2006) and 

propensity score estimation (Kim and Riddles, 2012). In calibration, the weights for the respondents are 

adjusted so that the weighted sum of an auxiliary variable for the respondents is equal to the corresponding 

mean for the full sample or a population mean. In propensity score estimation, the sampling weight is 

multiplied by the inverse of an estimated response probability.  

Imputation completes the data set, replacing missing response variables with imputed values. Imputation 

can simplify analyses in the presence of item nonresponse and improve consistency in results across users. 

We consider imputation of a response ,y  which may be missing, using an auxiliary variable x  that is 

observed for the full sample. To allow flexibility in the model assumptions, we use a semiparametric 

quantile regression model to describe the relationship between x  and .y  



250 Berg and Yu: Semiparametric quantile regression imputation for a complex survey with application to the CEAP 
 

 
Statistics Canada, Catalogue No. 12-001-X 

A diverse range of imputation procedures exists (Kim and Shao, 2013). Parametric fractional imputation 

(Kim, 2011) and parametric multiple imputation (Rubin, 2004) generate imputed values from an estimate 

of a fully parametric model for the conditional distribution of the response given covariates. Hot deck 

imputation (i.e., Andridge and Little, 2010), in contrast, includes, a class of nonparametric procedures in 

which imputed values are selected from respondents. In some hot deck procedures, weights are assigned 

according to a proximity measure, defined by imputation classes (Brick and Kalton, 1996) or a metric 

(Rubin, 2004; Little, 1988) such as a kernel distance (Wang and Chen, 2009). Nonparametric imputation is 

more robust to model misspecification than fully parametric methods, but estimators based on 

nonparametric procedures can have poor efficiency in small samples. Semiparametric quantile regression 

imputation (QRI) is a compromise between nonparametric and fully parametric imputation procedures. In 

QRI, the imputed values for a single missing value are the estimated quantiles of the distribution of the 

missing observation conditional on a function of auxiliary variables. Because a semiparametric model for 

the quantile function is used, QRI is robust to model misspecification, and because values are imputed from 

estimated quantiles, QRI is resistant to extreme values. Chen and Yu (2016) develop QRI for simple random 

sampling from an infinite population. We extend Chen and Yu (2016) to allow unequal selection 

probabilities. 

Many imputation procedures rely on a missing at random (MAR) assumption (Rubin, 1976). A common 

assumption is that the response variable ( ,y  which may be missing) is conditionally independent of the 

missing indicator (1 if a response is provided and 0 otherwise) given the observed data. A direct application 

of this MAR definition to a complex survey specifies independence of the response variable and missing 

indicator variable conditional on the auxiliary variable and the sample inclusion indicators (Little, 1982; 

Pfeffermann, 2011). Berg, Kim and Skinner (2016) call the missing at random assumption that is defined 

conditional on the sample inclusion indicators sample missing at random. An alternative assumption, called 

population missing at random (Berg et al., 2016), is that the response variable is conditionally independent 

of the missing indicator given the auxiliary variable in the superpopulation, unconditional on the sample 

inclusion indicators. Berg et al. (2016) show that these two assumptions are not equivalent. We discuss these 

MAR concepts precisely in Section 2 and develop our procedure to be sufficiently flexible to accommodate 

either condition. 

Our interest in semiparametric quantile regression for a complex survey is motivated in part by the 

Conservation Effects Assessment Project (CEAP), a complex survey intended to quantify soil and nutrient 

loss from crop fields. Because distributions of the response variables are highly skewed and contain extreme 

values, specification of an adequate fully parametric imputation model is difficult, and hot deck imputation 

procedures may have large variances. We investigate the use of QRI to address these issues in imputation 

for CEAP. 

We demonstrate the theoretical validity and applicability of semiparametric quantile regression 

imputation in the context of a complex survey. Section 2 and Section 3, respectively, present the imputation 

algorithm and asymptotic properties. Section 4 and Section 5 demonstrate the properties of QRI through the 
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CEAP application and simulations, respectively. Section 6 concludes with a summary and a discussion of 

areas for future research. 

 
2  Quantile regression imputation for complex survey data 
 

Consider a conceptual framework in which samples are drawn from a finite population generated from 

a superpopulation model (Fuller, 2009b, Chapter 6). Let ix  and iy  have joint distribution  ,i if x y  in the 

superpopulation. We define the conditional distribution of iy  given ix  through the conditional quantile 

function. Let  iq x  denote the th  quantile of the conditional distribution of iy  given ix  in the 

superpopulation, where  iq x  is defined by  

    = .i i iP y q x x   (2.1) 

We specify a model for the quantiles because quantile regression models can describe a wide variety of 

distributions, as illustrated in Figure 2.1. The left panel of Figure 2.1 depicts a linear quantile regression 

model in which each conditional quantile function is represented with a different intercept and a different 

slope. The use of a different slope allows describing data with nonconstant variances. The right panel of 

Figure 2.1 illustrates a generalization to semiparamtric quantile regression, where the th  quantile of the 

conditional distribution of iy  is represented as a continuous function of .ix  In the imputation procedure, 

we assume  q   is a function with 1p   continuous derivatives. We approximate  iq x  with a B-spline 

(de Boor, 2001; Chen and Yu, 2016; Yoshida, 2013; Hastie, Tibshirani and Friedman, 2009), as we explain 

in more detail in Section 2.2. To enable the use of the B-spline, we assume ix  has compact support but do 

not require further distributional assumptions for .ix  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1  Illustration of linear quantile regression (left) and semiparametric quantile regression (right). 
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We consider estimation of parameters that are defined in terms of the superpopulation model relating iy  

to ,ix  rather than finite population parameters. The true parameter of interest, ,oθ  is a d dimensional 

vector satisfying,  

   , ; = ,i i oE y xg θ 0  (2.2) 

where  , ;i i oy xg θ  is an r dimensional function with two continuous derivatives, and .r d  The 

expectation operator  E   denotes expectation with respect to the superpopulation model. Note that 

     , ; = , ; ,i i o y x i i oE y x E E y x  g θ g θ  where  

 

      

     
     

1
1 1

1
10 0

, ; = , ;

= , ; = , ; ,

y x i i o i i o y x i i i

y x y x i
y x i o i i o

y x y x i

E y x y x f y x dy

f F x
F x d q x x d

f F x 


  














 

g θ g θ

g θ g θ
 
(2.3)

 

and  y x i iF y x  and   ,y x i if y x  respectively, denote the cumulative distribution function (cdf) and 

probability density function (pdf) of the conditional distribution of iy  given .ix  The second equality in 

(2.3) follows from the probability integral transform and a change of variables from iy  to the uniformly 

distributed   with pdf     = 0,1 ,f I    where  I   is the indicator variable that takes the value 1 if 

the argument is true and 0 otherwise. The relationship defined by the third equality in (2.3) plays an 

important role in the imputation procedure. For each missing ,iy  we construct J  imputed values defined 

    
1

ˆ ˆ, , ,
Ji iq x q x   where  ˆ

j iq x  estimates   ,
j iq x  and 1 , , J   form a fine grid on the interval 

 0, 1 .  We then estimate   , ;y x i i oE y xg θ  by approximating the integral in the last expression of (2.3) 

with an average of the J  imputed values. 

The imputation procedure consists of two main steps. We first construct the imputed values, estimating 

 iq x  using a linear combination of B-spline basis functions. We then estimate oθ  using the generalized 

method of moments (GMM), replacing missing iy  with the estimate of   , ;y x i i oE y xg θ  based on the 

imputed values and the relationship (2.3). To formalize the procedure, we require specific assumptions about 

the design and the response mechanism, which we specify in Section 2.1. Section 2.2 explains estimation 

of the quantile function, and Section 2.3 describes the generalized method of moments. Software for 

implementing the procedures is available from the authors. 
 

2.1  Assumptions on design and response mechanism 
 

Let iI  be the sample membership indicator, defined by = 1iI  if unit i  is selected. Let i  and ij  be 

the first and second order inclusion probabilities, respectively, defined by  

    , = = 1 , , = 1, = 1 , , , .i ij i i i i j i i j jP I y x P I I y x y x         (2.4) 

Dependence of i  on iy  in (2.4) represents a possible correlation between iy  and i  that can cause the 

sample design to be informative for the quantile regression model (2.1). We denote the selected sample by 

,A  where  = : = 1 .iA i I   



Survey Methodology, June 2019 253 
 

 
Statistics Canada, Catalogue No. 12-001-X 

We assume ix  is observed for all i  in ,A  while iy  may be missing. Let i  be the response indicator, 

defined by = 1i  if iy  is observed, and = 0i  if iy  is missing. Assume  Bernoulli ,i ip   where the 

response probability ip  is defined as  

  = = 1 , , .i i i i ip P y x I  (2.5) 

To define an approximately unbiased imputation procedure, we require an assumption about the 

relationship between i  and .iy  A common approach in missing data analysis is to assume that the response 

variable, ,iy  is independent of the missing indicator, ,i  conditional on the observed values (Little, 1982 

and Pfeffermann, 2011). This assumption is a widely used interpretation of the missing at random (MAR) 

definition given in Rubin (1976) and clarified in Mealli and Rubin (2015). For a complex survey, the 

relationship between the inclusion probabilities, the response probabilities, and y  can be complex if the 

response indicators and the sample inclusion indicators depend on a variable that is not included in the 

imputation model. 

We follow the approach of Berg et al. (2016) and consider two assumptions about the relationship 

between i  and .iy  We define sample missing at random (SMAR) to mean  

    = 1 , , = = 1 , .i i i i i i iP x y I P x I   (2.6) 

In contrast, we define population missing at random (PMAR) to mean  

    = 1 , = = 1 .i i i i iP x y P x   (2.7) 

Berg et al. (2016) discuss situations in which the PMAR assumption may be viewed as reasonable and 

provide examples where PMAR holds while SMAR fails. If the response probabilities and the sample 

inclusion probabilities depend on a variable that is not included in the imputation model, then the PMAR 

may hold while SMAR does not. One example of a variable that may be excluded from the imputation 

model is a design variable. The analyst may omit a design variable from the imputation model if the design 

variable is unavailable at the imputation stage or because the imputation model is a subject-matter model 

relating iy  to .ix  We develop the QRI procedure to be flexible enough to accommodate either PMAR or 

SMAR. In practice, the analyst can decide whether PMAR or SMAR is more realistic for a particular 

application. In Section 2.2, we explain precisely how the nature of the missing at random assumption can 

impact the use of sampling weights in the estimation procedure. In the theory of Section 3, we focus on the 

situation in which assumption (2.7) holds. 

 
2.2  Quantile regression with penalized B-Splines 
 

We approximate the quantile function defining the relationship between iy  and ix  in the 

superpopulation with a linear combination of B-spline basis functions. A B-spline basis of order p  spans 

the linear space of piecewise polynomials of degree 1p   with continuous derivatives up to order 2.p   
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B-splines allow improvements in computational efficiency over direct use of polynomial splines (Hastie, 

Tibshirani and Friedman, 2009). 

To define the B-spline, we borrow terminology from Hastie, Tibshirani, and Friedman (2009) and Chen 

and Yu (2016). Assume ix  has compact support on the interval  1 2, .M M  Define 1nK   interior knots, 

spaced at equidistant locations in the interval  1 2,M M  by,    1
1 2 1= ,i nM M M K i    for 

= 1, , 1.ni K   Define p  boundary knots at 1M  by k  for = 1, , 0,k p    and denote the p  

boundary knots at 2M  by k  for = , , 1.n nk K K p   The thp  degree B-spline basis functions for 

the knot sequence 1 1, ,
np K p      are the elements of the nK p  dimensional vector,  

           1= , , ,
n

p p
p Kx B x B x 

B   (2.8) 

where    s
iB x   = 1, ,s p  is defined recursively through divided differences. Specifically,  

      1
1= , for = 1, , 2,i i i nB x I x i p K p         (2.9) 

and  

            1 1
1

1 1

= ,i i ss s s
i i i

i s i i s i

x x
B x B x B x

 
   

 


   

 


 
 (2.10) 

for = 1, , 1ni p K p s      and = 2, , .s p  

The estimator of the quantile regression function is defined by  

     ˆˆ = ,q x x 
B β  (2.11) 

where the estimator ˆ
β  is obtained by minimizing the quadratic form,  

     
=1

= ,
2

n
n

i i i i i m m
i

Q w b y x 


     β B β β D D β  (2.12) 

where   1
1 1

=1
= ,

n

i i ii
w  


  n  is a specified smoothing parameter, and   ,  ,ib  and mD  are defined 

as follows. The function  u  in the first term of (2.12), is the check function of Koenker and Bassett 

(1978) defined by  

     = < 0 .u u I u    (2.13) 

Koenker’s check function (2.13) is a standard optimization criterion for quantile regression because  q x  

minimizes the function     =R a E y a x   across .a  The second term of (2.12) imposes a roughness 

penalty on the estimated quantile regression function. The matrix mD  is the thm  difference matrix with 

 ,i j  element,         = 1 , 0 1 0 ,j i
ijd C m j i I j i m I j i m           where  ,C a b  is 

the choose function. When = 2,m mD  has an interpretation related to the integral of the square of the 

second derivative of the function defined by the B-spline. Because the second derivative of a straight line is 

zero, the use of mD  for = 2m  shrinks the estimated quantile regression function toward a straight line. The 

appropriate choice of ib  in the first term of (2.12) depends on the assumptions about the nonresponse 
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mechanism. If (2.6) holds, then one may set 1= ,i ib w   which leads to the unweighted estimating equation 

of Chen and Yu (2016). If (2.6) is not satisfied, the unweighted estimator may lead to bias, and setting 

= 1ib  is one way to attain an approximately unbiased estimator (Berg et al., 2016). We focus on the 

conservative choice of = 1,ib  which leads to consistent estimators under (2.7) without requiring (2.6). 
 

Remark 1. For simplicity, we consider a univariate ix  with support on a closed interval. Chen and Yu 

(2016) show that the procedure extends directly to a h  dimensional vector ,ix  each element of which has 

support on a closed interval. To extend the procedure to a vector ,ix  Chen and Yu (2016) define 

        1 2= , , , ,i i i hix x x  B x B B B  where 
hi

x   is the thh  element of ,ix  for = 1, , .h h   

 
2.3  GMM estimation based on quantile regression imputation 
 

Recall that the population parameter of interest is defined by the estimating equation in (2.2). We define 

a full sample estimator of oθ  by  

    , ,
ˆ = argmin ,A n A n A

θ G θ G θ  (2.14) 

where  

    ,
=1

= , , ,
n

n A i i i
i

w y xG θ g θ  (2.15) 

iw  is defined following (2.12), and = 1, ,i n  index the elements in .A  The estimator defined by (2.15) 

is a a generalized method of moments estimator, where each element of ,n AG  defines a deviation between 

a sample moment and the corresponding population parameter. For instance, if  = ,o iE yθ  then 

   ; = .i i o i oy y g θ θ  Additional examples are provided in the simulation study of Section 5. Because 

iy  is unobserved for nonrespondents, ˆ
Aθ  is unattainable.  

An imputed version of (2.15) is defined by replacing  , ,i iy xg θ  for an unobserved unit i  by an 

estimator of the expected value. From (2.3), an estimator of   , ,y x i iE y xg θ  is  
1

0
ˆ , , ,i iq x d  g θ  

where     ˆˆ ˆ= = .i i iq q x x  
B β  We then define the estimator θ̂  by,  

     ˆ = argmin ,n n


θθ G θ G θ  (2.16) 

where  

         1

0
=1

ˆ= , , 1 , , .
n

n i i i i i i i
i

w y x q x d    G θ g θ g θ  (2.17) 

For specific ig  the minimizer of (2.16) has a closed form expression. For the case in which  = ,o iE yθ  

and θ̂  is the Hájek estimator defined by  

     1

0
=1

ˆ ˆ= 1 .
n

i i i i i
i

w y q x d    θ   

In other situations, a closed form expression may not exist and standard numerical procedures, such as 

Newton-Raphson, can be used to minimize (2.17). In deriving the asymptotic results of Section 3, we 



256 Berg and Yu: Semiparametric quantile regression imputation for a complex survey with application to the CEAP 
 

 
Statistics Canada, Catalogue No. 12-001-X 

assume that oθ  is the unique value such that   , = ,i i oE yg θ 0  which relates to the existence of a unique 

minimum of (2.16). See Fuller (1996, page 252) for a similar condition and a discussion of the theory of 

estimators that minimize a quadratic form. 

In practice, an approximation for the integral is required. We use a midpoint approximation (i.e., Nusser, 

Carriquiry, Dodd and Fuller, 1996). Let the fixed sequence 1 20 < < 1J     be the mid-points of 

J  evenly-spaced sub-intervals of [0, 1].  For non-respondent ,i  construct J  imputed values,  

  * ˆ= , = 1, , ,
jij iy x j J

B β   (2.18) 

where ˆ
jβ  is obtained by minimizing  

j
Q β  in (2.12). We define the estimator ˆ

Jθ  to satisfy  

       , ,
ˆ = argmin ,J n J n J


θθ G θ G θ  (2.19) 

where  

          1 *
,

=1 =1

ˆ:= , = , , 1 , , ,
n J

n J n i i i i i ij i
i j

w y x J y x     
 

 G θ G θ β g θ g θ  (2.20) 

iw  is defined following (2.12), and  
1

ˆ ˆ ˆ= , , .
J 
β β β  The imputation procedure above differs from Chen 

and Yu (2016) in that the midpoint approximation for the integral is used instead of Monte Carlo integration. 

Both the midpoint approximation and Monte Carlo integration are justified by the probability integral 

transform, which relates the expectation to the conditional quantile function, as explained in (2.3). For 

functions with bounded second derivatives, the error in the midpoint approximation is  2 .O J   We also 

prefer the midpoint approximation because in simulations, it reduces the variance of the estimator and 

reduces instability in the variance estimator due to extreme quantiles relative to Monte Carlo simulation. 

Jang and Wang (2015) discuss the potential problem of unstable estimators for extreme quantiles from 

unstructured quantile regression models. 

 
3  Asymptotic distributions and variance estimation 
 

We derive an asymptotic normal distribution for the QRI estimator θ̂  defined in (2.16), although 

the estimator ˆ ,Jθ  defined in (2.19), with a finite number of  J  imputations is necessary in practice. 

This approach of developing theory under an assumption of an infinite number of imputed values has 

been used previously. See, for example, Clayton, Spiegelhalter, Dunn and Pickles (1998) and Robins 

and Wang (2000). The simulations in Section 5 demonstrate that the asymptotic normal distribution 

derived for =J   is a reasonable approximation for the distribution of the estimator constructed with 

finite .J  We outline the main concepts underlying the proofs of lemma 1, lemma 2, and Theorem 1, 

deferring details to Section B of the online supplement https://github.com/emilyjb/Semiparametric-

QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 
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The derivation of the asymptotic distribution of θ̂  proceeds in three main steps. Lemma 1 gives the 

asymptotic distribution of the estimators of the quantile regression coefficients. Lemma 2 presents the 

asymptotic distribution of the estimating equation (2.17). These two lemmas are analogous to lemma 1 and 

lemma 2 of Chen and Yu (2016). Theorem 1 then provides the asymptotic distribution of ˆ.θ  
 

3.1  Asymptotic normality of θ̂  
 

We consider a sequence of samples and finite populations indexed by ,N  where the sample size n    

as .N    To define the regularity conditions, we introduce the notation N  to represent an element of 

the sequence of finite populations with size N  and use the notation “ N ” to indicate that the reference 

distribution is the distribution based on repeated sampling conditional on the finite population of size N . 

For example, ˆ
NE Y    and  ˆ ,NV Y   respectively, denote the conditional expectation and variance of 

the outcome Ŷ  with respect to the randomization distribution generated from repeated sampling from .N  

Similarly, ˆ d

NY Y   a.s., means that Ŷ  converges in distribution to Y  almost surely with respect to the 

process of repeated sampling from the sequence of finite populations as .N    The convergence is with 

probability 1 because N  is a random realization from the superpopulation model (2.1). 

The regularity conditions on the sample design and tuning parameters for the estimator of the B-spline 

model are as follows: 

1. Any variable iv  such that 2 < ,iE v      where > 0,  satisfies,  

    HT 0, a.s.,
d

N Nn v v N V   (3.1) 

where    1 1
HT =1

, = , ,
N

N i i i ii
v v N v I v  = ,lim N NV V  and  HT=N NV nV v   is the 

conditional variance of the Horvitz-Thompson mean, HT ,v  given .N  

2. 1 1Bnn    and  1 0, 1 ,Bn N f
   where Bn  is the expected sample size.  

3. There exist constants 1 ,C 2 ,C  and 3C  such that 1 1
1 20 < < ,B iC n N C     and  

   1 1
3 < a.s.B ij i j i jn C         (3.2) 

4. The value determining the number of interior knots  1
2 3= .p

n BK O n   

5.  =n BO n  for    12 3 1 .p p m      
 

Condition 3 is also used in Fuller (2009a). Condition 3 holds for simple random sampling, where 
1 1 1 1( ) = ( 1) ( 1) 1,ij i j i j n n N N            and for Poisson sampling, where ( ij   

1 1) = 0.i j i j      Fuller (2009a) explains that condition 3 holds for many stratified designs and that the 

designer has the control to ensure condition 3. 

Under assumptions 4-5, Barrow and Smith (1978) show that a *
β  exists that satisfies,  

           
1 2

1*
,sup = ,pa

x M M nq x b x x o K  
 


  B β  (3.3) 
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where   *x 
B β  is the best L  approximation for   ,q x  and    ab x  is a bias of the B-spline 

approximation for the true quantile function, satisfying,     1= .pa
nb x O K
   For details of the form of the 

bias term, see Chen and Yu (2016) and Yoshida (2013). The property (3.3) is used extensively in the 

derivation of lemma 1. 

The proofs of both lemma 1 and lemma 2 use a result given in Theorem 1.3.6 of Fuller (2009b). Because 

of the importance of this theorem to the results of this section, we state this theorem as Fact 1: 
 

Fact 1. (Theorem 1.3.6 of Fuller (2009b)): Suppose  

      11 22
ˆ 0, a.s., and 0, .

d d

N N N oN V N V       (3.4) 

Then,    11 22
ˆ 0, .

d

o N V V     

Note that 11V  in Fact 1 is a fixed limit and not a design variance because the design variance is a random 

function of the finite population in this framework. The condition    11
ˆ 0, a.s.,

d

N N N V     holds 

for a broad class of designs, such as those discussed in Isaki and Fuller (1982). 
 

Lemma 1. Under assumptions 1-5 and for fixed  1 2,ix M M  and  0, 1 ,   

              *ˆ 0, ,
d

i i i i i
n

n
q x x b x N x x

K


   
  B β B Σ B  (3.5) 

and  

                                 ˆ 0, ,
d

a
i i i i i i

n

n
q x q x b x b x N x x

K


    
   B Σ B  (3.6) 

where  
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(3.7)
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  *= ,i i iu y x 
 B β  ( ) = < 0 ,u I u   1ˆ= ,n nnNN  1

=1
ˆ = ,

n

ii
N    and  ,y x if q  is the pdf of 

iy  given ix  evaluated at .q  

The main idea of the proof of lemma 1 is to show that the estimator of the quantile regression coefficient 

has a Bahadur representation given in corollary 1 below: 
 

Corollary 1: By the proof of lemma 1, the estimator of the quantile regression coefficient has the following 

Bahadur representation:  

          1 1* * 1

=1

1ˆ = 1 .
n

n
n m m n i i i i p

in n

n n
x u o

K n K N    


      


   

 
β β Ω D D β Ω B


 (3.8) 

The derivation of the Bahadur representation follows the basic approach of Koenker (2005) and Yoshida 

(2013). To account for the complex sample design, condition (3.2) is used to bound sums of covariances 

induced by nontrivial second order inclusion probabilities. For independent random variables from an 

infinite population (as in Chen and Yu (2016), Yoshida (2013) and Koenker (2005)), the corresponding 

covariances are zero. Given the Bahadur representation (3.8), lemma 1 follows from an application of the 

regularity condition in (3.1) and Fact 1 to the elements of the Horvitz-Thompson mean in (3.8). The 1,V   in 

 Σ  essentially plays the role of 11V  in Fact 1 and is the limit of the design variance of the Horvitz-

Thompson mean. The second term in  Σ  is the asymptotic variance of the design-expectation of the 

Horvitz-Thompson mean and plays the role of 22V  in Fact 1. 

Lemma 2 and Theorem 1 require additional regularity conditions about the estimating equation. The 

regularity conditions on the estimation are similar to those in Chen and Yu (2016) and are therefore 

deferred to Section A of the online supplement https://github.com/emilyjb/Semiparametric-QRI-

Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 
 

Lemma 2. Under the assumptions of lemma 1 and the regularity conditions provided in Section A of the online 

supplement https://github.com/emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, 

(Berg and Yu, 2016), 

     , ,
d

n o G on NG θ 0 V θ  (3.9) 

where  
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and  , ;i y i oyg θ  is the partial derivative of  ;i ag θ  with respect to a  evaluated at .iy  

The proof of lemma 2 centers on the Taylor expansion given by  

 
             

       

,

2
,

ˆ ˆ; = ; ;

; ,

i i o i i o i y i o i i

i y i o i i

q x q x q x q x q x

q x q x q x

    

  

 

 

g θ g θ g θ

g θ



 
 

(3.11)
 

where  iq x  is between  ˆ iq x  and   ,iq x  and   , ;i y i oq xg θ  denotes the vector of partial 

derivatives of the elements of  , ,i y oag θ  with respect to a  evaluated at   .iq x  By arguments similar to 

those of Chen and Yu (2016),          2
, ; = 1 .i y i o i in g q x q x q x O  θ   Lemma 2 then follows 

from the linear approximation for    ˆ i iq x q x   in lemma 1. 
 

Theorem 1. Under the assumptions of lemmas 1 and 2, the QRI estimator θ̂  defined in (2.16), constructed 

with = ,J   satisfies,    ˆ , ,
d

on N θ θ 0 Σ  where  

              
1 1

= ,o o o G o o o o

 
      
   

Σ Γ θ Γ θ Γ θ V θ Γ θ Γ θ Γ θ  (3.12) 

    = , ,NEG θ G θ y    1
=1

, = , ,
N

N i i ii
N g y x G θ y  and     = .o NE  Γ θ θG θ  

 

By Pakes and Pollard (1989), Theorem 1 is satisfied if the following hold: 

1.      sup = 1 ,n po G θ G θ  

2. For 0,n         0.5
<sup = ,

o n n n o p Bo n


  θ θ G θ G θ G θ  
 

where n  is arbitrarily small. Because of the complex sample design, the proof that these conditions hold 

proceeds in two steps, considering first the deviation    n NG θ G θ  and then the deviation 

    .N G θ G θ  The result then follows from the triangle inequality. 

 
3.2  Variance estimation 
 

We estimate the variance of ˆ
Jθ  using the linearization method (Fuller, 2009b, page 64). We use the 

asymptotic covariance matrix in (3.12) to estimate the variance of ˆ ,Jθ  the estimator of oθ  defined in (2.19), 

constructed with a finite number of imputed values. To estimate   ,G oV θ  a design-consistent variance 

estimator is applied to an estimator of the mean of an estimator of  i oξ θ  defined in (3.10). The estimator 

of  i oξ θ  is obtained by replacing oθ  and *
β  with estimators ˆ

Jθ  and ˆ ,β  respectively.  

The estimator of variance is defined,  

              
1 1

,
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= ,J J J G J J J J

 


              

Σ Γ θ Γ θ Γ θ V θ Γ θ Γ θ Γ θ  (3.13) 

where       , ,
ˆ ˆˆ ˆ ˆˆ ˆ ˆ= ,G J i J N Jf V   V θ ξ θ V θ  
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N    and   ˆˆ = .

j ji i iu y x 
 B β  An estimator of   ,

ˆ ˆy x i if q x  is the inverse of 

an estimator of the derivative of the quantile function and is defined by  
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where the bandwidth ,na   is given by  
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 (3.16) 

with     and   ,   respectively, the pdf and cdf of a standard normal distribution. See Wei, Ma and 

Carroll (2012) and Koenker (2005) for discussions of (3.15) and (3.16), respectively. 
 

4  Application to Conservation Effects Assessment Project  
 

The cropland component of the Conservation Effects Assessment Project (CEAP) consists of a series of 

surveys meant to measure soil and nutrient loss from crop fields. The first cropland assessment was a 

national survey conducted over the period 2003-2006. Data collection for a second national survey, planned 

for 2015-2016, was on-going at the time of writing this paper. Each of the time periods 2003-2006 and 

2015-2016 is considered one time point for estimation. Data are collected over multiple years (i.e., 2003-

2006 or 2015-2016) for operational reasons, and no unit is in the sample for two years in the same time 

period. Temporal changes of interest are changes between the two time periods, rather than changes between 

two years in the same time period. The temporal structure leads to unbalanced data because some units 

respond in both time periods, some units never respond, and some units respond in only one of the two time 

periods. Providing the data user with a complete, imputed data set with a single set of weights simplifies 

analyses involving more than one time point. 



262 Berg and Yu: Semiparametric quantile regression imputation for a complex survey with application to the CEAP 
 

 
Statistics Canada, Catalogue No. 12-001-X 

We investigate the feasibility of imputation for CEAP using a subset of the data collected during 2003-

2005. We omit the data collected in 2006 because the sample design changed, and we do not have the 

information required to compute sampling weights for the 2006 survey. The data from the 2015-2016 survey 

are not yet collected. This analysis is considered an investigation of the feasibility of using QRI to impute 

missing data in CEAP in the direction of addressing the broader problem of estimation of change over time. 

An understanding of the CEAP sample design requires an understanding of the design of the National 

Resources Inventory (NRI). The NRI monitors status and trends in land use, land cover, and erosion, with 

emphasis on characteristics related to natural resources and agriculture. Primary sampling units in the NRI 

are land areas called segments, which are approximately 160 acres. Each segment contains approximately 

three secondary sampling units, which are randomly selected locations called points. From 1982-1997, the 

same sample of approximately 300,000 segments, referred to as the foundation sample, was revisited every 

five years. The foundation sample is a stratified sample of segments, with a typical sampling rate of 

approximately 4%. See Nusser and Goebel (1997) for details of the design of the NRI foundation sample. 

In 2000, the NRI transitioned to annual sample design. Because revisiting every sampled segment in the 

foundation sample on an annual basis is infeasible, a rotating panel design is used. A subsample of the 

foundation segments, called the core panel, is revisited annually. The core panel is supplemented with a 

rotation panel, which changes each year. In essence, the core and rotation panels are stratified samples of 

the foundation sample. The strata, called sample classes, depend on the characteristics of the NRI segment 

observed in 1982-1997, such as presence of wetlands, cropland, and forest. See Nusser (2006) and Breidt 

and Fuller (1999) for further detail on the NRI annual samples. 

For the Conservation Effects Assessment Project (CEAP), data collectors visit a subset of the NRI points 

that are located in sampled crop fields and collect more detailed information on crop choices and 

conservation practices. The sample for the 2003-2005 CEAP survey essentially consists of segments in the 

NRI core panel, 2002 rotation panel, and 2003 rotation panel that contain at least one cropland point. For 

segments containing more than one cropland point, one cropland point was selected randomly. The selection 

of one point per segment is an effort to improve geographic spread and reduce the number of instances in 

which a farm operator associated with multiple sampled points is selected into the sample, thereby reducing 

the respondent burden. 

Because the first phase sampling rate for the NRI is small  4% ,  we approximate the CEAP sample 

as a probability proportional to size with replacement sample. The selection probabilities for CEAP largely 

reflect the sample design for the NRI. Details of construction of first and second order selection probabilities 

for CEAP are provided in Section C of the online supplement https://github.com/emilyjb/Semiparametric-

QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 

Data collection for crop fields sampled for the CEAP survey consists of multiple components. An 

important component is a farmer interview survey that collects detailed information on farming 

managements and conservation practices. Nonresponse can occur in CEAP if a farmer refuses to participate 

in the interview. 
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Response variables in CEAP are measurements of different types of soil and nutrient loss, obtained from 

a physical process model called the Agricultural Policy Environmental Extender (APEX). The APEX model 

converts data from the farmer surveys as well as information from administrative sources and the NRI to 

numerical measures of erosion. For this study, we consider a measure of soil loss due to sheet and rill erosion 

called RUSLE2, discussed further in Section 4.1. 

The NRI survey provides a convenient source of auxiliary information for imputing CEAP response 

variables. Because the NRI survey data are collected through aerial photographs of sampled segments, 

nonresponse due to refusals does not occur in the NRI. As a consequence, NRI data are available for all 

sampled points in CEAP. Furthermore, the NRI collects data related to land use, conservation practices and 

erosion – characteristics that are expected to be correlated with outputs of the APEX model. As an auxiliary 

variable, we use USLE, a measure of sheet and rill erosion collected in the NRI. 

Domains of interest in CEAP are ten “CEAP production regions”. We focus on estimation of mean 

RUSLE2 for seven states (Iowa, Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) that comprise 

the majority of the CEAP production region called the Corn Belt. We use semiparametric quantile regression 

to impute missing values for RUSLE2 using USLE as an auxiliary variable for each of these seven states in 

the Corn Belt region. 
 

4.1  Imputation model and procedures 
 

The variable of interest, RUSLE2, is a measure of sheet and rill erosion obtained from the APEX model. 

Because interest is in mean erosion on a per acre basis, the parameter of interest ,  the mean RUSLE2 

erosion in the state, is defined as a ratio by,  
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E R D m

E m D m






 
 

 (4.1) 

where ikR  is the RUSLE2 erosion for point i  in segment k  sampled in the period 2003-2005, kD  is the 

area of segment ,k km  is the total number of points in segment ,k  and ekm  is the number of points in 

segment k  that are eligible for the CEAP survey. As discussed above, the period 2003-2005 is considered 

one time point, and no point is sampled more than once in this collection of years. Therefore, each sampled 

unit has one value ikR  for this set of years, and ikR  does not need a subscript of t  for year. 

The RUSLE2 erosion is an advancement of a simpler measure of sheet and rill erosion called USLE. 

The USLE is a product of five numerical indexes associated with slope steepness and length, rainfall, soil 

erodibility, conservation practices, and crop managements. While RUSLE2 is only observed for respondents 

to the CEAP survey, USLE is available from the main NRI sample for all points in the CEAP sample. We 

use the average USLE across years 2003-2005 as the covariate in the imputation model. Specifically, for 

point i  in segment ,k  we define, 
2005

1
=2003

= 3 ,ik tikt
U U   where tikU  is the USLE soil loss in the NRI for 

point i  in segment k  for year .t  

Because the RUSLE2 and USLE are highly skewed, the quantile regression model is applied after 

transforming both ikR  and ikU  by a power of 0.2. The quantile regression model postulated for the 
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superpopulation can be expressed as,    = ,ik ik ikP y x q x  where 0.2= ,ik iky R  and 0.2= .ik ikx U  The 

unknown function  ikq x  is approximated by a linear combination of B-spline basis functions generated 

from .ikx  To define the penalized B-spline, we set = 3,p = 2,m = 16,nK  and = 0.004.  

Because the quantity of interest is erosion on a per acre basis, the estimator ̂  of   defined in (4.1) is a 

ratio of two estimators. That is, 1
2 1

ˆ ˆ ˆ= ,    where 1̂  is an estimator of  1 = ,k ikE D U  and  2 = .kE D  

The estimator of 2  is the Hájek estimator,     1
1 1

2 =1 =1
ˆ = ,

n n

ik k ikk k
D  


    where ik  is the probability 

of selecting point i  in segment k  into the CEAP sample. The estimator 1̂  of 1  is obtained from GMM 

with    5
1 1, = .kg y D y   

 

4.2  Estimates and variance estimates 
 

Table 4.1 contains estimates of average RUSLE2 soil loss based on QRI, along with estimated standard 

errors for seven states in the Corn Belt CEAP region. For comparison, the complete case estimator  ccR  

and corresponding estimated standard error is also provided in Table 4.1. The complete case estimator is 

the ratio of Hájek estimators constructed using only the units that provide a usable response for RUSLE2. 

For each of the seven states, the complete case estimator is larger than the estimator based on the imputed 

data. The imputation procedure reduces the estimator of ,  relative to the complete case estimator, because 

the weighted mean of ikU  among sampled units is smaller than the mean of ikU  among respondents, as 

shown in the last two rows of Table 4.1. 

As expected, the estimated standard error for ̂  is smaller than the estimated standard error for the 

complete case estimator. The ratios of the estimated variances for the complete case estimator to the 

estimated variances of ̂  range from 1.103 for MN to 1.252 for IN. This comparison demonstrates the 

potential for efficiency gain due to the use of imputation. The reduction in estimated standard deviation 

occurs because the imputation procedure uses ikU  for the full sample, while the complete case estimator is 

based only on ikR  for the subset of respondents. 

 
Table 4.1 
Complete-case estimator  ccR  and QRI-GMM estimator  ̂  of mean RUSLE2 soil loss   ,  corresponding 

standard errors, sample sizes   ,n  number of respondents   ,rn  and weighted covariate means for sampled 

units  ˆ
sU  and weighted covariate means among respondents  ˆ

rU  for seven states in the Corn Belt 
 

  IL IN IA MI MN OH WI

ccR 0.3301 0.2994 0.3464 0.3214 0.1741 0.3700 0.5226

 SE ccR 0.0112 0.0179 0.0144 0.0209 0.0068 0.0213 0.0354

̂ 0.3281 0.2901 0.3408 0.3145 0.1646 0.3636 0.4977

 ˆSE  0.0106 0.0160 0.0134 0.0189 0.0063 0.0201 0.0337

n 1,823 1,151 1,492 935 1,649 1,053 662

rn 1,275 751 1,011 585 1,008 698 414

ˆ
rU 4.0775 3.7781 5.2046 1.6029 2.1063 2.1071 4.7586

ˆ
sU 4.0909 3.6107 5.0385 1.5776 1.8973 2.0761 4.2232
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5  Simulations 
 

We construct a simulation study to represent properties of the CEAP data and design. An extended set 

of simulations using the simulation models of Chen and Yu (2016) yields similar results and is not presented 

here for brevity. The objectives of the simulations are to evaluate the variance estimator and to compare 

QRI to nonparametric and fully parametric alternatives. 

The fully parametric imputation procedure is parametric fractional imputation (Kim, 2011). The 

imputation model specified for parametric fractional imputation (PFI) is 0 1= ,i i iy x     where 

 20, .i N    The imputed values for PFI are generated as,  * 2
0 1ˆ ˆ ˆ, ,ij iy N x     where 

 2
0 1ˆ ˆˆ ˆ= , ,   γ   satisfies  ˆ = ,wS γ 0  

   1

=1

= ,
n

w i i i
i

 S γ d  (5.1) 

and     2 2
0 1 0 1 0 1= , , 1 .i i i i i i i iy x y x x y x             d   By incorporating 1

i   in the 

score function (5.1), the estimator is consistent if the population model is a linear model with iid  normally 

distributed errors and either the MAR assumption in (2.7) or (2.6) holds. 

The non-parametric imputation (NPI) procedure is based on Wang and Chen (2009). For NPI, the thj  

imputed value for nonrespondent ,i * ,ijy  is generated from a multinomial distribution with sample space 

 : = = 1 .s s sy I   Specifically,  

    

 
1

*

1
=1

( )
= = ,

( )

i i s
ij s N

j j j i jj

K x x h
P y y

I K x x h



 








 (5.2) 

where  K   is a normal kernel with bandwidth h  selected by applying the method of Sheather and Jones 

(1991), as implemented in the R function ,dpik  to  : = = 1 .i s sx I   

The QRI procedure is implemented as described in Sections 2-3. To define the penalized B-spline, we 

set = 3,p = 2,m = 16,nK  and = 0.004.  The value of = 0.004  is the median of the values selected 

using the R function “cobbs” across 1,000 samples of a preliminary simulation. To select   using “cobbs”, 

we first use the R function “cobbs” to obtain 
j  for 1 , , .J   The selected   is the minimum of the 

 : = 1, , ,
j

j J   which introduces the least amount of smoothing from among the selected .
j  

In simulations not presented here, we also consider multiple imputation. Modifications to standard 

multiple imputation procedures are needed to produce unbiased estimators for a situation in the sample 

missing at random assumption (2.6) does not hold (Berg et al., 2016; Reiter, Raghunathan and Kinney, 

2006). Because an exploration of the modifications to multiple imputation needed to ensure consistent 

estimation is beyond the scope of this study, we restrict attention to PFI, NPI, and QRI. 

For all three imputation procedures, GMM based on the imputed values is used to estimate the 

parameters. Note that this differs from Wang and Chen (2009), which uses empirical likelihood instead of 



266 Berg and Yu: Semiparametric quantile regression imputation for a complex survey with application to the CEAP 
 

 
Statistics Canada, Catalogue No. 12-001-X 

GMM. The number of imputations for the simulation is = 50.J  The Monte Carlo (MC) sample size 

is 1,000. 

We consider estimation of several parameters:  1 = ,iE y  2 = ,iV y  3 = Cor , ,i iy x 4 =  

  0.65 ,i iE E y x   and  5 = 8 .iP y   With the exception of 5 ,  GMM estimators of these 

parameters satisfy the assumptions required for the theory of Section 3. In particular, the function  ;i g θ  

defining the estimator of  1 2 3 4, , ,     has two continuous derivatives. The estimator of 5  does not fall 

in the framework of Section 3 because  8I a   is a non-smooth function of ;a  however, we evaluate the 

empirical properties of 5̂  defined as  

    
1

1 1 1 *
5

=1 =1 =1

ˆ = 8 1 8 .
n n J

i i i i i ij
i i j

I y J I y    


               
    (5.3) 

For details on the function  ;i g θ  defining the estimators for the simulation, see Section D of the online 

supplement https://github.com/emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, 

(Berg and Yu, 2016). 
 

5.1  Superpopulation model and design for simulations 
 

The superpopulation model represents four aspects of the CEAP data and survey: (1) the shape of the 

expectation function, (2) the inclusion of a mean-variance relationship, (3) the use of probability 

proportional to size (PPS) with-replacement sampling, and (4) the sample sizes and response rates. The 

specific model for the simulation is  = ,i i iy m x e  where   220, ,i e ie N m x   = 2im x   

  
5
410 1 8exp 5 ,ix    and  Trunc. Norm. 0.5, 0.3 .ix   The sample design is PPS with replacement, 

where the probability of selecting unit i  on a single draw is   1

=1
,

N

i ii
 



    logit = 3 0.33i iz     

0.1 ,iy  Trunc. Norm. 0.5, 0.3 ,iz   and = 50,000.N  The number of draws is = 1,500,n  leading to a 

median sample size of 1,477, where the sample size is the number of unique units in the sample. The first 

and second order selection probabilities corresponding to i  are,  = 1 1 ,n
i i     and = 1ij   

     1 1 1 .
n nn

i j j i             The response indicator  Bernoulli ,i ip   where  logit =ip  

0.5 1.5 ,i ix z  which yields a median response rate of 0.631. 

By the model for iy  given ,ix  the assumption of population missing at random (2.7) holds for this 

simulation. Incorporating iz  in the models for ip  and i  is the approach used in Berg et al. (2016) that 

causes the sample missing at random assumption (2.6) to fail. The variable iz  can be interpreted a design 

variable that is omitted from the imputation model. 
 

5.2  Results 
 

Table 5.1 contains three measures for comparing the QRI estimator to the PFI and NPI estimators. The 

percent relative MC MSE for estimator  PFI, NPIk k   is defined,  

  
     

  
MC MC

MC

ˆ ˆMSE MSE QRI
Pct. Rel. MSE = 100 ,

ˆMSE QRI

k
k

 




 (5.4) 
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where  ˆ k  is the estimator based on imputation procedure .k  The percent relative variance for estimator 

k  is defined,  

  
     

  
MC MC

MC

ˆ ˆVar Var QRI
Pct. Rel. Var = 100 ,

ˆVar QRI

k
k

 




 (5.5) 

for = NPI, PFI.k  The percent of mean squared error due to squared bias is defined by  

                                              
   

  

2

MC

MC

ˆ
Pct. Bias = 100 ,

ˆMSE

E k
k

k

 




 (5.6) 

where = NPI, PFI, QRI.k  The MSE of the QRI estimator is smaller than the MSE of the NPI and PFI 

estimators for all parameters. The PFI estimator is biased because the model underlying the PFI procedure 

does not account for the nonlinearity in the quantile curves or the nonconstant variances. The NPI procedure 

has a relatively large variance for sample sizes such as those obtained in the CEAP survey. The squared MC 

bias of the QRI procedure is less than 0.5% of MC MSE for all parameters. 

The last two columns of Table 5.1 contain the relative bias of the variance estimator and the empirical 

coverage of normal theory 95% confidence intervals. The relative bias of the variance estimator defined as  

                                                  
   

 
MC MC

MC

ˆ ˆˆ
Rel. Bias = ,

ˆ,

E V V

V

 



     (5.7) 

where  MC
ˆˆE V     is the MC mean of the variance estimators and  MC

ˆV   is the MC variance of the QRI 

estimator. The MC relative bias of the variance estimator for the QRI estimator is between -6% and -1%. 

Empirical coverages of normal theory confidence intervals are within 1% of the nominal 95% level. 

 
Table 5.1 
MC properties of estimators and variance estimators for simulation with PPS with replacement sample design. 
Pct. Rel. MSE (5.4): Difference between the MC variance of the PFI or NPI estimator and the MC MSE of the 
QRI estimator, relative to the MC MSE of the QRI estimator. Pct. Rel. Var. (5.5): Difference between the MC 
variance of the PFI or NPI estimator and the MC MSE of the QRI estimator, relative to the MC MSE of the 
QRI estimator. Pct. Bias (5.6): percent of MC MSE of PFI, NPI, and QRI estimators due to squared MC bias. 
Rel. Bias = MC relative bias of variance estimator defined in (5.7). Coverage = MC coverage of 95% confidence 
intervals 
 

 Pct. Rel. MSE Pct. Rel. Var. Pct. Bias Rel. Bias Coverage 
  NPI   PFI   NPI   PFI   NPI   PFI   QRI   QRI   QRI  

1  0.509 1.624 0.211 1.589 0.304 0.041 0.006 -2.386 0.945 

2  3.308 1.882 1.011 -0.151 2.225 1.998 0.002 -1.113 0.951 

3  1.518 5.449 0.979 2.605 0.840 2.999 0.311 -5.772 0.943 

4  515.980 26.752 10.501 12.415 82.101 11.508 0.222 -3.182 0.952 

5  5.879 61.416 5.659 -2.345 0.223 39.510 0.015 – – 
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6  Discussion 
 

QRI is developed for a complex survey setting. Alternative choices of weights are discussed, and a closed 

form variance estimator is provided based on a linear approximation. Consistency and asymptotic normality 

of the estimators are demonstrated under the framework of an infinite number of imputed values. In 

simulations designed to represent the CEAP data, the variance estimator based on the asymptotic 

distribution has a relative bias less than 6% in absolute value and leads to confidence intervals with coverage 

close to the nominal level for finite .J  Further, the estimator based on QRI is more efficient than an 

estimator based on PFI or NPI because QRI provides a reasonable compromise between bias and variance. 

The quantile regression imputation procedure is applied to estimate mean erosion in seven states in the 

midwestern United States using data from the Conservation Effects Assessment Project. The analysis 

demonstrates that QRI presents a viable alternative to weighting adjustments currently used to account for 

nonresponse in CEAP. 

Areas for improvement to QRI include the choice of ,j  the choice of ,ib  refinements to estimation of 

the quantile curves, and variance estimation for non-differentiable  g  functions. Development of 

automated methods to select the nuisance parameters, appropriate for selection of multiple quantiles in a 

complex survey setting, is an area for future research. Estimation of the quantile curves subject to a 

restriction that the estimated curves are non-overlapping, has potential to improve estimation of the 

derivatives needed for the variance estimator. Section E of the online supplement https://github.com/ 

emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016) 

provides further discussion of areas for improvement. 
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Multiple imputation of missing values in household data with 
structural zeros 

Olanrewaju Akande, Jerome Reiter and Andrés F. Barrientos1 

Abstract 

We present an approach for imputation of missing items in multivariate categorical data nested within 
households. The approach relies on a latent class model that (i) allows for household-level and individual-level 
variables, (ii) ensures that impossible household configurations have zero probability in the model, and (iii) can 
preserve multivariate distributions both within households and across households. We present a Gibbs sampler 
for estimating the model and generating imputations. We also describe strategies for improving the computational 
efficiency of the model estimation. We illustrate the performance of the approach with data that mimic the 
variables collected in typical population censuses. 

 
Key Words: Categorical; Census; Edit; Latent; Mixture; Nonresponse. 

 
 

1  Introduction 
 

In many population censuses and demographic surveys, statistical agencies collect data on individuals 

grouped within houses. In the U.S. decennial census, for example, the Census Bureau collects the age, race, 

sex, and relationship to the household head for every individual in the household, as well as whether or not 

the residents own the house. After collection, agencies share these datasets for secondary analysis, either as 

tabular summaries, public use microdata samples, or restricted access files. 

When creating these data products, agencies typically have to deal with item nonresponse both for 

individual-level variables and household-level variables. They typically do so using some type of imputation 

procedure. Ideally, these procedures satisfy three desiderata. First, the imputations preserve the joint 

distribution of the variables as best as possible. As part of this, the procedure should preserve relationships 

within households. For example, the missing race of a spouse likely, but certainly not definitely, matches 

the race of the household head; the imputation procedure should reflect that. Second, the imputations respect 

structural zeros. For example, a daughter’s age cannot exceed her biological mother’s age. The imputations 

should not create impossible combinations of individuals in the same household. Third, the imputation 

procedure allows for appropriate uncertainty to be propagated in subsequent analyses of the data. 

Typical approaches to imputation of missing household items use some variant of hot deck imputation 

(Kalton and Kasprzyk, 1986; Andridge and Little, 2010). However, depending on how the hot deck is 

implemented, it may not satisfy one or more of the desiderata. Indeed, we are not aware of any hot deck 

imputation procedure for household data that satisfies all three explicitly. An alternative is to estimate a 

model that describes the joint distribution of all the variables, and impute missing values from the implied 

predictive distributions in the model. For household data, one such model is the nested data Dirichlet process 

mixture of products of multinomial distributions (NDPMPM) model of Hu, Reiter and Wang (2018), which 

assumes that (i) each household is a member of a household-level latent class, and (ii) each individual is a 
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member of an individual-level latent class nested within its household-level latent class. The model assigns 

zero probability to combinations corresponding to structural zeros, and also handles both household-level 

and individual-level variables simultaneously. The NDPMPM is appealing as an imputation engine, as it 

can preserve multivariate associations while avoiding imputations that result in impossible households. The 

NDPMPM is related to models proposed by Vermunt (2003, 2008) and Bennink, Croon, Kroon and Vermunt 

(2016), although these are used for regression rather than multivariate imputation and do not deal with 

structural zeros. 

Hu et al. (2018) use the NDPMPM to generate synthetic datasets (Rubin, 1993; Raghunathan and Rubin, 

2001; Reiter and Raghunathan, 2007) for statistical disclosure limitation, but they do not describe how to 

use it for imputation of missing data. We do so in this article. With structural zeros in the NDPMPM, the 

conditional distributions of the missing values given the observed values are not available in closed form. 

We therefore add a rejection sampling step to the Gibbs sampler used by Hu et al. (2018), which generates 

completed datasets as byproducts of the Markov chain Monte Carlo (MCMC) algorithms used to estimate 

the model. These completed datasets can be analyzed using multiple imputation inferences (Rubin, 1987). 

We also present two new strategies for speeding up the computations with NDPMPMs, namely (i) turning 

data for the household head into household-level variables rather than individual-level variables, and (ii) 

using an approximation to the likelihood function. These scalable innovations are necessary, as the 

NDPMPM is computationally quite intensive even without missing data. The speed-up strategies also can 

be employed when using the NDPMPM to generate synthetic data. 

The remainder of this article is organized as follows. In Section 2, we review the NDPMPM model in 

the presence of structural zeros and the MCMC sampler for fitting the model without missing data. In 

Section 3, we extend the MCMC sampler for the NDPMPM model to allow for missing data. In Section 4, 

we present the two strategies for speeding up the MCMC sampler. In Section 5, we present results of 

simulation studies used to examine the performance of the NDPMPM as a multiple imputation engine, using 

the two strategies for speeding up the run time. In Section 6, we discuss findings, caveats and future work. 

 
2  Review of the NDPMPM model 
 

Hu et al. (2018) present the NDPMPM model including motivation for how it can preserve associations 

across variables and account for structural zeros. Here, we summarize the model without detailed 

motivations, referring the reader to Hu et al. (2018) for more information. We begin with notation needed 

to understand the model and the Gibbs sampler, assuming complete data. The presentation closely follows 

that in Hu et al. (2018). 

 

2.1  Notation and model specification 
 

Suppose the data contain n  households. Each household = 1, ,i n  contains in  individuals, so that 

there are 
=1

=
n

ii
n N  individuals in the data. Let  1, ,ik kX d   be the value of categorical variable 

k  for household ,i  which is assumed to be identical for all in  individuals in household ,i  where 

= 1, , .k p p q   Let  1, ,ijk kX d   be the value of categorical variable k  for person j  in 
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household ,i  where = 1, , ij n  and = 1, , .k p  Let     111= , , , , ,
ii i in pi p i p qX X X X X    

include all household-level and individual-level variables for the in  individuals in household .i  

Let   be the set of all household sizes that are possible in the population. For all ,h   let h  represent 

the set of all combinations of individual-level and household-level variables for households of size h , 

including impossible combinations; that is,    
= 1 =1 =1

= 1, , 1, , .
p q h p

h k kk p j k
d d



     Let h h   

represent the set of impossible combinations, i.e., those that are structural zeros, for households of size .h  

These include combinations of variables within any individual, e.g., a three year old person cannot be a 

spouse, or across individuals in the same household, e.g., a person cannot be older than his biological 

parents. Let = hh 
   and = .hh 

   

Although the NDPMPM model we use restricts the support of iX  to ,   it is helpful for 

understanding the model to begin with no restrictions on the support of .iX  Each household i  belongs to 

one of F  classes representing latent household types. For = 1, , ,i n  let  1, ,iG F   indicate the 

household class for household .i  Let  = Pr =g iG g  be the probability that household i  belongs to class 

.g  Within any class, all household-level variables follow independent, multinomial distributions. For any 

 1, ,k p p q    and any  1, , ,kc d   let    = Pr = =k
gc ik iX c G g  for any class ,g  where 

 k
gc  is the same value for every household in class .g  Let  1= , , ,F    and =  { : =k

gc c  

1, , ; = 1, , ; = 1, , }.kd k p p q g F     

Within each household class, each individual belongs to one of S  individual-level latent classes. For 

= 1, ,i n  and = 1, , ,ij n  let ijM  represent the individual-level latent class of individual j  in 

household .i  Let  = Pr = =gm ij iM m G g  be the probability that individual j  in household i  belongs 

to individual-level class m  nested within household-level class .g  Within any individual-level class, all 

individual-level variables follow independent, multinomial distributions. For any  1, ,k p   and any 

 1, , ,kc d   let       = Pr = , = ,k
gmc ijk i ijX c G M g m  for the class pair  , ,g m  where  k

gmc  is the 

same value for every individual in the class pair  , .g m  Let  = : = 1, , ; = 1, , ,gm g F m S     and 
  = : = 1, , ; = 1, , ; = 1, , ; = 1, , .k
gmc kc d k p m S g F       

For purposes of the Gibbs sampler in Section 2.2, it is useful to distinguish values of iX  that satisfy all 

the structural zero constraints from those that do not. Let the superscript 1“ ”  indicate that a random variable 

has support only on .   For example, 1
iX  represents data for a household with values restricted only on 

,   i.e., not an impossible household, whereas iX  represents data for a household with any values in 

.  Let 1  be the observed data comprising n  households, that is, a realization of  1 1
1 , , .nX X  The 

kernel of the NDPMPM,  1Pr ,  is  

        
1 1

1 1

=1 =1 = 1 =1 =1 =1

( | ) = = ,
ik ijk

p q pn F h S
k k

i i h g gmgX gmX
i h g k p j m k

L n h    


 

    
    X


     (2.1) 

where   includes all the parameters, and .  equals one when the condition inside the   is true and 

equals zero otherwise. 

For all ,h   let  1 =1
= =

n

h ii
n n h   be the number of households of size h  in 1  and 

   0 = Pr .h i h  X   As stated in Hu et al. (2018), the normalizing constant in the likelihood in (2.1) 

is    1
01 .n h

hh
 


 

 Therefore, the posterior distribution is  
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       
  

   
1

1 1 1

0

1
Pr , Pr Pr = Pr

1 hn
hh

T L    
 




 

     (2.2) 

where  T   emphasizes that the density is for the NDPMPM with support restricted to .   

The likelihood in (2.1) can be written as a generative model of the form  

                                              
 ( ) ( )

1, Discrete , ,

= 1, , and = 1, ,

i i k

k k
ik i G G dX G

i n k p p q

  

  



 


 

(2.3)
 

                              
    1| , , , Discrete , ,

= 1, , , = 1, , and = 1, ,

i ij i ij k

k k
ijk i ij i G M G M d

i

X G M n

i n j n k p

  





  


 

(2.4)
 

                                                      
 1Discrete , ,

= 1, ,

i FG

i n

  








 

(2.5)
 

                                       
 1, , Discrete , ,

= 1, , and = 1, ,

i iij i i G G S

i

M G n

i n j n

  





 


 

(2.6)
 

where the Discrete distribution refers to the multinomial distribution with sample size equal to one. We 

restrict the support of each iX  to ensure the model assigns zero probability to all combinations in   as 

desired. The model in (2.3) to (2.6) can be used without restricting the support to .   This ignores all 

structural zeros. While not appropriate for the joint distribution of household data, this model turns out to 

useful for the Gibbs sampler. We refer to the generative model in (2.3) to (2.6) with support on all of   as 

the untruncated NDPMPM. For contrast, we call the model in (2.1) the truncated NDPMPM. 

For prior distributions, we follow the recommendations of Hu et al. (2018). We use independent uniform 

Dirichlet distributions as priors for   and ,  and the truncated stick-breaking representation of the Dirichlet 

process as priors for   and   (Sethuraman, 1994; Dunson and Xing, 2009; Si and Reiter, 2013; Manrique-

Vallier and Reiter, 2014), 

                                                     1= , , Dirichlet 1, , 1
k

k k k
g g gd     (2.7) 

                                                     1= , , Dirichlet 1, , 1
k

k k k
gm gm gmd     (2.8) 

                                               
<

= 1 for = 1, ,g g f
f g

u u g F    (2.9) 

                                                Beta 1, for = 1, , 1, = 1g Fu g F u   (2.10) 

                                                 Gamma 0.25, 0.25   (2.11) 

                                              
<

= 1 for = 1,gm gm gs
s m

v v m S    (2.12) 

                                              Beta 1, for = 1, , 1, = 1gm g gSv m S v   (2.13) 
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  Gamma 0.25, 0.25 .g   (2.14) 

We set the parameters for the Dirichlet distributions in (2.7) and (2.8) to 
kd1  (a kd  dimensional vector 

of ones) and the parameters for the Gamma distributions in (2.11) and (2.14) to 0.25 to represent vague prior 

specifications. We also set =g   for computational expedience. For further discussion on prior 

specifications, see Hu et al. (2018). 

Conceptually, the latent household-level classes can be interpreted as clusters of households with similar 

compositions, e.g., households with children or households in which no one is related. Similarly, the latent 

individual-level classes can be interpreted as clusters of individuals with similar characteristics, e.g., older 

male spouses or young female children. However, for purposes of imputation, we do not care much about 

interpreting the classes, as they serve mainly to induce dependence across variables and individuals in the 

joint distribution. 

It is important to select F  and S  to be large enough to ensure accurate estimation of the joint 

distribution. However, we also do not want to make F  and S  so large as to produce many empty classes 

in the model estimation. Allowing many empty classes increases computational running time without any 

corresponding increase in estimation accuracy. This can be especially problematic in the Gibbs sampler for 

the truncated NDPMPM, as these empty classes can introduce mass in regions of the space where impossible 

combinations are likely to be generated. This slows down the convergence of the Gibbs sampler. 

We therefore recommend following the strategy in Hu et al. (2018) when setting  , .F S  Analysts can 

start with moderate values for both, say between 10 and 15, in initial tuning runs. After convergence, 

analysts examine posterior samples of the latent classes to check how many individual-level and household-

level latent classes are occupied. Such posterior predictive checks can provide evidence for the case that 

larger values for F  and S  are needed. If the numbers of occupied household-level classes hits ,F  we 

suggest increasing .F  If the number of occupied individual-level classes hits ,S  we suggest increasing F  

first but then increasing ,S  possibly in addition to ,F  if increasing F  alone does not suffice. When posterior 

predictive checks do not provide evidence that larger values of F  and S  are needed, analysts need not 

increase the number of classes, as doing so is not expected to improve the accuracy of the estimation. We 

note that similar logic is used in other mixture model contexts (Walker, 2007; Si and Reiter, 2013; Manrique-

Vallier and Reiter, 2014; Murray and Reiter, 2016). 

 
2.2  MCMC sampler for the NDPMPM 
 

Hu et al. (2018) use a data augmentation strategy (Manrique-Vallier and Reiter, 2014) to estimate the 

posterior distribution in (2.2). They assume that the observed data 1,  which includes only feasible 

households, is a subset from a hypothetical sample   of  0n n  households directly generated from the 

untruncated NDPMPM. That is,   is generated on the support   where all combinations are possible and 

structural zeros rules are not enforced, but we only observe the sample of n  households 1  that satisfy the 

structural zero rules and do not observe the sample of 0n  households 0 1=     that fail the rules. 

We use the strategy of Hu et al. (2018) and augment the data as follows. For each ,h   we simulate 

  from the untruncated NDPMPM, stopping when the number of simulated feasible households in   
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directly matches 1hn  for all .h   We replace the simulated feasible households in   with 1,  thus, 

assuming that   already contains 1  and we only need to generate the part 0  that fall in .  Given a 

draw of ,  we draw   from posterior distribution defined by the untruncated NDPMPM, treating   as 

the observed data. This posterior distribution can be estimated using a blocked Gibbs sampler (Ishwaran 

and James, 2001; Si and Reiter, 2013). 

We now present the full MCMC sampler for fitting the truncated NDPMPM. Let 0G  and 0M  be vectors 

of the latent class membership indicators for the households in 0  and 0hn  be the number of households 

of size h  in 0,  with 0 0= .hh
n n  In each full conditional, let “–” represent conditioning on all other 

variables and parameters in the model. At each MCMC iteration, we do the following steps. 
 

S1. Set 0 0 0= = = .G M  For each ,h   repeat the following: 

(a) Set 0 = 0t  and 1 = 0.t  

(b) Sample    0 ** **
11, , Discrete , ,i FG F      where  ** k

g gh g    and k  is the index 

for the household-level variable “household size”.  

(c) For = 1, , ,j h  sample    0 0
0

11, , Discrete , , .
i iij G G SM S      

(d) Set 0 = ,ikX h  where 0
ikX  corresponds to the variable for household size. Sample the 

remaining household-level and individual-level values using the likelihoods in (2.3) and 

(2.4). Set the household’s simulated value to 0 .iX  

(e) If 0 ,i hX   let 0 0= 1,t t  0 0 0= ,i X  0 0 0= iGG G  and 00 0
1= { , ,iMM M   

0 }.ihM  Otherwise set 1 1= 1.t t   

(f) If 1 1< ,ht n  return to step (b). Otherwise, set 0 0= .hn t  

 

S2. For observations in 1,  

(a) Sample    * *
11, , Discrete , ,i FG F      for = 1, , ,i n  where  

                      
    

    
1 1

1 1

= 1 =1 =1 =1*

=1 = 1 =1 =1 =1

= Pr = =

i

ik ijk

i

ik ijk

q n S pk k
g gmgX gmXk p j m k

g i F q n S pk k
f gmfX fmXf k p j m k

G g
   


   





 
 

 
 

   
    

  

for = 1, , .g F  Set 1 = .i iG G  

(b) Sample    1 1
* *

11, , Discrete , ,
i iij G G SM S      for = 1, ,i n  and = 1, , ,ij n  

where  

                      
 

 

1 1 1

1

1 1 1

=1*

=1 =1

= Pr = = i i ijk

i

i i ijk

p k
G m G mXk

ijG m S p k
G s G sXs k

M m
 


 




 
  

for = 1, , .m S  Set 1 = .ij ijM M  
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S3. Set = 1.Fu  Sample  

                      
= 1 <

Beta 1 , , = 1
F

g g f g g f
f g f g

u U U u u 


    
 

    

where 

                        
0

1 0

=1 =1

= = =
nn

g i i
i i

U G g G g     

for = 1, , 1.g F   

 
S4. Set = 1gMv  for = 1, , .g F  Sample  

                      
= 1 <

Beta 1 , , = 1
S

gm gm gs gm gm gs
s m s m

v V V v v 


    
 

    

where 

                        
0

1 1 0 0

=1 =1

= = , = = , =
nn

gm ij i ij i
i i

V M m G g M m G g     

for = 1, , 1m S   and = 1, , .g F  

 
S5. Sample  

                           1Dirichlet 1 , , 1
k

k k k
g g gd       

where 

                          
0

1 0

01

= =

= = =
i i

nn
k

gc ik ik
i G g i G g

X c X c      

for = 1, ,g F  and = 1, , .k p q   

 
S6. Sample  

                           1Dirichlet 1 , , 1
k

k k k
gm gm gmd       

where 

                        
0

1 1 0 0

01( )

, = , = , = , =

= = =
i ij i ij

nn
k

gmc ijk ijk
i j G g M m i j G g M m

X c X c      

for = 1, , ,g F = 1, ,m S  and = 1, , .k p  

 
S7. Sample  

                      
1

=1

Gamma 1, log 1 .
F

g
g

a F b u 
      

 
   
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S8. Sample  

                        
1

=1 =1

Gamma 1 , log 1 .
S F

gm
m g

a F S b v 
       

 
   

 
This Gibbs sampler is implemented in the R software package “NestedCategBayesImpute” (Wang, 

Akande, Hu, Reiter and Barrientos, 2016). The software can be used to generate synthetic versions of the 

original data, but it requires all data to be complete. 

 
3  Handling missing data using the NDPMPM 
 

We modify the Gibbs sampler for the truncated NDPMPM to incorporate missing data. For = 1, , ,i n  

let     1= , ,i i p i p qa a a   be a vector with = 1ika  when household-level variable { 1, ,k p    

}p q  in 1
iX  is missing, and = 0ika  otherwise. For = 1, ,i n  and = 1, , ,ij n  let =ijb  

 1 , ,ij ijpb b  be a vector with = 1ijkb  when individual-level variable  1, ,k p   for individual 

 1, , ij n   in 1
iX  is missing, and = 0ijkb  otherwise. For each household ,i  let  1 obs mis= ,i i iX X X , 

where obs
iX  comprise all data values corresponding to = 0ika  and = 0,ijkb  and mis

iX  comprises all data 

values corresponding to = 1ika  and = 1.ijkb  We assume that the data are missing at random (Rubin, 1976). 

To incorporate missing values in the Gibbs sampler, we need to sample from the full conditional of each 

variable in mis,iX  conditioned on the variables for which = 0ika  and = 0,ijkb  at every iteration. Thus, we 

add the ninth step, 
 

S9. For = 1, , ,i n  sample mis
iX  from its full conditional distribution  

                            
1 1 1 1 1 1 1 1

mis 1

=1 =1 =1

Pr .
i

i i i ij i ijik ijk
ik ijk

np q p
k k

i i h G G X G M G M X
k a j k b

   
 

   
 

  X X    

 

Sampling from this conditional distribution is nontrivial because of the dependence among variables 

induced by the structural zero rules in each .h  Because of the dependence, we cannot simply sample each 

variable independently using the likelihoods in (2.3) and (2.4). If we could generate the set of all possible 

completions for all households with missing entries, conditional on the observed values, then calculating 

the probability of each one and sampling from the set would be straightforward. Unfortunately, this approach 

is not practical when the size of each h  is large. Even when the size of each h  is modest, each household 

could have different sets of completions, necessitating significant computing, storage, and memory 

requirements. 

However, the full conditional in S9 takes a similar form as the kernel of the truncated NDPMPM in 

(2.1), so that we can generate the desired samples through a second rejection sampling scheme. 

Essentially, we sample from an untruncated version of the full conditional mis
* =

i
PX  

    1 1 1 1 1 1 1 1=1 =1 =1
,i

i i i ij i ijik ijkik ijk

p q n pk k
G G X G M G M Xk a j k b

       until we obtain a valid sample that satisfies 1 ;i hX   
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see the Appendix for a proof that this rejection sampling scheme results in a valid Gibbs sampler. Notice 

that since mis
*

i
PX  itself is untruncated, we can generate samples from it by sampling each variable 

independently using (2.3) and (2.4). We therefore replace step S9 with S9'. 

S9'. For = 1, , ,i n  sample mis
iX  as follows. 

(a) For each missing household-level variable, that is, each variable where {k p   

1, , }p q  with = 1,ika  sample 1
ikX  using (2.3). 

(b) For each missing individual-level variable, that is, each variable where = 1, , ij n  and 

 1, ,k p   with = 1,ijkb  sample 1
ijkX  using (2.4). 

(c) Set the sampled household-level and individual-level values to mis*.iX  

(d) Combine mis*
iX  with the observed obs,iX  that is, set  1* obs mis*= ,i i iX X X . If 1* ,i hX   set 

mis mis*= ,i iX X  otherwise, return to step (9'a).  

 

To initialize each mis,iX  we suggest sampling from the empirical marginal distribution of each variable 

k  using the available cases for each variable, and requiring that the household satisfies 1 .i hX   

 
4  Strategies for speeding up the MCMC sampler 
 

The rejection sampling step in the Gibbs sampler in Section 2.2 can be inefficient when   is large 

(Manrique-Vallier and Reiter, 2014; Hu et al., 2018), as the sampler tends to generate many impossible 

households before getting enough feasible ones. In addition, it takes computing time to check whether or 

not each sampled household satisfies all the structural zero rules. These computational costs are 

compounded when the sampler also incorporates missing values. In this section, we present two strategies 

that can reduce the number of impossible households that the algorithm generates, thereby speeding up the 

sampler. The Appendix includes simulation studies showing that both strategies can speed up the MCMC 

significantly. 

 
4.1  Moving the household head to the household level 
 

Many datasets include a variable recording the relationship of each individual to the household head. 

There can be only one household head in any household. This restriction can account for a large proportion 

of the combinations in . As a simple working example, consider a dataset that contains = 1,000n  

households of size two, resulting in a total of = 2,000N  individuals. Suppose the data contain no 

household-level variables and two individual-level variables, age and relationship to household head. Also, 

suppose age has 100 levels while relationship to household head has 13 levels, which include household 

head, spouse of the household head, etc. Then,   contains 2 2 613 100 = 1.69 10   combinations. Suppose 

the rule, “each household must contain exactly one head”, is the only structural zero rule defined on the 

dataset. Then,   contains 61.45 10  impossible combinations, approximately 86% the size of .  If, for 

example, the model assigns uniform probability to all combinations in ,  we would expect to sample about 
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 0.86 0.14 * 1,000 6,143  impossible households at every iteration to augment the n  feasible 

households. 

Instead, we treat the variables for the household head as a household-level characteristic. This eliminates 

structural zero rules defined on the household head alone. Using the working example, moving the 

household head to the household level results in one new household-level variable, age of household head, 

which has 100 levels. The relationship to household head variable can be ignored for household heads. For 

others in the household, the relationship to household head variable now has 12 levels, with the level 

corresponding to “household head” removed. Thus,   contains 2 512 100 = 1.20 10   combinations, and 

  contains zero impossible combinations. We wouldn’t even need to sample impossible households in the 

Gibbs sampler in Section 2.2. 

In general, this strategy can reduce the size of   significantly, albeit usually not to zero as in the simple 

example here since   usually contains combinations resulting from other types of structural zero rules. This 

strategy is not a replacement for the rejection sampler in Section 2.2; rather, it is a data reformatting 

technique that can be combined with the sampler. 

 
4.2  Setting an upper bound on the number of impossible households to sample 
 

To reduce computation time, we can put an upper bound on the number of sampled cases in 0.  One 

way to achieve this is to replace 1hn  in step S1(f) of Section 2.2 with 1 ,h hn     for some h  such that 

1 h  is a positive integer, so that we sample only approximately 0h hn     impossible households for 

each .h   However, doing so underestimates the actual probability mass assigned to   by the model. 

We can illustrate this using the simple example of Section 4.1. Suppose the model assigns uniform 

probability to all combinations in   as before. We set 2 = 0.5,  so that we sample approximately 

3,072 = 6,143 0.5    impossible households in every iteration of the MCMC sampler. The probability of 

generating one impossible household is  3,072 1,000 3,072 = 0.75,  a decrease from the actual value of 

0.86. Therefore, we would underestimate the true contribution of  0 0 0, ,G M  to the likelihood. 

To use the cap-and-weight approach, we need to apply a correction that re-weights the contribution of 

 0 0 0, ,G M  to the full joint likelihood. We do so using ideas akin to those used by Chambers and Skinner 

(2003) and Savitsky and Toth (2016), approximating the likelihood of the full unobserved data with a 

“pseudo” likelihood using weights (the 1 ’s).h  The impossible households only contribute to the full joint 

likelihood through the discrete distributions in (2.3) to (2.6). The sufficient statistics for estimating the 

parameters of the discrete distributions in (2.3) to (2.6) are the observed counts for the corresponding 

variables in the set  1 1 1 0 0 0, , , , , ,G M G M   within each latent class for the household-level variables 

and within each latent class pair for the individual-level variables. Thus, for each ,h   we can re-weight 

the contribution of impossible households by multiplying the observed counts for households of size h  in 

 0 0 0, ,G M  by 1 h  for the corresponding variable and latent classes. This raises the likelihood 

contribution of impossible households of size h  to the power of 1 .h  Clearly, 1 h  need not be a positive 

integer. We require that only to make its multiplication with the observed counts free of decimals. We 
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modify the Gibbs sampler to incorporate the cap-and-weight approach by replacing steps S1, S3, S4, S5 and 

S6; see the Appendix for the modified steps. 

Setting each = 1h  corresponds to the original rejection sampler, so that the two approaches should 

provide very similar results when h  near 1. Based on our experience, results of the cap-and-weight 

approach become significantly less accurate than the regular rejection sampler when < 1 4 .h  The time 

gained using this speedup approach in comparison to the regular sampler depends on the features of the data 

and the specified values for the weights  : .h h   To select the ’s,h  we suggest trying out different 

values – starting with values close to one – in initial runs of the MCMC sampler on a small random sample 

of the data. Analysts should examine the convergence and mixing behavior of the chains in comparison to 

the chain with all the ’sh  set to one, and select values that offer reasonable speedup while preserving 

convergence and mixing. This can be done quickly by comparing trace plots of a random set of parameters 

from the model that are not subject to label switching, such as   and ,  or by examining marginal, 

bivariate and trivariate probabilities estimated from synthetic data generated from the MCMC. 

 
5  Empirical study 
 

To evaluate the performance of the NDPMPM as an imputation method, as well as the speed up 

strategies, we use data from the public use microdata files from the 2012 ACS, available for download from 

the United States Census Bureau (http://www2.census.gov/acs2012_1yr/pums/). We construct a population 

of 764,580 households of sizes  = 2, 3, 4 ,  from which we sample = 5,000n  households comprising 

= 13,181N  individuals. We work with the variables described in Table 5.1, which mimic those in the U.S. 

decennial census. The structural zeros involve ages and relationships of individuals in the same house; see 

the Appendix for a full list of rules that we used. We move the household head to the household level as in 

Section 4.1 to take advantage of the computational gains. 

We introduce missing values using the following scenario. We let household size and age of household 

heads be fully observed. We randomly and independently blank 30% of each variable for the remaining 

household-level variables. For individuals other than the household head, we randomly and independently 

blank 30% of the values for gender, race and Hispanic origin. We make age missing with rates 50%, 20%, 

40% and 30% for values of the relationship variable in the sets {2}, {3, 4, 5, 10}, {7, 9} and 

{6, 8, 11, 12, 13}, respectively. We make the relationship variable missing with rates 40%, 25%, 10%, and 

55% for values of age in the sets  : 20 ,x x   : 20 < 50 ,x x   : 50 < 70 ,x x   and  : > 70 ,x x  

respectively. This results in approximately 30% missing values for both variables. About 8% of the 

individuals in the sample are missing both the age and relationship variable, and 2% are missing gender, 

age, and relationship jointly. This mechanism results in data that technically are not missing at random, but 

we use the NDPMPM approach regardless to examine its potential in a complicated missingness 

mechanism. Actual rates of item nonresponse in census data tend to be smaller than what we use here, but 

we use high rates to put the NDPMPM through a challenging stress test. We also introduce missing values 
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using a missing completely at random scenario with rates in the 10% range across all the variables. In short, 

the results are similar to those here, though more accurate due to the lower rates of missingness. See the 

Appendix for the results. 

 
Table 5.1 
Description of variables used in the study. “HH” means household head 
 

Description of variable  Categories

Household-level variables  Ownership of dwelling 1 = owned or being bought, 2 = rented 

Household size  2 = 2 people, 3 = 3 people, 4 = 4 people 

Gender of HH  1 = male, 2 = female

Race of HH  1 = white, 2 = black,
3 = American Indian or Alaska native, 
4 = Chinese, 5 = Japanese, 
6 = other Asian/Pacific islander, 7 = other race,
8 = two major races,
9 = three or more major races 

Hispanic origin of HH  1 = not Hispanic, 2 = Mexican, 
3 = Puerto Rican, 4 = Cuban, 5 = other 

Age of HH  1 = less than one year old, 2 = 1 year old, 
3 = 2 years old, ..., 96 = 95 years old 

Individual-level variables  Gender  same as “Gender of HH” 

Race  same as “Race of HH”

Hispanic origin  same as “Hispanic origin of HH” 

Age  same as “Age of HH”

Relationship to head of household  1 = spouse, 2 = biological child, 
3 = adopted child, 4 = stepchild, 5 = sibling,
6 = parent, 7 = grandchild, 8 = parent-in-law,
9 = child-in-law, 10 = other relative, 
11 = boarder, roommate or partner, 
12 = other non-relative or foster child 

 
We estimate the NDPMPM using two approaches, both using the rejection step S9' in Section 3. The 

first approach considers 2 3 4= = = 1,    i.e., without using the cap-and-weight approach, while the 

second approach considers 2 3= = 1 2   and 4 = 1 3.  For each approach, we run the MCMC sampler 

for 10,000 iterations, discarding the first 5,000 as burn-in and thinning the remaining samples every five 

iterations, resulting in 1,000 MCMC post burn-in iterates. We set = 30F  and = 15S  for each approach 

based on initial tuning runs. Across the approaches, the effective number of occupied household-level 

clusters usually ranges from 13 to 16 with a maximum of 25, while the effective number of occupied 

individual-level clusters across all household-level clusters ranges from 3 to 5 with a maximum of 10. For 

convergence, we examined trace plots of , ,  and weighted averages of a random sample of the 

multinomial probabilities in (2.3) and (2.4) (since the multinomial probabilities themselves are prone to 

label switching). 

For both methods, we generate = 50L  completed datasets,   50(1)= , ,Z Z Z , using the posterior 

predictive distribution of the NDPMPM, from which we estimate all marginal distributions, bivariate 

distributions of all possible pairs of variables, and trivariate distributions of all possible triplets of variables. 
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We also estimate several probabilities that depend on within household relationships and the household head 

to investigate the performance of the NDPMPM in estimating complex relationships. We obtain confidence 

intervals using multiple imputation inferences (Rubin, 1987). As a brief review, let q  be the completed-

data point estimator of some estimand ,Q  and let u  be the estimator of variance associated with .q  For 

= 1, , ,l L  let  lq  and  lu  be the values of q  and u  in completed dataset  .lZ  We use 
 

=1
=

L
l

L l
q q L  as the point estimate of .Q  We use  = 1 1L L LT L b u   as the estimated variance of 

,q  where     2

=1
= 1

L
l

L Ll
b q q L   and  

=1
= .

L
l

L l
u u L  We make inference about Q  using 

   0, ,L v Lq Q t T   where vt  is a t distribution with       2= 1 1 1 1L Lv L u L b    degrees of 

freedom. 

Figures 5.1 and 5.2 display the value of 50q  for each estimated marginal, bivariate and trivariate 

probability plotted against its corresponding estimate from the original data, without missing values. 

Figure 5.1 shows the results for the NDPMPM with the rejection sampler, and Figure 5.2 shows the results 

for the NDPMPM using the cap-and-weight approach. For both approaches, the point estimates are close to 

those from the data before introducing missing values, suggesting that the NDPMPM does a good job of 

capturing important features of the joint distribution of the variables. Figure 5.2 in particular also shows that 

the cap-and-weight approach did not degrade the estimates. 

Table 5.2 displays 95% confidence intervals for several probabilities involving within-household 

relationships, as well as the value in the full population of 764,580 households. The intervals include the 

two based on the NDPMPM imputation engines and the interval from the data before introducing 

missingness. For the latter, we use the usual Wald interval,  ˆ ˆ ˆ1.96 1 ,p p p n   where p̂  is the 

corresponding sample percentage. For the most part, the intervals from the NDPMPM with the full rejection 

sampling are close to those based on the data without any missingness. They tend to include the true 

population quantity. The NDPMPM imputation engine results in noticeable downward bias for the 

percentages of households where everyone is the same race, with bias increasing as the household size gets 

bigger. This is a challenging estimand to estimate accurately via imputation, particularly for larger 

households. Hu et al. (2018) identified biases in the same direction when using the NDPMPM (with 

household head data treated as individual-level variables) to generate fully synthetic data, noting that the 

bias gets smaller as the sample size increases. The NDPMPM fits the joint distribution of the data better and 

better as the sample size grows. Hence, we expect the NDPMPM imputation engine to be more accurate 

with larger sample sizes, as well as with smaller fractions of missing values. 

The interval estimates from the cap-and-weight method are generally similar to those for the full 

rejection sampler, with some degradation particularly for the percentages of same race households by 

household size. This degradation comes with a benefit, however. Based on MCMC runs on a standard 

laptop, the NDPMPM using the cap-and-weight approach and moving household heads’ data values to the 

household level is about 42% faster than the NDPMPM with household heads’ data values moved to the 

household level. 
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Figure 5.1 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets from 

the truncated NDPMPM with the rejection sampler. Household heads’ data values moved to the 
household level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets from 

the truncated NDPMPM using the cap-and-weight approach. Household heads’ data values to the 
household level. 
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Table 5.2 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and imputed datasets. “No missing” is based on the sampled data before introducing missing values, 
“NDPMPM” uses the truncated NDPMPM, moving household heads’ data values to the household level, and 
“NDPMPM Capped” uses the truncated NDPMPM with the cap-and-weight approach and moving household 
heads’ data values to the household level. “HH ” means household head, “SP” means spouse, “CH” means child, 
and “CP” means couple. Q is the value in the full population of 764,580 households 
 

  Q No Missing NDPMPM NDPMPM Capped 
All same race household:  = 2in 0.942 (0.932, 0.949) (0.891, 0.917) (0.884, 0.911)

= 3in 0.908 (0.907, 0.937) (0.843, 0.890) (0.821, 0.870)
= 4in   0.901 (0.879, 0.917) (0.793, 0.851) (0.766, 0.828) 

SP present  0.696 (0.682, 0.707) (0.695, 0.722) (0.695, 0.722)
Same race CP  0.656 (0.641, 0.668) (0.640, 0.669) (0.634, 0.664)
SP present, HH is White  0.600 (0.589, 0.616) (0.603, 0.632) (0.604, 0.634) 
White CP  0.580 (0.569, 0.596) (0.577, 0.606) (0.574, 0.604)
CP with age difference less than five  0.488 (0.465, 0.492) (0.341, 0.371) (0.324, 0.355)
Male HH, home owner  0.476 (0.456, 0.484) (0.450, 0.479) (0.451, 0.480) 
HH over 35, no CH present  0.462 (0.441, 0.468) (0.442, 0.470) (0.443, 0.471)
At least one biological CH present 0.437 (0.431, 0.458) (0.430, 0.459) (0.428, 0.456)
HH older than SP, White HH  0.322 (0.309, 0.335) (0.307, 0.339) (0.311, 0.343) 
Adult female w/ at least one CH under 5  0.078 (0.070, 0.085) (0.062, 0.078) (0.061, 0.077)
White HH with Hisp origin  0.066 (0.064, 0.078) (0.062, 0.079) (0.062, 0.078)
Non-White CP, home owner  0.058 (0.050, 0.063) (0.038, 0.052) (0.037, 0.051) 
Two generations present, Black HH  0.057 (0.053, 0.066) (0.052, 0.066) (0.052, 0.067)
Black HH, home owner  0.052 (0.046, 0.058) (0.044, 0.058) (0.044, 0.059)
SP present, HH is Black  0.039 (0.032, 0.042) (0.032, 0.044) (0.031, 0.043) 
White-nonwhite CP  0.034 (0.029, 0.039) (0.038, 0.053) (0.043, 0.059)
Hisp HH over 50, home owner  0.029 (0.025, 0.034) (0.023, 0.034) (0.024, 0.034)
One grandchild present  0.028 (0.023, 0.033) (0.024, 0.035) (0.023, 0.035) 
Adult Black female w/ at least one CH under 18  0.027 (0.028, 0.038) (0.025, 0.036) (0.025, 0.036)
At least two generations present, Hisp CP  0.027 (0.022, 0.031) (0.022, 0.032) (0.023, 0.033)
Hisp CP with at least one biological CH  0.025 (0.020, 0.028) (0.019, 0.029) (0.020, 0.030) 
At least three generations present  0.023 (0.020, 0.028) (0.017, 0.026) (0.017, 0.026)
Only one parent  0.020 (0.016, 0.024) (0.013, 0.021) (0.013, 0.021)
At least one stepchild  0.019 (0.018, 0.026) (0.019, 0.030) (0.019, 0.030) 
Adult Hisp male w/ at least one CH under 10  0.018 (0.017, 0.025) (0.014, 0.022) (0.014, 0.022)
At least one adopted CH, White CP  0.008 (0.005, 0.010) (0.004, 0.010) (0.004, 0.011)
Black CP with at least two biological children  0.006 (0.003, 0.007) (0.003, 0.007) (0.003, 0.007) 
Black HH under 40, home owner  0.005 (0.005, 0.009) (0.006, 0.013) (0.007, 0.013)
Three generations present, White CP  0.005 (0.004, 0.008) (0.004, 0.010) (0.004, 0.009)
White HH under 25, home owner  0.003 (0.002, 0.005) (0.003, 0.007) (0.003, 0.007) 

 
6  Discussion 
 

The empirical study suggests that the NDPMPM can provide high quality imputations for categorical 

data nested within households. To our knowledge, this is the first parametric imputation engine for nested 

multivariate categorical data. The study also illustrates that, with modest sample sizes, agencies should not 

expect the NDPMPM to preserve all features of the joint distribution. Of course, this is the case with any 

imputation engine. For the NDPMPM, agencies may be able to improve accuracy for targeted quantities by 

recoding the data used to fit the model. For example, one can create a new household-level variable that 

equals one when everyone has the same race and equals zero otherwise, and replace the individual race 

variable with a new variable that has levels “1 = race is the same as race of household head”, “2 = race is 

white and differs from race of household head”, “3 = race is black and differs from race of household head”, 

and so on. The NDPMPM would be estimated with the household-level same race variable and the new 

individual-level race variable. This would encourage the NDPMPM to estimate the percentages with the 
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same race very accurately, as it would be just another household-level variable like home ownership. It also 

would add structural zeros involving race to the computation. Evaluating the trade offs in accuracy and 

computational costs of such recodings is a topic for future research. 

The NDPMPM can be computationally expensive, even with the speed-ups presented in this article. The 

expensive parts of the algorithm are the rejection sampling steps. Fortunately, these can be done easily by 

parallel processing. For example, we can require each processor to generate a fraction of the impossible 

cases in Section 2.2. We also can spread the rejection steps for the imputations over many processors. These 

steps should cut run time by a factor roughly equal to the number of processors available. 

The empirical study used households up to size four. We have run the model on data with households 

up to size seven in reasonable time (a few hours on a standard laptop). Accuracy results are similar 

qualitatively. As the household sizes get large, the model can generate hundreds or even thousands times as 

many impossible households as there are feasible ones, slowing the algorithm. In such cases, the cap-and-

weight approach is essential for practical applications. 
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Appendix 

 

This is an Appendix to the paper. It contains proof that the rejection sampling step S9' in Section 3 

generates samples from the correct posterior distribution. It also contains the modified Gibbs sampler for 

the cap-and-weight approach and a list of the structural zero rules used in fitting the NDPMPM model. 

Finally, we include empirical results for the speedup approaches mentioned in the paper, using synthetic 

data, and additional results for handling missing data using the NDPMPM under a missing completely at 

random scenario. 

 
A.1 Proof that the rejection sampling step S9' in Section 3 generates samples 

from the correct posterior distribution 
 

The 1
ikX  and 1

ijkX  values generated using the rejection sampler in Step S9' are generated from the full 

conditionals, resulting in a valid Gibbs sampler. The proof follows from the properties of rejection sampling 

(or simple accept reject). The target distribution is the full conditional for mis.iX  It can be re-expressed as  

  
 
 

 
1

mis mis=
Pr

i h
i i

i h

p g





X
X X

X

 


  

where  



Survey Methodology, June 2019 287 
 

 
Statistics Canada, Catalogue No. 12-001-X 

      
1 1 1 1 1 1 1 1

mis

=1 =1 =1

= .
i i i ij i ijik ijk

ik ijk

np q pi
k k

i G G X G M G M X
k a j k b

g    
 


 

  X   

Our rejection scheme uses  mis
ig X  as a proposal for  mis .ip X  To show that the draws are indeed from 

 mis ,ip X  we need to verify that      mis mis mis= < ,i i iw p g MX X X  where 1 < < ,M   and that we are 

accepting each sample with probability  mis .iw MX  In our case, 
 

1.            mis mis mis 1= = Pr 1 Pr ,i i i i h i h i hw p g     X X X X X X     and 

   0 < Pr < 1 1 < 1 Pr <i h i h    X X   necessarily. 

2. By sampling until we obtain a valid sample that satisfies 1 ,i hX   we are indeed sampling with 

probability    mis 1= .i i hw M X X   

 
A.2 Modified Gibbs sampler for the cap-and-weight approach 
 

The modified Gibbs sampler for the cap-and-weight approach replaces steps S1, S3, S4, S5 and S6 of 

the Gibbs sampler in the main text as follows. 

S1*. For each ,h   repeat steps S1(a) to S1(e) as before but modify step S1(f) to: if 

1 1< ,h ht n     return to step (b). Otherwise, set 0 0= .hn t  

 

S3*. Set = 1.Fu  Sample  

                      
= 1 <

Beta 1 , , = 1
F

g g f g g f
f g f g

u U U u u 


    
 

    

where 

                        
0

1 0

=1 =

1
= = =

i

n

g i i
i h i n hh

U G g G g


  


    

for = 1, , 1.g F   

 

S4*. Set = 1gMv  for = 1, , .g F  Sample  

                      
= 1 <

Beta 1 , , = 1
S

gm gm gs gm gm gs
s m s m

v V V v v 


    
 

    

where 

                        
0

1 1 0 0

=1 =

1
= = , = = , =

i

n

gm ij i ij i
i h i n hh

V M m G g M m G g


  


    

for = 1, , 1m S   and = 1, , .g F  
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S5*. Sample  

                           1Dirichlet 1 , , 1
k

k k k
g g gd       

where 

                          
1 0 0

01

= = , =

1
= = =

i i i

n
k

gc ik ik
hi G g i n h G gh

X c X c


  


    

for = 1, ,g F  and = 1, , .k p q   

 

S6*. Sample  

                           1Dirichlet 1 , , 1
k

k k k
gm gm gmd       

where 

                          
1 1 0 0 0

01

= , = = , = , =

1
= = =

i ij i i ij

n
k

gmc ijk ijk
hi G g M m i n h G g M mh

X c X c


  


    

for = 1, , ,g F = 1, ,m S  and = 1, , .k p  

 
A.3 List of structural zeros 
 

We fit the NDPMPM model using structural zeros which involve ages and relationships of individuals 

in the same house. The full list of the rules used is presented in Table A.1. These rules were derived from 

the 2012 ACS by identifying combinations involving the relationship variable that do not appear in the 

constructed population. This list should not be interpreted as a “true” list of impossible combinations in 

census data. 

 
Table A.1 
List of structural zeros 
 

Description  

Rules common to generating both the synthetic and imputed datasets 
1. Each household must contain exactly one head and he/she must be at least 16 years old. 
2. Each household cannot contain more than one spouse and he/she must be at least 16 years old.  
3. Married couples are of opposite sex, and age difference between individuals in the couples cannot exceed 49. 
4. The youngest parent must be older than the household head by at least 4. 
5. The youngest parent-in-law must be older than the household head by at least 4.  
6. The age difference between the household head and siblings cannot exceed 37. 
7. The household head must be at least 31 years old to be a grandparent and his/her spouse must be at least 17. Also, He/she must be older than 

the oldest grandchild by at least 26.  

Rules specific to generating the synthetic datasets  
8. The household head must be older than the oldest child by at least 7. 

Rules specific to generating the imputed datasets  
9. The household head must be older than the oldest biological child by at least 7. 

10. The household head must be older than the oldest adopted child by at least 11.  
11. The household head must be older than the oldest stepchild by at least 9.  
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A.4 Empirical study of the speedup approaches 
 

We evaluate the performance of the two speedup approaches mentioned in the main text using synthetic 

data. We use data from the public use microdata files from the 2012 ACS, available for download from the 

United States Census Bureau (http://www2.census.gov/acs2012_1yr/pums/) to construct a population of 

857,018 households of sizes  = 2, 3, 4, 5, 6 ,  from which we sample = 10,000n  households 

comprising = 29,117N  individuals. We work with the variables described in Table A.2. We evaluate the 

approaches using probabilities that depend on within household relationships and the household head. 

 
Table A.2 
Description of variables used in the synthetic data illustration 
 

Description of variable  Categories

Household-level variables  Ownership of dwelling 1 = owned or being bought, 2 = rented 

Household size  2 = 2 people, 3 = 3 people, 4 = 4 people, 
5 = 5 people, 6 = 6 people 

Individual-level variables  Gender  1 = male, 2 = female

Race  1 = white, 2 = black,
3 = American Indian or Alaska native, 
4 = Chinese, 5 = Japanese,
6 = other Asian/Pacific islander, 7 = other race, 
8 = two major races,
9 = three or more major races 

Hispanic origin  1 = not Hispanic, 2 = Mexican, 
3 = Puerto Rican, 4 = Cuban, 5 = other 

Age  1 = less than one year old, 2 = 1 year old, 
3 = 2 years old, ..., 96 = 95 years old 

Relationship to head of household  1 = household head, 2 = spouse, 3 = child, 
4 = child-in-law, 5 = parent, 6 = parent-in-law, 
7 = sibling, 8 = sibling-in-law, 9 = grandchild, 
10 = other relative, 11 = partner/friend/visitor, 
12 = other non-relative

 
We consider the NDPMPM using two approaches, both moving the values of the household head to the 

household level as in Section 4.1 of the main text and also using the cap-and-weight approach in Section 4.2 

of the main text. The first approach considers 2 3 4 5 6= = = = = 1      while the second approach 

considers 2 3= = 1 2   and 4 5 6= = = 1 3.    We compare these approaches to the NDPMPM as 

presented in Hu et al., 2018. For each approach, we create = 50L  synthetic datasets,     1 50= , , .Z Z Z  

We generate the synthetic datasets so that the number of households of size h   in each  lZ  exactly 

matches hn  from the observed data. Thus, Z  comprises partially synthetic data (Little, 1993; Reiter, 2003), 

even though every released ijkZ  is a simulated value. We combine the estimates using using the approach 

in Reiter (2003). As a brief review, let q  be the point estimator of some estimand ,Q  and let u  be the 

estimator of variance associated with .q  For = 1, , ,l L  let lq  and lu  be the values of q  and u  in 

synthetic dataset  .lZ  We use 
=1

=
L

ll
q q L  as the point estimate of Q  and =T u b L  as the 

estimated variance of ,q  where    2

=1
= 1

L

ll
b q q L   and 

=1
= .

L

ll
u u L  We make inference 

about Q  using    0, ,vq Q t T   where vt  is a t distribution with     2= 1 1v L Lu b   degrees of 

freedom. 
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For each approach, we run the MCMC sampler for 20,000 iterations, discarding the first 10,000 as burn-

in and thinning the remaining samples every five iterations, resulting in 2,000 MCMC post burn-in iterates. 

We create the = 50L  synthetic datasets by randomly sampling from the 2,000 iterates. We set = 40F  and 

= 15S  for each approach based on initial tuning runs. For convergence, we examined trace plots of  ,   

and weighted averages of a random sample of the multinomial probabilities in the NDPMPM likelihood. 

Across the approaches, the effective number of occupied household-level clusters usually ranges from 20 

to 33 with a maximum of 38, while the effective number of occupied individual-level clusters across all 

household-level clusters ranges from 5 to 9 with a maximum of 12. 

Based on MCMC runs on a standard laptop, moving household heads’ data values to the household level 

alone results in a speedup of about 63% on the default rejection sampler while the cap-and-weight approach 

alone results in a speedup of about 40%. 

Table A.3 shows the 95% confidence intervals for each approach. Essentially, all three approaches result 

in similar confidence intervals, suggesting not much loss in accuracy from the speedups. Most intervals also 

are reasonably similar to confidence intervals based on the original data, except for the percentage of same 

age couples. The last row is a rigorous test of how well each method can estimate a probability that can be 

fairly difficult to estimate accurately. In this case, the probability that a household head and spouse are the 

same age can be difficult to estimate since each individual’s age can take 96 different values. All three 

approaches are thus off from the estimate from the original data in this case. These results suggest that we 

can significantly speedup the sampler with minimal loss in accuracy of estimates and confidence intervals 

of population estimands. 
 

Table A.3 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and synthetic datasets. “Original” is based on the sampled data, “NDPMPM” is the default MCMC sampler 
described in Section 2.2 of the main text, “NDPMPM w/ HH moved” is the default sampler, moving household 
heads’ data values to the household level, “NDPMPM capped w/ HH moved” uses the cap-and-weight approach 
and moving household heads’ data values to the household level. “HH ” means household head and “SP” means 
spouse 
 

  Original NDPMPM NDPMPM w/ HH moved NDPMPM capped w/ HH moved 
All same race  = 2in   (0.939, 0.951) (0.918, 0.932) (0.912, 0.928) (0.910, 0.925)

= 3in   (0.896, 0.920) (0.859, 0.888) (0.845, 0.875) (0.844, 0.874)
= 4in   (0.885, 0.912) (0.826, 0.860) (0.813, 0.848) (0.817, 0.852) 
= 5in   (0.879, 0.922) (0.786, 0.841) (0.786, 0.841) (0.777, 0.834)
= 6in   (0.831, 0.910) (0.701, 0.803) (0.718, 0.819) (0.660, 0.768)

SP present  (0.693, 0.711) (0.678, 0.697) (0.676, 0.695) (0.677, 0.695) 
SP with white HH  (0.589, 0.608) (0.577, 0.597) (0.576, 0.595) (0.575, 0.595)
SP with black HH  (0.036, 0.043) (0.035, 0.043) (0.034, 0.042) (0.034, 0.042)
White couple  (0.570, 0.589) (0.560, 0.580) (0.553, 0.573) (0.552, 0.572) 
White couple, own  (0.495, 0.514) (0.468, 0.488) (0.461, 0.481) (0.463, 0.483)
Same race couple  (0.655, 0.673) (0.636, 0.655) (0.626, 0.645) (0.625, 0.644)
White-nonwhite couple  (0.028, 0.035) (0.028, 0.035) (0.034, 0.041) (0.036, 0.044) 
Nonwhite couple, own  (0.057, 0.067) (0.047, 0.056) (0.045, 0.053) (0.045, 0.054)
Only mother present  (0.017, 0.022) (0.014, 0.019) (0.014, 0.019) (0.013, 0.018)
Only one parent present  (0.021, 0.026) (0.026, 0.032) (0.026, 0.033) (0.027, 0.033) 
Children present  (0.507, 0.527) (0.493, 0.512) (0.517, 0.537) (0.511, 0.531)
Siblings present  (0.022, 0.028) (0.027, 0.034) (0.027, 0.033) (0.027, 0.033)
Grandchild present  (0.041, 0.049) (0.051, 0.060) (0.049, 0.058) (0.050, 0.059) 
Three generations present  (0.036, 0.044) (0.037, 0.045) (0.042, 0.050) (0.040, 0.048)
White HH, older than SP  (0.309, 0.327) (0.283, 0.301) (0.294, 0.313) (0.302, 0.321)
Nonhisp HH  (0.882, 0.894) (0.875, 0.888) (0.879, 0.891) (0.876, 0.889) 
White, Hisp HH  (0.071, 0.082) (0.074, 0.085) (0.072, 0.082) (0.073, 0.084)
Same age couple  (0.087, 0.098) (0.027, 0.034) (0.023, 0.029) (0.024, 0.031) 
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A.5 Empirical study of missing data imputation under MCAR 
 

We also evaluate the performance of the NDPMPM as an imputation method under a missing completely 

at random (MCAR) scenario. We use the same data as in Section 5 of the main text. As a reminder, the data 

contains = 5,000n  households of sizes  = 2, 3, 4 ,  comprising = 13,181N  individuals. We introduce 

missing values using a MCAR scenario. We randomly select 80% households to be complete cases for all 

variables. For the remaining 20%, we let the variable “household size” be fully observed and randomly – 

and independently – blank 50% of each variable for the remaining household-level and individual-level 

variables. We use these low rates to mimic the actual rates of item nonresponse in census data. 

Similar to the main text, we estimate the NDPMPM using two approaches, both combining the rejection 

step in Section 4.1 of the main text with the cap-and-weight approach in Section 4.2 of the main text. The 

first approach considers 2 3 4= = = 1    while the second approach considers 2 3= = 1 2   and 

4 = 1 3.  For each approach, we run the MCMC sampler for 10,000 iterations, discarding the first 5,000 

as burn-in and thinning the remaining samples every five iterations, resulting in 1,000 MCMC post burn-in 

iterates. We set = 30F  and = 15S  for each approach based on initial tuning runs. We monitor 

convergence as in the main text. For both methods, we generate = 50L  completed datasets, =Z  

    1 50, , ,Z Z  using the posterior predictive distribution of the NDPMPM, from which we estimate the 

same probabilities as in the main text. 

Figures A.1 and A.2 display each estimated marginal, bivariate and trivariate probability 50q  plotted 

against its corresponding estimate from the original data, without missing values. Figure A.1 shows the 

results for the NDPMPM with the rejection sampler, and Figure A.2 shows the results for the NDPMPM 

using the cap-and-weight approach. For both approaches, the NDPMPM does a good job of capturing 

important features of the joint distribution of the variables as the point estimates are very close to those from 

the data before introducing missing values. In short, the results are very similar to those in the main text, 

though more accurate. 

Table A.4 displays 95% confidence intervals for selected probabilities involving within-household 

relationships, as well as the value in the full population of 764,580 households. The intervals include the 

two based on the NDPMPM imputation engines and the interval from the data before introducing 

missingness. The intervals are generally more accurate than those presented in the main text. This is 

expected since we use lower rates of missingness in the MCAR scenario. For the most part, the intervals 

from the NDPMPM with the two approaches tend to include the true population quantity. Again, the 

NDPMPM imputation engine results in downward bias for the percentages of households where everyone 

is the same race. As mentioned in the main text, this is a challenging estimand to estimate accurately via 

imputation, particularly for larger households. 
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Figure A.1 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets 

under MCAR from the truncated NDPMPM with the rejection sampler. Household heads’ data 
values moved to the household level. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure A.2 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets 

under MCAR from the truncated NDPMPM using the cap-and-weight approach. Household heads’ 
data values to the household level. 
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Table A.4 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and imputed datasets under MCAR. “No missing” is based on the sampled data before introducing missing 
values, “NDPMPM” uses the truncated NDPMPM, moving household heads’ data values to the household level, 
and “NDPMPM Capped” uses the truncated NDPMPM with the cap-and-weight approach and moving 
household heads’ data values to the household level. “HH ” means household head, “SP” means spouse, “CH” 
means child, and “CP” means couple. Q is the value in the full population of 764,580 households 
 

 Q No Missing NDPMPM NDPMPM Capped 
All same race household:  = 2in 0.942 (0.932, 0.949) (0.924, 0.944) (0.925, 0.946)

= 3in 0.908 (0.907, 0.937) (0.887, 0.924) (0.890, 0.925)
= 4in   0.901 (0.879, 0.917) (0.854, 0.900) (0.855, 0.900) 

SP present  0.696 (0.682, 0.707) (0.683, 0.709) (0.683, 0.709)
Same race CP  0.656 (0.641, 0.668) (0.637, 0.664) (0.638, 0.665)
SP present, HH is White  0.600 (0.589, 0.616) (0.590, 0.618) (0.590, 0.618) 
White CP  0.580 (0.569, 0.596) (0.568, 0.596) (0.568, 0.597)
CP with age difference less than five  0.488 (0.465, 0.492) (0.422, 0.451) (0.422, 0.450)
Male HH, home owner  0.476 (0.456, 0.484) (0.455, 0.483) (0.456, 0.485) 
HH over 35, no CH present  0.462 (0.441, 0.468) (0.438, 0.466) (0.438, 0.466)
At least one biological CH present 0.437 (0.431, 0.458) (0.432, 0.460) (0.432, 0.460)
HH older than SP, White HH  0.322 (0.309, 0.335) (0.308, 0.335) (0.306, 0.333) 
Adult female w/ at least one CH under 5  0.078 (0.070, 0.085) (0.068, 0.084) (0.067, 0.083)
White HH with Hisp origin  0.066 (0.064, 0.078) (0.064, 0.079) (0.064, 0.079)
Non-White CP, home owner  0.058 (0.050, 0.063) (0.048, 0.061) (0.048, 0.061) 
Two generations present, Black HH  0.057 (0.053, 0.066) (0.053, 0.066) (0.053, 0.067)
Black HH, home owner  0.052 (0.046, 0.058) (0.046, 0.059) (0.046, 0.059)
SP present, HH is Black  0.039 (0.032, 0.042) (0.032, 0.043) (0.032, 0.042) 
White-nonwhite CP  0.034 (0.029, 0.039) (0.032, 0.044) (0.032, 0.044)
Hisp HH over 50, home owner  0.029 (0.025, 0.034) (0.025, 0.035) (0.025, 0.035)
One grandchild present  0.028 (0.023, 0.033) (0.024, 0.034) (0.024, 0.034) 
Adult Black female w/ at least one CH under 18  0.027 (0.028, 0.038) (0.027, 0.037) (0.027, 0.037)
At least two generations present, Hisp CP  0.027 (0.022, 0.031) (0.022, 0.031) (0.022, 0.031)
Hisp CP with at least one biological CH  0.025 (0.020, 0.028) (0.019, 0.028) (0.019, 0.028) 
At least three generations present  0.023 (0.020, 0.028) (0.019, 0.028) (0.019, 0.028)
Only one parent  0.020 (0.016, 0.024) (0.016, 0.024) (0.016, 0.024)
At least one stepchild  0.019 (0.018, 0.026) (0.018, 0.027) (0.018, 0.027) 
Adult Hisp male w/ at least one CH under 10  0.018 (0.017, 0.025) (0.016, 0.025) (0.016, 0.025)
At least one adopted CH, White CP  0.008 (0.005, 0.010) (0.005, 0.010) (0.005, 0.010)
Black CP with at least two biological children  0.006 (0.003, 0.007) (0.003, 0.007) (0.003, 0.007) 
Black HH under 40, home owner  0.005 (0.005, 0.009) (0.005, 0.010) (0.005, 0.011)
Three generations present, White CP  0.005 (0.004, 0.008) (0.004, 0.010) (0.004, 0.009)
White HH under 25, home owner  0.003 (0.002, 0.005) (0.004, 0.009) (0.004, 0.009) 
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An optimisation algorithm applied to the one-dimensional 
stratification problem 

José André de Moura Brito, Tomás Moura da Veiga and Pedro Luis do Nascimento Silva1 

Abstract 

This paper presents a new algorithm to solve the one-dimensional optimal stratification problem, which reduces 
to just determining stratum boundaries. When the number of strata H and the total sample size n are fixed, the 
stratum boundaries are obtained by minimizing the variance of the estimator of a total for the stratification 
variable. This algorithm uses the Biased Random Key Genetic Algorithm (BRKGA) metaheuristic to search for 
the optimal solution. This metaheuristic has been shown to produce good quality solutions for many optimization 
problems in modest computing times. The algorithm is implemented in the R package stratbr available from 
CRAN (de Moura Brito, do Nascimento Silva and da Veiga, 2017a). Numerical results are provided for a set of 
27 populations, enabling comparison of the new algorithm with some competing approaches available in the 
literature. The algorithm outperforms simpler approximation-based approaches as well as a couple of other 
optimization-based approaches. It also matches the performance of the best available optimization-based 
approach due to Kozak (2004). Its main advantage over Kozak’s approach is the coupling of the optimal 
stratification with the optimal allocation proposed by de Moura Brito, do Nascimento Silva, Silva Semaan and 
Maculan (2015), thus ensuring that if the stratification bounds obtained achieve the global optimal, then the 
overall solution will be the global optimum for the stratification bounds and sample allocation. 

 
Key Words: Optimal stratification; Genetic algorithm; Integer programming; Nonlinear optimization; BRKGA 

Metaheuristic. 

 
 

1  Introduction 
 

Stratified sampling is a widely used approach to achieve efficiency in sampling designs. The substantial 

literature on optimal stratification (to be reviewed later in this paper) signals to both the importance of this 

topic for research and to its wide range of applications. Recently, Hidiroglou and Kozak (2017) compared 

optimization-based and approximate methods for one-dimensional stratification of skewed populations and 

concluded that optimization methods are superior and should be used in practice. 

In this paper, we propose applying a new optimisation algorithm to determine the stratum boundaries, 

which we coupled with an approach to obtain the globally optimal sample size allocation to the defined 

strata. The one-dimensional stratification problem is addressed using a global optimisation technique (a 

metaheuristic) called Biased Random Key Genetic Algorithm (BRKGA), proposed by Gonçalves and 

Resende (2011). This technique does not ensure achieving the global optimum for the stratum boundaries, 

but has been shown to produce good quality solutions for many optimization problems in modest computing 

times (see Gonçalves and Resende, 2004; Gonçalves, Mendes and Resende, 2005; Festa, 2013 and Oliveira, 

Chaves and Lorena, 2017).  

Our approach for sample allocation given a defined stratification (see de Moura Brito et al., 2015), 

namely a stratification by a specified variable and given number of strata, is based on an integer 

programming formulation, and always achieves the global optimum for either minimizing the total sample 
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size given precision constraints or minimizing variance for a fixed total sample size, while providing an 

exact integer sample allocation, and allowing the specification of minimum and maximum sample sizes per 

strata, as is often required in practical applications. The approach is implemented in the stratbr R package 

(see de Moura Brito et al., 2017a), thus providing a practical alternative to existing approximate methods, 

which it clearly outperforms in terms of efficiency. It also compares favourably with other optimization 

methods, which are not guaranteed to provide the optimal allocation given the stratification. 

We compared this new approach with methods proposed by Dalenius and Hodges (1959), Gunning and 

Horgan (2004), Kozak (2004, 2006), Keskintürk and Er (2007), and de Moura Brito, Silva Semaan, Fadel 

and Brito (2017b), using a set comprising 27 real and artificial survey populations. Our empirical study is 

much larger than that of Hidiroglou and Kozak (2017), who have used only two populations in their 

comparison. It is also larger than other studies in earlier literature. 

We have not considered, as suggested, comparing our approach with classification or regression trees or 

other machine learning algorithms that synthesise one or more covariates into groupings that can be used 

for strata. The main reason for this is that such methods do not consider the variance of the target sample 

estimator or the sample size given precision constraints as the criteria to optimize. Therefore, they cannot 

be expected to achieve the optimum for the problem we wish to address. In addition, for classification or 

regression trees the analyst must also specify a “response variable”, in addition to the predictors or auxiliary 

variables. In many typical sampling situations, the analyst will not have access to data on such a “response 

variable”, and must aim to minimize variance of the estimator for the total of the size or stratification 

variable instead (as is the case in most of the literature on this topic).  

Although we have addressed only the “one-dimensional stratification problem”, in that a single size 

measure is used for stratification, one could always use some predictive model or alternative variable 

reduction technique to summarise auxiliary variables or covariates into a single “ x ” or size variable to be 

used in our proposed approach. Nevertheless, our approach can easily be extended to address multivariate 

stratification coupled with optimum allocation given the nature of the components of the approach. 

The paper is divided as follows: Section 2 contains the key concepts of stratified sampling. Section 3 

contains a detailed description of the stratification problem. Section 4 presents the Biased Random Key 

Genetic Algorithm (BRKGA) and its novel implementation to resolve the stratification problem, in 

combination with the optimal allocation method proposed by de Moura Brito et al. (2015). Section 5 

contains the results of the application of the proposed method compared to those of five other methods 

available in the literature previously mentioned. Section 6 presents the conclusions of the comparative study. 

 
2  Stratified sampling 
 

In stratified sampling, the first step is to partition the elements of the target population into well defined, 

preferably homogeneous, mutually exclusive and exhaustive subgroups called strata. Each population 
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element (unit) is the focus of the survey and provider of the information which it aims to obtain. Survey 

units can be households, people, farms, business establishments or companies, etc. 

Stratified sampling is recommended in practice for several reasons: 

 It can improve precision of the overall population estimates for a fixed total cost; 

 It enables controlling sample sizes and precision of estimates for the strata, if required; 

 It may facilitate balancing workload distribution;  

 It may help reduce travelling costs between survey elements, if stratification includes geography. 

 
When the strata are formed such that the intra-stratum variability is small for a key set of variables, 

stratification is considered successful, since this enables achieving better precision for the estimates relative 

to other stratification schemes.  

Figure 2.1 presents the basic notation to be used in this paper. In stratified sampling, the population U  

is partitioned into 1H   nonempty subpopulations called strata (Lohr, 2010), of sizes 1 ,N  

2 , , , , .h HN N N   These subpopulations are non-overlapping and such that, when taken jointly, 

combine to form the full population, such that: 

 1 2 .HN N N N     (2.1) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Notation to be used in the paper. 
 

 1, 2, ,U N   Set of elements comprising the target population; 

N   Number of population elements, or population size; 

n   Number of elements in the sample, or sample size; 

1H    Total number of strata; 

h   Index for the strata; 

hU   Set of elements in stratum ,h  satisfying hU U  and ;hU    

hN   Number of population elements, or population size, in stratum ;h  

hs   Set of elements sampled in the thh  stratum ;h hs U   

hn   Number of sample elements, or sample size, in stratum ;h  

iy   Value of survey variable for population element   ;i i U  

ix   Value of stratification variable for population element   ;i i U  

h
h ii U

Y y


   Total of survey variable y  in stratum ;h  

h
h ii U

X x


   Total of stratification variable x  in stratum ;h  

h h hY Y N   Population mean of survey variable y  in stratum ;h  and 

h h hX X N   Population mean of stratification variable x  in stratum .h  
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Cochran (1977) lists the following factors which affect the efficiency of a stratified sampling design: 

choice of stratification variable(s); number of strata   ;H  delimitation of strata; total sample size   ;n  

allocation of the total sample to the strata; and selection method for sampling within strata. The strata are 

defined using one or more variables for which the values are known for each population element. In the 

sequence, samples are selected independently within each of the H  strata. Samples sizes in the strata are 

such that 1 2 .Hn n n n     

Stratified Simple Random Sampling (SSRS) corresponds to the case when sampling within each stratum 

is carried out using simple random sampling without replacement. Under SSRS, the Horvitz-Thompson 

(HT) estimator of the overall population total 
1

H

hh
Y Y


   is given by Cochran (1977) as: 

                                                              SSRS 1
ˆ H

h hh
Y N y


   (2.2) 

where 
h

h i hi s
y y n


   is the sample average for elements sampled in stratum .h  

The sampling Variance (Var) and Coefficient of Variation (CV) of the estimator SSRSŶ  are given 

respectively by: 

                                                        2
SSRS 1

ˆVar
H

h h h hy hh
Y N N n S n


   (2.3) 

                                                        SSRS SSRS
ˆ ˆCV VarY Y Y  (2.4) 

where    22 1
h

hy i h hi U
S y Y N


    is the population variance of the survey variable y  in stratum .h  

Analogous quantities are defined for the HT estimator for the total 
1

H

hh
X X


   of the stratification 

variable ,x  namely: 

                                                             SSRS 1
ˆ H

h hh
X N x


   (2.5) 

                                                       2
SSRS 1

ˆVar
H

h h h hx hh
X N N n S n


   (2.6) 

                                                       SSRS SSRS
ˆ ˆCV VarX X X  (2.7) 

where 
h

h i hi s
x x n


   is the sample average of x  for elements sampled in stratum ,h  and 2

hxS   

   2
1

h
i h hi U

x X N


   is the population variance of the variable x  in stratum .h  

 
3  The one-dimensional stratification problem 
 

Consider the population vector  1 2, , ,U NX x x x   corresponding to the stratification variable .x  

Without loss of generality, we assume that the population elements in U  are ordered by the stratification 

variable such that 1 2 .Nx x x    The stratum boundaries are used to define the H  strata according 

to the rule: 

1)  1 1 ;iU i U x b    
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2)  1h h i hU i U b x b     for 2, 3, , 1;h H   

3)  1 .H H iU i U b x    

 

The stratification problem corresponds to determining the cut-off points, i.e., the stratum boundaries 

1 2 1h Hb b b b        such that the variance (or equivalently the CV) of the estimator of total 

SSRSŶ  is minimised. In this section, we consider that the total number of strata H  is defined before applying 

the optimal stratification methods considered. 

In practice, the values of the survey variable y  are not available and hence the variance in expression 

(2.3) is not computable. A common approach is to minimise instead the variance (or CV) of the estimator 

SSRSX̂  for the total of the stratification variable .x  Several authors have developed methods that focus on 

this optimization problem, which from now on we call the one-dimensional “stratification problem”. We 

adopted the same approach here.  

Finding the boundary points that minimize the variance (2.6) or the CV (2.7) corresponds to a hard 

problem both from analytic and computational points of view. This is so because the integer population and 

sample sizes ( hN  and ,hn  respectively) depend in a nonlinear way on the stratum boundaries. According 

to de Moura Brito, Ochi, Montenegro and Maculan (2010a), depending on ,N ,H  and the number of 

distinct population x  values, the number of possible choices for the boundary points can be very large. 

In view of this difficulty, over the past decades, various methods were developed to search for the 

optimum stratum boundaries, aiming to provide at least solutions which correspond to local minima of good 

quality. 

Dalenius (1951) tackled the problem for the case 2H   by approximating the variance in (2.6) by 

ignoring the finite population correction, which is equivalent to assuming that the sampling within strata 

would have been simple random sampling with replacement. The approximate variance to be minimised is 

then given by: 

   2 2
SSRS 1

ˆVar .
H

h hx hh
X N S n


   (3.1) 

Under the Neyman allocation (Cochran, 1977) using the x  variable, and replacing the sample sizes hn  

in (3.1) by their theoretical values 
1

H

h h hx k kxk
n N S N S


   leads to the expression used by Dalenius 

(1951): 

         2

SSRS 1
ˆVar .

H

h hxh
X N S n


   (3.2) 

Dalenius and Hodges (1959) considered the case when 2,H   and offered an analytic solution which 

relied on approximating the distribution of the x  variable by its histogram with a moderate number of 

classes. Still considering the approximate variance and assuming Neyman’s allocation, Ekman (1959) 

provided a solution using a geometric approach to find the stratum boundaries. Hedlin (2000) further 

extended Ekman’s solution while retaining the original variance (2.6) as the function to be minimised, which 

he labelled the extended Ekman rule. 
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Hidiroglou (1986) proposed an approach which pre-specifies the required precision (CV) for the 

estimator of total, and which divides the population into two strata  2H   such that the total sample size 

n  is minimised. In this paper, the second stratum corresponds to a “take-all” or “certainty” stratum, where 

all elements are included in the sample with probability one  2 2 .n N  Lavallée and Hidiroglou (1988) 

generalized the approach to 2H   strata, while retaining the idea that the stratum containing the largest 

population units is to be sampled completely. Their approach relied on adopting a special type of allocation 

called Power Allocation (Bankier, 1988). More recently, Rivest (2002) further generalised the approach of 

Lavallée and Hidiroglou (1988) while considering that the target is minimising the variance for the estimator 

of a total of a model-based prediction of the survey variable ,y  instead of the stratification variable .x  

Gunning and Horgan (2004) proposed the so-called Geometric method for defining the stratum 

boundaries. This method assumes that the CVs of the stratification variable x  are approximately constant, 

and that the distribution of the stratification variable is approximately uniform within each stratum. Under 

these assumptions, the optimum stratum boundaries would form a Geometric progression, thus leading to a 

very simple analytic solution. 

Keskintürk and Er (2007) proposed an approach based on a global optimisation technique called Genetic 

Algorithms. Following a similar idea, de Moura Brito et al. (2017b) applied another global optimisation 

technique called GRASP to the stratification problem. Here we followed a route like Keskintürk and Er 

(2007), but have adopted an efficient choice of Genetic Algorithm, namely the Biased Random Key Genetic 

Algorithm (BRKGA), described in Section 4. 

Kozak (2004) proposed a method called random search, followed later by Kozak and Verma (2006), 

where this approach was compared to the Geometric method of Gunning and Horgan (2004). Khan, Nand 

and Ahmad (2008) used ideas of dynamic programming to develop an algorithm that determines the stratum 

boundaries considering that the stratification variable has either a Triangular or Normal distribution, and 

that sampling within strata is with replacement. De Moura Brito, Maculan, Lila and Montenegro (2010b) 

proposed an exact algorithm based on graph theory, where proportional allocation to the strata is assumed.  

Er (2011) compared the efficiency of several methods available in the literature, taking the Geometric 

approach of Gunning and Horgan (2004) as the initial solution. Kozak (2014) compared his random search 

with the Genetic Algorithm proposed by Keskintürk and Er (2007). Rao, Khan and Reddy (2014) developed 

a method that tackles the stratum boundary determination and stratum allocation problems simultaneously. 

Their algorithm relies on the assumption that the stratification variable follows a Pareto distribution. Our 

approach is more general and does not assume that the size variable follows a particular distribution. 

 
4  Biased Random-Key Genetic Algorithm 
 

The Biased Random-Key Genetic Algorithm (BRKGA, from now on), proposed by Gonçalves and 

Resende (2011), is a metaheuristic approach which has been applied to address several optimization 
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problems – see for example Festa (2013) and Oliveira et al. (2017). The principle behind this approach 

mimics the biologic theory of evolution of species.  

The algorithm starts with an initial “population” of feasible solutions to the target problem generated by 

a specified random mechanism. This population then evolves over successive iterations by preserving the 

best solutions available at each iteration (elite solutions), and by replacing the other (non-elite) solutions 

with solutions generated through random perturbation operations that mimic crossing and mutation in 

natural populations. Over the iterations, solutions are selected to be preserved or to evolve based on the 

value of the function to be optimized.  

In BRKGA, the candidate solutions are encoded, i.e., are represented by vectors where the components 

are numbers in the  0; 1  interval. Given an observed vector, a decoding procedure must be applied. The 

decoding procedure maps the value of a vector with a corresponding feasible solution of the target 

optimization problem. The decoding procedure is what connects BRKGA with the specific optimization 

problem to be addressed. Figure 4.1 displays the pseudo-code for a generic BRKGA algorithm. 

The approach is described and illustrated in detail in Section 4.1 using an example that considers the 

one-dimensional stratification problem and describes all the steps mentioned in Figure 4.1. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Pseudo-code for a BRKGA. 

 
4.1  BRKGA for the one-dimensional stratification problem 
 

First consider the population vector  1 2, , , ,U NX x x x   and derive the set  1 2, , , KC c c c   

containing the K  distinct values of x  observed in the population. For example, if {1, 3, 3, 5, 6,UX   

7, 7, 7, 8, 9, 10, 10, 11},  then  1, 3, 5, 6, 7, 8, 9, 10, 11 .C   When 100,K   compute the ten largest 

1) Generate the initial population composed of p  random vectors (keys) ,v  where each 

value is a random draw from the Uniform  0; 1  distribution. 

2) Apply the decoding procedure to each vector v  in the population, yielding p  feasible 

solutions to the optimization problem. 

3) Compute the value of the objective function for each solution in the population. 

4) Select the best  1e ep p p   solutions (designated elite) based on the values of the 

objective function and add them to the population that will be considered in the next 

iteration. 

5) Generate  1m mp p p   new random vectors as in step 1), called mutants, and add 

them to the population that will be considered in the next iteration. 

6) Generate the remaining  e mp p p   vectors, designated crossed, to complete the 

population that will be considered in the next iteration by crossing one of the ep  vectors 

corresponding to an elite solution with one of the  ep p  vectors corresponding to one 

of the non-elite solutions in the current iteration. 

7) Iterate from step 2) while the stopping criteria are not satisfied.  
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percentiles of x  to obtain the set  90 91 99 100, , , , .Q q q q q   When 100,K   compute the selected 

percentiles of x  to obtain the set  5 10 95 100, , , , .Q q q q q   The cut-off point of 100 for K  was chosen 

after some initial experimentation of the approach with some of the populations considered in the numerical 

experiments to be described in Section 5. The alternative definitions for the set Q  help with achieving larger 

diversity in the set of feasible solutions to be generated by the BRKGA.  

To apply BRKGA to the one-dimensional stratification problem, each solution is represented by a vector 

 1 , , Hv vv   with H  positions, where the first 1H   positions contain values between 0 and 1, and 

position H  contains the value of a percentile of the distribution of the stratification variable .x  

Then take minx  as the smallest value in ,C  and Hv  as an element selected at random from .Q  For the 

first iteration, sample the values in the first 1H   positions of each vector v  independently from the 

Uniform  0; 1  distribution.  

The decoding procedure to obtain a solution to the one-dimensional stratification problem from each 

vector v generated is defined as: 

  min min for 1, , 1.h h Hb x v v x h H      (4.1) 

After obtaining the 1H   values for ,hb  these must be sorted in increasing order, such that the elements 

of the resulting vector       1 2 1, , , Hb b b b   form the solution boundary points for the corresponding 

vector ,v  where  hb  is the thh  order statistic of the values 1 1, , Hb b   calculated using (4.1). 

To illustrate an example of decoding, suppose that 4,H  min 10,x  300,K  {200, 215,Q   

280.5, 300, 318, 400, 425, 478, 500, 510}  Consider also the vector  0.48, 0.35, 0.20v  generated as 

described above. Then it follows that:  1 10 0.48 200 10 ;b      2 10 0.35 200 10 ;b      and 

 3 10 0.20 200 10 .b      Then it follows, after sorting, that  48, 76.5, 101.2 .b  

Given the vector ,b  the values of hN  and 2
hxS  are easily obtained for each of the H  strata. The values 

of the sample sizes hn  for each of the strata are obtained by applying the approach for optimal allocation 

proposed by de Moura Brito et al. (2015). This approach computes the sample sizes hn  such that a weighted 

sum of variances (or CVs) of the estimators of totals of m  survey variables is minimized, while the total 

sample size n  is kept fixed.  

Since here we consider the variance of the estimator for the total of the stratification variable x  as the 

target for minimization, we set 1m   and use formulation (D) as provided in de Moura Brito et al. (2015) 

to resolve the one-dimensional optimal allocation problem taking equation (2.6) as the variance to be 

minimized. Note that the approach used provides the global optimum for the allocation problem. 

The algorithm then proceeds as indicated in Figure 4.1 by generating an initial set of p  vectors .v  In 

step 2, each of these vectors v  is decoded to obtain a feasible solution b  to the optimum stratification 

problem. In step 3, the optimum allocation corresponding to b  is obtained and the value of the objective 
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function is calculated. Steps 4 to 6 are then applied to obtain the next population of feasible solutions, and 

the process is repeated until the stopping criteria are satisfied. Step 4 identifies the ep  elite solutions and 

add these to the next population. In Step 5, mp  mutant solutions are generated and added to the next 

population. In Step 6,  e mp p p   crossed solutions are generated using the “uniform crossover” 

operator proposed by Spears and DeJong (1991) to produce a new vector v  from one of the ep  elite 

solutions and one of the current  e mp p p   non-elite solutions. The process is as follows: once the two 

vectors (say ev  and )nv  to cross are selected, an auxiliary random-key vector  av  is generated with 

independent draws from the Uniform  0; 1  distribution. Let 0.5cr   be a pre-specified probability that a 

value is copied from the elite vector .ev  Then the crossed vector cv  is formed by taking the values from 

ev  in the positions where the corresponding value in av  is less than cr  (equal to 0.7 in the example of 

Figure 4.2) and from nv  in all other positions. 

To produce each one of the  e mp p p   vectors for the next generation, the algorithm selects a vector 

ev  at random (using the sample function from R)  from the ep  elite vectors and another vector nv  from 

the ep p  non-elite vectors, and crosses these vectors. The selection of vectors from both subsets is done 

with replacement, implying that individual elite or non-elite vectors may be selected for crossing more 

than once. 

 
 

Vectors\positions 1 2 3 

v e  0.31 0.77 0.65 

v n  0.26 0.18 0.36 

v a  0.58 0.89 0.11 

v c  0.31 0.18 0.65 

 

Figure 4.2  Uniform crossing with 0.7.cr   

 
Now consider the example where 4,H  min 10,x  300,K  8,p  3,ep  3,mp  0.7cr   and 

 200, 215, 280.5, 300, 318, 400, 425, 478, 500, 510 .Q   Figure 4.3 illustrates the application of all the 

steps in BRKGA to the one-dimensional stratification problem, for two consecutive iterations of the 

algorithm. 

The BRKGA approach described here for the one-dimensional optimal stratification problem was 

implemented in the R package stratbr (see de Moura Brito et al., 2017a), which is available from CRAN. 

This package was used to obtain all the results presented in Section 5. 
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Figure 4.3  Illustration of BRKGA approach for optimal stratification. 
 
 
 

   
  xmin                    v (initial population)                          b1             b2                  b3                  cv                 cv                                          v                                                                         v (new population) 

   10                0.20      0.35      0.48      200                   48.0         76.5       101.2               0.30            0.09                    0.08     0.33     0.77     425                                               0.08     0.33     0.77     425 

   10                0.10      0.57      0.81      400                   49.0       232.3       325.9                0.10            0.10                    0.10     0.57     0.81     400                                               0.10     0.57     0.81     400 

   10                0.23      0.41      0.95      478                 117.6       201.9       454.6              0.15            0.12                    0.04     0.27     0.83     318                                               0.04     0.27     0.83     318 

   10                0.35      0.49      0.67      400                 146.5       201.1       271.3              0.28            0.15                    0.23     0.41     0.95     478                                               0.15     0.81     0.92     200 

   10                0.11      0.58      0.91      200                   30.9       120.2       182.9                0.43            0.28                    0.35     0.49     0.67     400                                               0.08     0.45     0.82     318 

   10                0.56      0.61      0.83      478                 272.1       295.5       398.4              0.57            0.30                    0.20     0.35     0.48     200                                               0.27     0.40     0.79     318 

   10                0.04      0.27      0.83      318                   22.3         93.2       265.6             0.12            0.43                   0.11     0.58     0.91     200                                                0.08     0.33     0.48     425 

   10                0.08      0.33      0.77      425                  43.2        147.0       329.6               0.09            0.57                    0.56     0.61     0.83     478                                               0.11     0.58     0.83     200 

 
                                                                                                                                                                                                            Crossover 

                                                                                                                                                                                   ve         0.08     0.33     0.77     425 

                                                                                                                                                                                   vn         0.20     0.35     0.48     200 

                                                                                                                                                                                   va         0.11     0.30     0.90     0.12 

 

                                                                                                                                                                                   ve         0.04     0.27     0.83     318 

                                                                                                                                                                                   vn         0.11     0.58     0.91     200 

                                                                                                                                                                                   va         0.77     0.90     0.40     0.81 

 
                               v (initial population)                         b1           b2                 b3                    cv                cv                                           v                                                                         v (new population) 

                         0.08      0.33      0.77      425                  43.2     147.0      329.6                 0.09              0.07                   0.15     0.81     0.92     200                                               0.15     0.81     0.92     200

                         0.10      0.57      0.81      400                  49.0     232.3      325.9                 0.10              0.09                   0.08     0.33     0.77     425                                               0.08     0.33     0.77     425 

                         0.04      0.27      0.83      318                  22.3       93.2      265.6                0.12              0.10                   0.10     0.57     0.81     400                                               0.10     0.57     0.81     400 

                         0.15      0.81      0.92      200                  38.5     163.9      184.8                0.07              0.12                   0.04     0.27     0.83     318                                               0.21     0.72     0.83     400 

                         0.08      0.45      0.82      318                  34.6     148.6      262.6                0.31              0.28                    0.27     0.40     0.79     318                                               0.05     0.36       0.9     478 

                         0.27      0.40      0.79      318                  93.2     133.2      253.3                0.28              0.31                   0.08     0.45     0.82     318                                                0.14     0.31     0.88    510 

                         0.08      0.33      0.48      425                  43.2     147.0      209.2                0.79              0.53                     0.11     0.58     0.83     200                                               0.04     0.57     0.83    400 

                         0.11      0.58      0.83      200                  30.9     120.2      167.7                0.53              0.79                    0.08     0.33     0.48     425                                               0.08     0.58     0.77    200 

 
                                                                                                                                                                                                           Crossover 
 

                                                                                                                                                                                   ve         0.10     0.57     0.81     400 

                                                                                                                                                                                   vn         0.04     0.27     0.83     318 

                                                                                                                                                                                   va         0.78     0.43     0.91     0.15 

 

                                                                                                                                                                                   ve         0.08     0.33     0.77     425 

                                                                                                                                                                                   vn         0.11     0.58     0.83     200 

                                                                                                                                                                                   va         0.23     0.88     0.40     0.84 

 
 
 
                                                                                                                                                               If stopping criterion is not reached 
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5  Computational results 
 

In this section, we present the results of application of six methods to solve the stratification problem, 

namely: Dalenius and Hodges (DH), Geometric (GH), Kozak (KO), Genetic Algorithm of Keskinturk and 

Er (KE), GRASP (GR) and the new BRKGA method described in Section 4 (BR). All experiments where 

carried out using R version 3.3.1. The methods DH, GH and KO are available from the R package 

stratification of Baillargeon and Rivest (2014) (version 2.2-5). With these methods, the Neyman sample 

allocation method was used. The KE method is available from the R package GA4Stratification of Er, 

Keskintürk and Daly (2010) (version 1.0). With this method, the maximum number of iterations considered 

was 10,000 and the values of the other parameters required were the same as those reported by Keskintürk 

and Er (2007), namely using 35p   candidate solutions in each population, a mutation rate of 15% and 

the sample allocation based also on the Genetic Algorithm. Both the GR and the BR methods were 

implemented in R by the authors, and the code is provided in package stratbr of de Moura Brito et al. 

(2017a) (version 1.2) available from CRAN. 

For the BR method, 100p   candidate solutions were considered in each iteration, with 20% of the 

solutions being made elite  20ep   and 30% of the solutions being mutant  30mp   in each iteration. 

The probability of copying a gene from the elite vector was set at 0.6.cr   The total number of iterations 

was set at 1,500. For the sample allocation, both the BR and the GR methods were coupled with the 

formulation proposed by de Moura Brito et al. (2015) which is available from the R package MultAlloc, also 

available from CRAN. 

To compare the relative efficiency of these methods, they were applied to 27 different populations. Some 

of these populations are available from the R packages stratification and GA4Stratification, and were 

previously used in other comparison studies such as Keskintürk and Er (2007), Er (2011), and 

de Moura Brito et al. (2017b). Appendix A contains brief descriptions of all these populations, including 

information on which variable was considered as the “ x  variable” in each population. Table 5.1 provides 

some summaries to describe these populations.  

The 27 populations considered here form a very diverse set, with total sizes varying from a few hundred 

(ME84 and P75 with 284N   are the smallest) to several thousand (Coffee with 18,570N   is the 

largest). In the size measure that matters most for efficiency of our optimization algorithm, namely the 

number K  of distinct values of the stratification variable, there’s also large variation (from 51K   for 

Kozak1 to 5,453K   to Kozak3). They also display wide variation in the asymmetry of the x  variable’s 

distributions, ranging from modestly negative (-0,70 for Beta103 to a substantial 40.04 for CensoCO). 

All the calculations for the computational experiment were performed using R in a computer with 24 

GB RAM, with 8 processors of 3.40 GHz (I7). Taking advantage of the multicore architecture in modern 

computers, the snowfall R package was used to parallelize the BRKGA algorithm. More specifically, at 

each iteration, the decoding procedure produces a set of solutions for the boundary points. These boundary 

points are then supplied to the MultAlloc package for optimum allocation, to obtain the sample sizes in each 

stratum, and then to compute the objective variance function. Since the computation time for this step is 
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impacted directly by the use of this global optimization formulation, the allocation and calculation of the 

objective function were parallelized. 

 
 
Table 5.1 
Summaries of the stratification variable for the 27 populations 
 

Populations N K Minimum Maximum Skewness

AgrMinas 844 226 5.00 47,800.00 7.32
BeefFarms 430 353 50.00 24,250.00 4.56
Beta103 1,000 1,000 357.98 985.96 -0.70
CensoCO 9,977 79 1.00 911.00 40.04
Chi5 1,000 1,000 0.06 23.43 1.40
Coffee 18,570 538 0.01 13,212.00 19.69
Debtors 3,369 1,129 40.00 28,000.00 6.44
HHinctot 16,025 224 1.00 6,900.00 2.71
Iso2004 487 487 6.36 1,044.66 10.03
Kozak1 4,000 51 72.00 3.00 1.40
Kozak3 2,000 581 2,793.00 6.00 3.55
Kozak4 10,000 5,453 74,400.00 62.00 4.20
ME84 284 264 173.00 47,074.00 8.64
MRTS 2,000 2,000 1.41 4,863.66 8.61

P100e10 1,000 1,000 73.56 127.32 -0.03

P75 284 68 4.00 671.00 8.43

Pop500 500 261 0.01 47,841.42 21.53

Pop800 800 402 0.01 4,735.10 22.13

pop1076 1,076 88 5.00 1,643.00 13.23

pop1616 1,616 165 5.00 2,618.00 11.09

pop2911 2,911 247 5.00 2,497.00 11.50

REV84 284 277 347.00 59,877.00 7.83

SugarCaneFarms 338 101 18.00 280.00 2.26

Swiss 2,896 881 0.00 3,634.00 2.73

USbanks 357 200 70.00 977.00 2.07

UScities 1,038 116 10.00 198.00 2.87
UScolleges 677 576 200.00 9,623.00 2.45

Note:  N is the total population size, and K is the number of unique values for the stratification variable. 

 
 

All six methods considered in the numerical experiment were applied to each of the 27 populations, for 

numbers of strata H  equal to 3, 4, 5 and 6. These values were used since they are often considered in 

applications, as well as in similar comparative studies available in the literature, such as Er (2011) and 

Gunning and Horgan (2004). We did not consider larger values for H  since the additional gains in 

efficiency for 6H   are modest. The sample size 100n   (i.e., fixed cost) was used, as in the numerical 

experiments of Er (2011) and Kozak and Verma (2006). 

To assess the efficiency of the methods, the CVs of the estimator for the total of the stratification variable 

x  were calculated for each population and number of strata, leading to 27 × 4 = 108 scenarios for each 
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method. CVs were obtained from equation (2.7) and multiplied by 100, to be presented as percentages. 

Table 5.2 provides the CVs attained by the six methods. The shaded cells indicate methods providing the 

best solution (minimum CV) for each of 108 scenarios. The NAs in these tables represent cases where 

solutions could not be obtained due to problems of the specific stratification method or with the 

corresponding allocation. 

Analyzing the results provided in Table 5.2, and in particular, the shaded cells, it is evident that BR has 

excellent performance when compared to the five competitors considered. This perception is reinforced by 

the plots in Figure 5.1, where BR was compared with all competitors. Points above the straight line represent 

scenarios where the method chosen for comparison is outperformed by BR. It is evident from these plots 

that the three best performing methods are GR, KO and BR. 

Table 5.3 provides the percentage of times that each method produced the best solution over the 108 

scenarios. Both BR and KO display performance which is superior to that of the other methods and have 

tied in the number of times that they have achieved the best solution. DH produced the best solution for only 

three of the 108 scenarios, and GH has never produced a best solution.  

The Geometric method GH, besides leading to high CVs, also often provided infeasible solutions, where 

the stratum limits lead to allocations where sample sizes were larger than the corresponding population 

sizes. This method also sometimes partitioned the population such that there were very few population 

elements in some strata. According to Gunning and Horgan (2004), and as noted by Keskintürk and Er 

(2007), since the interval widths increase geometrically, the GH method will not perform well when the 

stratification variable has small values, since this will lead to some narrow strata. This method is also not 

applicable when the smallest value in the stratification variable is zero. 

For most populations, the KE method has produced CVs close to those obtained by the KO, GR and BR 

methods, which are the most efficient in terms of computing time. Large variation on computing time was 

observed between different methods. The KE method showed the worst results in this criterion, having 

displayed computing times much larger than those of the competing methods. The KO method, on the other 

hand, was the fastest in terms of computing time, while at the same time often achieving the best possible 

precision (lowest CV). The BR method showed computing time in between those of the KO and KE 

methods. 

The graph in Figure 5.2 shows the percentages of times that each of the methods BR, KO, KE and GR 

produced the best solution, separated by number of strata. It shows a clear advantage of the BR method 

when compared to the KE and GR methods. When compared to KO, BR performed better for 3H   and 

6,H   while KO was the winner for 4H   and 5.H   GR performed as well as KO for 3H   and 

6,H   but was outperformed by both BR and KO for 4H   and 5.H   KE was the clear loser in this 

analysis, for any number of strata .H  

We have also searched for associations between performance and other potential drivers, such as the 

skewness or the size (N  or )K  of the populations, but have not found any meaningful association within 

our limited set of populations. 
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Table 5.2 
CVs for the estimator of total of the stratification variable by scenario 
 

Populations  H CVDH CVGH CVKO CVKE CVGR CVBR 

AgrMinas 3 4.158 7.187 4.050 4.089 4.050 4.050 
 4 2.714 4.965 2.643 2.811 2.645 2.645 
 5 2.325 3.828 1.945 2.262 1.945 1.945 
 6 1.821 2.975 1.593 1.932 1.580 1.580 
BeefFarms 3 2.758 2.491 1.875 2.086 1.875 1.875 
 4 1.853 1.825 1.188 1.557 1.188 1.188 
 5 1.455 1.369 0.902 1.280 0.902 0.902 
 6 1.148 1.167 0.726 0.990 0.726 0.726 
Beta103 3 0.561 0.810 0.560 0.560 0.559 0.559 
 4 0.413 0.579 0.410 0.408 0.410 0.410 
 5 0.337 0.500 0.329 0.329 0.329 0.329 
 6 0.280 0.418 0.276 0.275 0.277 0.276 
CensoCO 3 NA 4.839 4.334 4.336 4.334 4.334 
 4 NA 4.388 3.078 3.062 3.078 3.078 
 5 NA NA 2.401 2.435 2.401 2.401 
 6 NA NA 1.949 1.956 1.943 1.943 
Chi5 3 2.522 4.217 2.502 2.489 2.502 2.502 
 4 1.897 3.199 1.889 1.881 1.889 1.889 
 5 1.518 2.875 1.515 1.538 1.515 1.515 
 6 1.258 NA 1.248 1.251 1.248 1.248 
Coffe 3 10.049 12.598 6.906 6.876 6.906 6.906 
 4 NA 10.450 4.996 5.027 4.996 4.996 
 5 NA 8.124 3.877 3.939 3.877 3.877 
 6 NA 6.756 3.176 3.477 3.176 3.176 
Debtors 3 5.626 6.150 5.554 5.554 5.554 5.554 
 4 4.098 4.387 4.049 4.049 4.049 4.049 
 5 3.163 3.595 3.131 3.131 3.131 3.131 
 6 2.639 2.897 2.562 2.562 2.562 2.562 
HHinctot 3 3.206 5.106 3.184 3.184 3.184 3.184 
 4 2.436 4.542 2.429 2.430 2.429 2.429 
 5 1.993 4.225 1.973 1.979 1.973 1.973 
 6 1.676 3.794 1.629 1.629 1.629 1.629 
Iso2004 3 2.716 3.330 1.894 1.894 1.894 1.894 
 4 2.059 2.154 1.206 1.206 1.207 1.207 
 5 1.616 1.839 0.908 0.908 0.909 0.909 
 6 1.380 NA 0.702 0.703 0.704 0.703 
Kozak1 3 1.695 2.432 1.695 1.695 1.695 1.695 
 4 1.305 2.020 1.301 1.301 1.301 1.301 
 5 1.051 1.705 1.050 1.052 1.050 1.050 
 6 0.904 1.402 0.890 0.917 0.890 0.890 
Kozak3 3 3.673 5.049 3.663 3.659 3.663 3.663 
 4 2.733 3.980 2.723 2.724 2.723 2.723 
 5 2.208 3.199 2.178 2.231 2.178 2.178 
 6 1.823 2.733 1.817 1.827 1.819 1.817 
Kozak4 3 4.263 5.811 4.257 4.239 4.257 4.257 
 4 3.219 4.696 3.204 3.193 3.205 3.204 
 5 2.606 3.873 2.589 2.587 2.591 2.589 
 6 2.168 3.236 2.155 2.155 2.157 2.158 
ME84 3 1.703 2.527 1.296 1.296 1.296 1.296 
 4 1.402 1.642 0.870 0.870 0.870 0.870 
 5 1.050 1.549 0.661 0.661 0.661 0.661 
 6 0.907 1.213 0.521 0.577 0.521 0.521 
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Table 5.2(continued) 
CVs for the estimator of total of the stratification variable by scenario 
 

Populations  H CVDH CVGH CVKO CVKE CVGR CVBR 

MRTS 3 4.363 5.829 4.167 4.167 4.167 4.167 
 4 3.406 5.259 2.960 2.960 2.961 2.960 
 5 2.498 4.015 2.297 2.485 2.297 2.297 
 6 2.167 3.445 1.836 1.836 1.838 1.836 
P100e10 3 0.375 0.444 0.373 0.371 0.373 0.373 
 4 0.295 0.346 0.294 0.294 0.294 0.294 
 5 0.236 0.288 0.236 0.236 0.236 0.236 
 6 0.198 0.242 0.196 0.198 0.196 0.196 
P75 3 1.635 2.592 1.459 1.459 1.459 1.459 
 4 1.415 1.798 0.966 0.966 0.966 0.966 
 5 1.047 1.563 0.829 0.835 0.713 0.713 
 6 0.896 1.250 0.769 0.553 0.552 0.552 
pop1076 3 4.597 3.715 2.437 2.775 2.437 2.437 
 4 NA 2.853 1.624 2.164 1.624 1.624 
 5 NA 2.168 1.204 1.869 1.203 1.203 
 6 NA 1.827 0.953 1.549 0.951 0.951 
pop1616 3 4.989 4.318 3.898 3.921 3.898 3.898 
 4 3.823 3.267 2.564 2.716 2.564 2.564 
 5 3.187 2.508 1.882 2.183 1.882 1.882 
 6 NA 2.050 1.527 1.962 1.496 1.496 
pop2911 3 5.925 5.935 5.605 5.569 5.605 5.605 
 4 4.070 3.992 3.807 3.807 3.807 3.807 
 5 3.262 3.183 2.918 2.943 2.918 2.918 
 6 2.632 2.649 2.281 2.418 2.281 2.281 
Pop500 3 NA 0.678 0.092 0.127 0.092 0.092 
 4 NA 0.178 0.059 0.082 0.060 0.060 
 5 NA 0.194 0.043 0.059 0.045 0.046 
 6 NA 0.117 0.033 0.046 0.036 0.037 
Pop800 3 NA 3.133 1.555 2.448 1.555 1.555 
 4 NA 2.755 0.996 1.511 0.996 0.996 
 5 NA 1.620 0.701 1.261 0.702 0.702 
 6 NA 1.436 0.546 0.823 0.550 0.548 
REV84 3 1.901 2.777 1.614 1.776 1.614 1.614 
 4 1.500 1.975 1.120 1.120 1.120 1.120 
 5 1.235 1.700 0.835 0.836 0.835 0.835 
 6 0.881 1.315 0.666 0.666 0.667 0.666 
SugarCaneFarms 3 1.640 1.929 1.627 1.628 1.627 1.627 
 4 1.152 1.440 1.118 1.122 1.118 1.118 
 5 0.912 1.186 0.839 0.858 0.839 0.839 
 6 0.707 1.041 0.691 0.732 0.682 0.682 
Swiss 3 3.726 NA 3.682 3.683 3.690 3.682 
 4 2.830 NA 2.781 2.781 2.787 2.781 
 5 2.246 NA 2.227 2.549 2.232 2.228 
 6 1.905 NA 1.860 1.880 1.864 1.860 
USbanks 3 1.861 1.843 1.802 1.802 1.802 1.802 
 4 1.364 1.417 1.270 1.270 1.270 1.270 
 5 1.118 1.079 0.861 0.861 0.861 0.861 
 6 0.794 0.850 0.718 0.710 0.710 0.710 
UScities 3 2.738 2.705 2.655 2.687 2.655 2.655 
 4 1.972 1.951 1.927 1.934 1.927 1.927 
 5 1.483 1.451 1.436 1.437 1.436 1.436 
 6 1.260 1.305 1.228 1.214 1.209 1.209 
UScolleges 3 2.928 3.169 2.749 2.749 2.749 2.749 
 4 2.106 2.185 2.018 2.018 2.018 2.018 
 5 1.707 1.838 1.606 1.607 1.607 1.606 
 6 1.486 1.488 1.323 1.323 1.323 1.323 
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Figure 5.1 Comparing CVs of total estimators under alternative stratification methods, for all populations and 
numbers of strata   .H  

 
 
Table 5.3 
Percentage of times that method produced the best solution 
 

Method % Times best 

DH 2.8 

GH 0.0 

KE 42.6 

GR 71.3 

KO 78.7 

BR 78.7 
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Figure 5.2 Percentage of best solutions yielded by method and number of strata   .H  

 
6  Conclusions 
 

As already mentioned, stratified sampling is a very important idea in survey sampling design, in helping 

to achieve improved precision of survey estimates for a given sample size or survey budget. This is 

particularly true for skewed or heterogeneous populations often found in business or establishment surveys. 

The potential gains due to stratification are strongly dependent on the delimitation of the strata and on the 

allocation of the sample to the strata, given a specified stratification variable and sample selection method. 

The present paper presented a new optimization method for the stratification problem based on the 

Biased Random-Key Genetic Algorithm (BRKGA). Our approach (named BR) couples BRKGA for the 

definition of the stratum boundaries with the formulation for optimum sample allocation proposed in 

de Moura Brito et al. (2015), which is efficient with respect to computing time for large populations 

(large ).N  

The results reported here for the comparison of this approach with the five competitors considered 

suggest that BR offers a good alternative for addressing the stratification and allocation problems in a 

practical situation. 

Our approach can be easily generalised to cases where the stratification variable x  is not “measured”, 

but instead represents a summary of several covariates in the form of a predicted y  variable. The same is 

true for generalising to two or more numeric x  variables, which can be easily accomplished by changing 

the decoding function used to retrieve feasible solutions from the BRKGA algorithm with the R package 

stratbr (see de Moura Brito et al., 2017a). 

Future work will focus on developing and evaluating alternative decoding procedures which may be 

used in BR, aiming to produce solutions with superior quality when compared to those produced using the 

decoding procedure considered here. This research may also focus on solving the dual problem of 

minimising the total sample size for a specified precision, such as did Lavallée and Hidiroglou (1988). 
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Finally, additional empirical work may focus on considering varying sample sizes across the various study 

populations, as did Kozak (2004) and Gunning and Horgan (2004). 

 

Appendix A 
 

Table A1 
Description of the 27 populations considered in the numerical experiment 
 

Population Description 
AgrMinas Agricultural production of municipalities in Minas Gerais State, Brazil, from 2006 Agricultural Census. 

Stratification variable: planted area. 
BeefFarms Australian beef farms, stratified into seven industrial regions, as considered by (Chambers and Dunstan, 1986). 

Stratification variable: farm size. 
Beta103 Simulated population generated from a Beta distribution with parameters 10a   and 3b   as considered by (Keskintürk 

and Er, 2007). 
Chi5 Simulated population generated from a Chi-square distribution with 5df   as considered by (Keskintürk and Er, 2007).  
Coffee Coffee farms in the state of Paraná, Brazil, in the 1996 Agricultural Census, as considered by (de Moura Brito et al., 2015). 

Stratification variable: number of coffee trees. 
CensoCO Data from the 2012 school census in Brazil for the mid-west region. 

Stratification variable: number of classrooms. 
Debtors Population of debtors of an Irish firm as considered by (Er, 2011).  

Stratification variable: Irish debtors’ stated liabilities. 
HHinctot Population of gross family income values (income before tax) from a Family Expenditure Survey 2001 carried out by 

Statistics Canada, as considered by (Er, 2011). 
Iso2004 Data on net sales of 487 Turkish Industrial Enterprises out of the 500 largest enterprises in 2004, obtained by the Istanbul 

Industrial Chamber, as considered by (Keskintürk and Er, 2007). 
Stratification variable: net sales. 

Kozak1, 
Kozak3,  
Kozak4 

Populations considered by (Kozak and Verma, 2006). 
Stratification variable: were generated based on following formula:  exp ,X Z  where Z  is a realization of a normal 
random variable. 

ME84 This data is from Särndal, Swensson and Wretman (1992) as considered by (Er, 2011). 
Stratification variable: number of municipal employees in 1984. 

MRTS Population simulated from the Monthly Survey on Sales in Retail Trade from Statistics Canada, as considered by (Er, 2011).  
Stratification variable: the size measure used for Canadian retailers in the Monthly Retail Trade Survey (MRTS) carried out 
by Statistics Canada. This size measure is created using a combination of independent survey data and three administrative 
variables from the corporation tax return. 

P75 Population in thousands of the 284 Swedish municipalities in 1975, as considered by (Er, 2011). 
Stratification variable: population in thousands. 

P100e10 Population simulated from a Normal distribution with 100   and 10   as considered by (Keskintürk and Er, 2007). 
pop1076 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
pop1616 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
pop2911 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
Pop500 Population with 500N   simulated from the Log-Normal Distribution zX e  where Z  is Normal with 4   and 

2 2.7   as considered by (Hedlin, 2000). 
Pop800 Population with 800N   simulated from the Log-Normal Distribution zX e  where Z  is Normal with 4   and 

2 2.7   as considered by (Hedlin, 2000). 
REV84 Value of buildings in million Swedish Crown for the 284 Swedish municipalities in 1984, as considered by (Er, 2011). 

Stratification variable: the revenues from the 1985 municipal taxation. 
SugarCaneFarms Australian sugar cane farms as considered by (Chambers and Dunstan, 1986). 

Stratification variable: total cane harvested. 
USbanks Assets in millions of US Dollars for the large north American commercial banks, as considered by (Er, 2011). 

Stratification variable: the resources in millions of dollars of large commercial US banks. 
UScities Population in thousands for North American cities in 1940, as considered by (Er, 2011). 

Stratification variable: population in thousands. 
UScolleges Numbers of students in four-year US faculties in 1952-1953 as considered by (Er, 2011).  

Stratification variable: number of students. 
Swiss Data on Swiss municipalities in 2003, as available from the SamplingStrata package in R.  

Stratification variable: area under cultivation. 
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An assessment of accuracy improvement  
by adaptive survey design 

Carl-Erik Särndal and Peter Lundquist1 

Abstract 

High nonresponse occurs in many sample surveys today, including important surveys carried out by government 
statistical agencies. An adaptive data collection can be advantageous in those conditions: Lower nonresponse 
bias in survey estimates can be gained, up to a point, by producing a well-balanced set of respondents. Auxiliary 
variables serve a twofold purpose: Used in the estimation phase, through calibrated adjustment weighting, they 
reduce, but do not entirely remove, the bias. In the preceding adaptive data collection phase, auxiliary variables 
also play a major role: They are instrumental in reducing the imbalance in the ultimate set of respondents. For 
such combined use of auxiliary variables, the deviation of the calibrated estimate from the unbiased estimate 
(under full response) is studied in the article. We show that this deviation is a sum of two components. The 
reducible component can be decreased through adaptive data collection, all the way to zero if perfectly balanced 
response is realized with respect to a chosen auxiliary vector. By contrast, the resisting component changes little 
or not at all by a better balanced response; it represents a part of the deviation that adaptive design does not get 
rid of. The relative size of the former component is an indicator of the potential payoff from an adaptive survey 
design. 

 
Key Words: Nonresponse; Adaptive survey design; Response imbalance; Bias reduction. 

 
 

1  Introduction 
 

Many important probability sampling surveys have to close the data collection period by declaring a 

considerable rate of nonresponse. At the estimation stage that follows, the best possible estimates must 

nevertheless be produced, based on the respondents that a less-than-ideal data collection has delivered. 

Whatever the techniques used, nonresponse bias remains; it must be kept as low as possible. Responsive ‒ 

or adaptive ‒ data survey design for household and other surveys aims at an active control of survey errors 

and costs, in the planning and data collection phases. One objective is to get a final set of respondents likely 

to improve prospects for more accurate survey estimates. The concept responsive survey design is due to 

Groves and Heeringa (2006). 

The data collection in a large survey typically extends over a period of time, days or weeks, during which 

contact attempts are made with the units in the selected probability sample. For some units, a fruitful result 

is obtained after a few attempts. For other units, despite repeated calls, refusal or non-contact will lead, 

finally, to declaring them nonrespondents. The background in this article is not that the nonresponse rate 

will ultimately be reduced to single-digit levels. More realistically, it is that high nonresponse, of the order 

30% to 50%, will prevail when the data collection period must necessarily close. Best possible estimates 

must still be produced. 

To improve data collection, a variety of techniques have been suggested and tried: case prioritization, 

stopping rules, balancing, and others. Case prioritization is considered, for example, in Peytchev, Riley, 
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Rosen, Murphy and Lindblad (2010), Beaumont, Haziza and Bocci (2014). Stopping rules are discussed in 

Rao, Glickman and Glynn (2008), and in Wagner and Raghunathan (2010). 

Variation between demographic subgroup response rates has been considered in seeking evidence of 

bias, as in Peytcheva and Groves (2009). Andridge and Little (2011) propose proxy pattern-mixture analysis 

as a method to assess non-response bias. The nonresponse bias cannot be quantified, but indicators of the 

risk of bias can be used, as discussed in Wagner (2012), Kreuter, Olson, Wagner, Yan, Ezzati-Rice, Casas-

Cordero, Lemay, Peytchev, Groves and Raghunathan (2010), Lohr, Riddles and Morganstein (2016), 

Nishimura, Wagner and Elliott (2016). 

Representativeness and balance are terms now frequently used in reference to the set of responding units. 

Indicators of representativeness, including the R-indicator based on estimated response probabilities, have 

been developed, see Schouten, Cobben and Bethlehem (2009), Bethlehem, Cobben and Schouten (2011), 

and Schouten, Shlomo and Skinner (2011), Bianchi, Shlomo, Schouten, da Silva and Skinner (2016). 

Balancing is a procedure practiced in data collection, to get in the end a well representative set of 

respondents. The key is to make auxiliary variable means for the respondents agree closely with 

corresponding means computable for the probability sample, or known for the population. This lies behind 

the response imbalance statistic IMB, used in Särndal (2011a), Lundquist and Särndal (2013). Methods are 

available for reducing IMB in adaptive data collection, see for example Särndal and Lundquist (2014). 

“Nonresponse adjustment” is an often used term suggesting that an ideal estimator that would perform 

to satisfaction under full response will need, under nonresponse, “repair” to be a credible surrogate. The 

goal of the adjustment is to keep the harm - the nonresponse bias - within limits. Current practice in statistical 

agencies is to use auxiliary variables in the estimation, in computing calibrated nonresponse adjustment 

weights. Reduced variance and reduced nonresponse bias can be realized. A number of recent contributions, 

some of them review articles, discuss weighting procedures for the estimation phase, for example, Brick 

(2013), Fattorini, Franceschi and Maffei (2013), Haziza and Lesage (2016), Little and Vartivarian (2005), 

Tourangeau, Brick, Lohr and Li (2017). The selection of auxiliary variables for weighting procedures is 

considered in Särndal and Lundström (2005, 2008, 2010), Särndal (2011b), but is not a topic in the present 

article. 

It is evident that better balanced response could significantly improve accuracy if the estimator in use is 

rudimentary, such as the response mean expanded by the population size. But the starting point here is that 

auxiliary variables are used extensively at the estimation stage, and that their use also in adaptive data 

collection is an added feature that may pay off. Such combined role of auxiliary variables is potentially 

important. 

The question whether balancing the response will significantly reduce nonresponse bias has been raised 

in the literature, see, for example, Schouten, Cobben, Lundquist and Wagner (2014), Lundquist and Särndal 

(2013), Särndal and Lundquist (2014), Särndal, Lumiste and Traat (2016). These references point to some, 

although not strongly pronounced, accuracy improvement from balancing. Gains have appeared modest 

rather than strong or convincing. Much of the evidence is empirical. The theoretical reasons behind a 
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“limited success” of adaptive data collection need to be better understood. This article attempts to throw 

more light on the question: Can a use of auxiliary variables in an adaptive data collection contribute further 

to improving the estimation, given that such variables are in any case used in a calibrated weighting at the 

estimation stage? The question is important for research on adaptive survey design. These designs must 

sustain a clear promise for improved estimates. If little or no improvement is forthcoming, under fairly 

general conditions, a part of the motivation for adaptive design seems to be lost. We inquire into the 

theoretical reasons for a certain accuracy gain from better balanced response, more precisely why one might 

expect “a marginal advantage” from adaptive design, that is, a further improvement of estimates by putting 

auxiliary variables to work also at the data collection stage. It is perfectly legitimate to re-utilize auxiliary 

variables at the estimation stage.  

The contents are arranged as follows: Notation is introduced (Section 2) for three important population 

subsets: the probability sample, the response set and its complement, the nonresponse set. The role of the 

auxiliary vector (x -vector) is emphasized, particularly its role in the response imbalance statistic denoted 

IMB. To estimate the population y -total, we consider the estimator based on weights calibrated on the 

auxiliary vector. Its deviation from the unbiased estimator – which is hypothetical because requiring full 

response ‒ is an indicator of bias that we examine in depth. 

We decompose the deviation of the calibration estimator (Section 3) into two terms, the reducible term 

and the resisting term. The former can be reduced by adaptive design; in fact, all the way to zero if perfect 

balance could be realized. The resisting term, by contrast, is little affected by adaptive data collection, hence 

suggesting that adaptive design is at best a partial remedy for getting rid of nonresponse bias. The special 

case where the x -vector codes a set of mutually exhaustive and exhaustive sample groups is particularly 

important (Section 4). Mathematically more tractable, it gives a clearer understanding of the two terms of 

the decomposition. Empirical evidence using Swedish Labour Force Survey data (Section 5) illustrates and 

confirms the theoretical conclusions about the two terms. Final comments (Section 6) terminate the article. 

Proofs are presented in an Appendix. 

 
2  Probability sampling followed by nonresponse 
 
2.1  Population, sample, response set, nonresponse set 
 

We denote by  1, 2, , , ,U k N    a finite population of size N  from which a probability sample 

s  has been drawn, giving unit k  the inclusion probability k  and the sampling weight 1 .k kd   Let r  

be the response set, that is, the set of units for which the value ky  of the survey variable -y categorical or 

continuous – is observed. We thus have observations ky  for ,k r s U    but they are missing for the 

nonresponse set denoted .nr s r   Using the observed ky  we wish to estimate the population -y total 

.kU
Y y   A summation 

k A  over a set of units k A U   is written simply as .
A  

That “non-respondents are not like respondents” is a well-established fact, and neither group is 

sufficiently like the whole sample. This causes bias in estimates of the total .Y  This article focuses on the 
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contrast between response set and nonresponse set, something that has been fruitful earlier, in concepts such 

as the fraction of missing information. 

Adaptive data collection is a dynamic process. The response and nonresponse sets, and associated 

quantities such as means and regression coefficients, are temporarily defined. A more complete notation 

would distinguish response sets  ,ar 1, 2, ,a    in hierarchical sequence, 

      1 2 ar r r       

Here  ar  is the set of units having delivered the value ky  after a  call attempts (or, alternatively, after 

a  data collection days), and    a anr s r   is the corresponding nonresponse set. But to simplify, we let 

r  refer to any one of the increasingly larger response sets. Tools for data collection, such as Statistics 

Sweden’s WinDATI system, allow us to record all contact attempt and to intervene and redirect the data 

inflow, so as to get in the end a better balanced final response set. 

The response rate and corresponding non-response rate (both d -weighted) are 

 ; 1 .k k k kr s nr s
P d d Q P d d         

Further notation for response, nonresponse and full sample is given for the auxiliary vector x  in 

Section 2.2, for the survey variable y  and for the regression vector of y  on x  in Section 2.3. 

 
2.2  Auxiliary vector and response imbalance 
 

An auxiliary vector x  is chosen following a structured selection of auxiliary variables from a supply of 

such variables. In the Scandinavian countries, the supply is vast, from administrative sources, in surveys of 

individuals and households. Much can be said about principles, or “attempts at optimality”, that might guide 

this choice, but this selection procedure is not a topic in this article. 

There is a designated auxiliary vector x  of dimension 1.J   Its value kx  is assumed known for all 

units .k s  (The case where the population total of kx  is known is not considered.) In an important special 

case, x  is a group vector of dimension ,J  of the form  0, , 1, , 0 ,k
x    that is, with 1J   entries 

“0” and a single entry “1” to identify the group that contains unit .k  The groups are non-overlapping and 

exhaustive; the group vector codes J  properties of the units. For example, two education categories crossed 

with three income categories gives 2 3 6J     groups. But categorical x -variables used in the vector 

x  need not all be fully crossed; in many applications they are not. 

We use vectors x  with a property that brings mathematical convenience in many derivations: A vector 

μ  not depending on k  exists such that  

 1 for all .k k μ x  (2.1) 

This is satisfied by a majority of x -vectors of interest, or can be made to hold. For example, if there is 

a single continuous auxiliary variable ,x  and  1, ,k kx x  then  1, 0 μ  satisfies the requirement. In 
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the group vector case, the requirement is satisfied by  1, , 1, , 1 .μ    For an example where x  is 

categorical but not a group vector, suppose two Education categories are crossed with three Income 

categories and that Gender is added to the vector kx  as a univariate 0/1 variable, then the dimension is

6 1 7,J     the number of distinct values kx  is 6 2 12,   and  1, 1, 1, 1, 1, 1, 0 μ  satisfies the 

requirement (2.1). 

The (d -weighted) x -vector means – all computable – are 

               ; ; .r k k k nr k k k s k k kr r nr nr s s
d d d d d d       x x x x x x  (2.2) 

We need the second order moments; J J  computable matrices assumed non-singular: 

               ; ; .r k k k k nr k k k k s k k k kr r nr nr s s
d d d d d d          Σ Σ Σx x x x x x  (2.3) 

The imbalance (IMB) of the response is computed on the auxiliary vector values kx  known for ,k s  

see Särndal (2011a). It is a measure of the contrast between response and full sample, or alternatively 

between response and nonresponse. For given vector x  and sample ,s  the imbalance is defined as 

                                                  2 1IMB .r s s r sP   Σx x x x   

A more telling notation would be  IMB ,r sx  but for simplicity we use just IMB. Because 

   1 ,r s r nrP   x x x x  we can express IMB as a contrast between response and nonresponse: 

       2 1IMB 1 .r nr s r nrP P    Σx x x x  (2.4) 

An objective for an adaptive data collection design is to create a final response set r  with low IMB, for 

the given probability sample .s  

The dimension and the composition of the x -vector are important determinants of the IMB-value. A 

property of IMB, for fixed r  and ,s  is that it increases when we extend a given x -vector by adding more 

x -variables to it. The increase reflects the intuition that it is harder to make a higher number of x -variable 

means come close. The trivial x -vector, 1k x  for all ,k  gives IMB 0,  but it is of virtually no interest 

in practice. We have  0 IMB 1 0.25P P     for any ,s  any ,r  and any x -vector. Those are broad 

conditions; for most survey data sets, the computed IMB-value is much below the upper bound, often in the 

range 0.01 to 0.05. 

 
2.3  The survey variable and its regression on x 
 

We turn to the survey variable .y  Its value ky  is observed for k r  so linear regression fit of y  on x  

can be carried out for the set .r  Although not feasible in a survey with nonresponse, a linear regression fit 

of y  on x  also exists, conceptually, for nr s r   and for .s  Fitted on the response ,r  the linear regression 

coefficient vector (by d -weighted least squares) is   1
.r k k k k k kr r

d d y


  b x x x  Analogously, the 
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other two regression fits give regression vectors nrb  and .sb  Expressed with the second-order moment x -

matrices in (2.3), the three regression vectors are 

      1 1 1; ; .r r k k k k nr nr k k k k s s k k k kr r nr nr s s
d y d d y d d y d         Σ Σ Σb x b x b x  (2.5) 

The y -means are 

      ; ; .r k k k nr k k k s k k kr r nr nr s s
y d y d y d y d y d y d          

The following properties hold as a result of (2.1): 

 ; ; .r r r nr nr nr s s sy y y     x b x b x b  (2.6) 

A rudimentary estimator, under nonresponse, of the population total k UU
Y y N y   uses straight 

expansion (EXP) of the response mean: 

                                               EXP
ˆ ˆ ˆ ,k k k rr r

Y N d y d N y     

where ˆ .ks
N d   In EXP

ˆ ,Y  the weighting is uniform, without any use of auxiliary information. The bias 

can be high. A use of the auxiliary values kx  known for k s  is usually an improvement; k ks
d x  is a 

known and unbiased (Horvitz-Thompson) estimator of the population total ,kU x  so we seek weights 

k kd w  to satisfy the calibration equation .k k k k kr s
d w d x x  A solution (not a unique one) is 

                                                      
1

11 .k k k k k k k s r ks r
w d d P


    x x x x x Σ x   

The resulting linear calibration (CAL) estimator of kU
Y y   is CAL

ˆ ,k k kr
Y d w y   or equivalently 

 CAL
ˆ ˆ .s rY N x b   

A reason why we expect CALŶ  to be less biased than EXPŶ  – especially when y  and x  are well related – 

is that the weights k kd w  must respect the constraint of an unbiased computable quantity, ,k ks
d x  on the 

right hand side of the calibration equation. But despite the adjustment weighting, CALŶ  has non-negligible, 

possibly considerable, remaining bias. 

As a benchmark we use the unbiased estimator of Y  requiring full (FUL) response – therefore 

hypothetical under nonresponse – namely, the Horwitz-Thompson estimator  

 FUL
ˆ .k k ss

Y d y N y    

We refer to the three estimators types as EXP, CAL and FUL. In fact, CAL represents a family of 

estimators, corresponding to all possible choices of x -vector. For a given suitable x -vector, we shall 

closely examine the CAL deviation CAL ,  defined as the difference between the biased CAL and the 

unbiased FUL, scaled by dividing by the (estimated if necessary) population size: 

  CAL FUL CAL
ˆ ˆ ˆ ,Y Y N     
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where 

  CAL .s r s s r sy      x b x b b  (2.7) 

Deviation is not bias. The deviation CAL  is an outcome for a response set r  from a specific sample .s  

On the other hand, the bias of the CAL estimator is the expected value of CAL  over all r  from a given ,s  

and over all s  from .U  If a response r  with zero deviation CAL  could be realized whatever the sample 

,s  then the CAL estimator would have zero bias, because it is then always equal to the unbiased Horvitz-

Thompson estimator. But to get zero deviation, by adaptive data collection or in some other way, is 

unrealistic in practice. Nevertheless, it makes good sense to attempt to make the deviation small for the 

given sample ,s  since it suggests coming closer to the unbiased estimate. One can say that to get unbiased 

estimation is not the objective, because impossible when there is nonresponse, but a realistic objective is to 

reduce deviation from the unbiased estimate. 

 
3  Analyzing the deviation from unbiased estimation 
 
3.1  Decomposing the CAL deviation 
 

We decompose the CAL deviation,  CAL ,s r s   x b b  in order to better understand its behaviour 

when improved balance is gained by adaptive data collection. We may anticipate that CAL  is reduced, if 

not to zero so at least to a degree, and under conditions that we seek to identify. There are no immediately 

apparent signs that  s r s x b b  would be reduced when rx  draws closer to the fixed .sx  A more in-depth 

analysis is needed to explain a reduction in CAL ,  if any. 

When the chosen x -vector is of fairly high dimension, the perfect balance r sx x  (and therefore 

IMB 0)  is hard to achieve in a data collection; one can strive to come close. Some insight into the nature 

of CAL  is nevertheless gained by setting ;r sx x  using (2.6) we then have 

                                         CAL 1 0,s r s r r s r s r nry y y P y y            x b b x b  (3.1) 

                          CAL FUL CAL EXP FUL
ˆ ˆ ˆ ˆ ˆ ˆ .r sY Y N N y y Y Y         

Hence, the perfect balance, ,r sx x  does not reduce CAL  to zero; it gives CAL EXP
ˆ ˆ ˆ .rY Y N y   This 

latter equation seems a paradox at first, because CALŶ  is supposed to be better than the rudimentary EXP
ˆ .Y  

But we find that under perfect balance they are equal. The paradox is resolved by noting that r sy y  is 

likely to be smaller, even considerably so, when the response r  is made to be perfectly balanced on x  – in 

that respect closer to s  – than when it is not. And it is not true that auxiliary information is not used; such 

information is precisely what it takes to get the perfect balance. 

Empirical evidence on the relationship between CAL  and IMB was given in Särndal and Lundquist 

(2014). For the survey data analyzed in that article, CAL  drops significantly when IMB is reduced but does 
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not approach zero when IMB tends to zero. These empirical results suggest that CAL  levels out at a certain 

non-zero value. 

Under perfect balance, the deviation (3.1) has the same expression,    CAL 1 ,r nrP y y     for any 

x -vector. But its value is not the same, because the set of units in a perfectly balanced response r  will be 

different from one x -vector to the next. For given x -vector, the deviation increases with the rate of 

nonresponse 1 P  and with the divergence r nry y  between response and nonresponse y -means. Perfect 

balance and therefore IMB 0  hold in particular for the trivial x -vector of no interest in practice, 1k x  

for all ;k  in that case the formula    CAL 1 r nrP y y     is a reminder of an elementary but often cited 

note on the biasing effect of nonresponse: Already Cochran (1977, page 361) gives an analogous expression 

for the bias of the response set mean, in the setting of a population modeled to consist of a response stratum 

(units responding with probability one) and nonresponse stratum (units responding with probability zero). 

The message is: Bias increases with the rate of nonresponse and with the separation between response and 

nonresponse means. 

We seek to decompose  CAL s r s   x b b  into two components such that one of them is reducible to 

zero under the perfect balance .r sx x  Several splits may meet this “null requirement” on one of the two 

terms. Särndal and Lundquist (2017) examine one such split, CAL ,r re u    where re   

 k k k r r sr r
d e d     x b b  is the mean, over the response ,r  of the residuals from the regression of 

y  on x  fitted on the sample ,s ,k k k se y  x b  and ru  is the remainder: r r re u     

    .r s r s
  x x b b  These authors call re  the regression inconsistency, to express that the regression 

model for the full sample fails – or is inconsistent – when applied to the response: The residuals ke  have 

zero mean, 0,se   over the sample ,s  but non-zero mean, 0,re   over the response .r  The inconsistency 

is a (not surprising) result of “missing not at random”. 

We have 0ru   under the perfect balance ,r sx x  so then CAL .re   Särndal and Lundquist (2017) 

give empirical evidence that when the imbalance IMB is reduced through adaptive data collection, both 

CAL  and re  are reduced, neither of them to zero, and that the ratio CALre   tends slowly toward 1 when 

IMB approaches zero. 

 
3.2  Contrasting the response with the nonresponse 
 

Some insight is gained by seeking a decomposition of  CAL s r s   x b b  so that a first term remains 

roughly constant when the imbalance is reduced, while a second term tends to zero in that process. Such a 

decomposition would thus isolate a part of the deviation that is untouched by adaptive design and indicate 

why adaptive design is at best “partially successful” for bias removal. The decomposition in Result 3.1 is 

driven by a wish to contrast the response set r  with the nonresponse set .nr s r   The notation is given 

in (2.2) for the x -means and in (2.5) for the regression vectors. 

Result 3.1. The CAL deviation  CAL s r s   x b b  has the decomposition CAL 1 2D D    where 

          1 21 ; 1 .s r nr r nr r nrD P D P P         x b b x x b b   
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Equivalent expressions are 

        CAL 21 ; .nr r nr s r r nrP D P        x b b x x b b   

The Appendix, part 1, shows how the components 1D  and 2D  are derived from the definition (2.7) of 

CAL .  The result invites several comments: 

1. Balancing the response during data collection can bring rx  close to sx  and thus a reduction of 

both IMB and 2D  toward zero. Under the perfect balance ,r sx x 2 0D   but 1 0.D   

2. To get 1 0D   would require .r nrb b  This does not happen even under perfect balance. The 

sample s  and its mean sx  are fixed. To eliminate the term 1D  seems out of reach. But does a 

“better composition” of the response set r  – closeness of rx  to sx  and lower IMB – have at 

least some favourable influence on the difference r nrb b  and therefore on 1?D  
 

Simple general answers are hard to obtain. Intuitively, a transfer of some units, during data collection, 

from nonresponse nr s r   to response r  suggests that r nrb b  is not much affected, leaving 1D  rather 

constant. This becomes more explicit when x  is a group vector, that is, of the form  0, , 1, , 0 ;k
x    

see Section 4. We shall call 2D  the reducible term and 1D  the resisting term of the deviation 

CAL 1 2 .D D    It should be noted that here we consider a fixed choice of x -vector. Changing that vector 

may of course have a certain effect both on 1D  and on 2 .D  

 
4  The group vector case 
 

4.1  The terms of the decomposition 
 

We consider the important case of a group vector,  0, , 1, , 0 .k
x    In practice, its dimension J  

is often considerable, 30 or more, as when several categorical x -variables are fully crossed. The diagonal 

form of matrices requiring inversion in (2.5) brings considerable simplification. For 1, 2, , ,j J   denote 

by js  the subset of the sample s  that falls in group .j  Its proportion of the sample is .
j

j k ks s
W d d    

The response set in js  is denoted ;jr  the nonresponse set is .j j jnr s r   The group j  nonresponse rate 

is 1 1 ;
j j j j

j k k k k jnr s r s
Q d d d d P         the overall rate is 

1
1 .

J

j jj
Q W Q P


    

The imbalance becomes a variance of group response rates, see, for example, Särndal (2011a), 

    2 2

1 1

IMB .
J J

j j j j
j j

W Q Q W P P
 

       

The y -means are ;
j j j

r k k kr r
y d y d   ;

j j j
nr k k knr nr

y d y d   .
j j j

s k k ks s
y d y d    

The -J dimensional column vector r nrb b  has elements ,
j jj r nry y   1, 2, , .j J   We call j  

the group j  divergence, namely, between response y -mean and nonresponse y -mean. The calibration 

estimator is CAL 1
ˆ ˆ ,

j

J

j rj
Y N y


   where ˆ ,

j
j ks

N d   and the unbiased benchmark estimator is 

FUL 1
ˆ ˆ ,

j

J

j sj
Y N y


   so 
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    CAL CAL FUL
1 1

ˆ ˆ ˆ .
j j

J J

j r s j j j
j j

Y Y N W y y W Q 
 

         

Straightforward application of Result 3.1 to the group vector case gives the following Result 4.1. 
 

Result 4.1. When x  is a group vector of dimension ,J  0, , 1, , 0 ,k
x    the terms of the 

decomposition in Result 3.1 take the form 

  1 2 CAL 1 2
1 1 1

; ; ,
J J J

j j j j j j j j
j j j

D Q W D W Q Q D D W Q  
  

           

where ,
j jj r nry y    and 

j j
j k knr s

Q d d    and 
1

J

j jj
Q W Q


   are, respectively, the group j  

nonresponse rate and the overall nonresponse rate.  

To what degree can adaptive data collection and better balanced response r  improve accuracy and 

reduce the deviation CAL 1 2 ?D D    In the discussion that follows, “reduction” should be understood as 

“reduction in absolute value”, “smaller” as “smaller in absolute value”, because CAL  and its components 

can have either sign. 

In an adaptive data collection acting on an x -vector that codes quite many groups, it is hard to arrive at 

the perfect balance where jQ Q  for every group ,j  and IMB = 0. But it may be possible to bring all jQ  

in fairly close agreement with the overall nonresponse rate ;Q  then both IMB and 2D  may come close to 

zero. We should think in terms of a scenario where an actual data collection, obeying a predefined protocol 

that remains unchanged to the end, is compared with alternative data collections that strive actively, through 

interventions, to end in a response with low imbalance. This is the format for the empirical validation (in 

Section 5), based on an important Statistics Sweden survey: There is a response set as actually recorded in 

the survey, and several alternative response sets are derived by experimental interventions in the actual 

response to get successively lower imbalance. 

We address the following issues about the terms in Result 4.1: 

(a) When the nonresponse differentials jQ Q  move closer to zero, so that IMB is reduced, the 

term  2 1

J

j j jj
D W Q Q 


   tends to be reduced, possibly to near zero. The prospect is quite 

different for 1 1
.

J

j jj
D Q W 


   A priori it is not excluded that the divergences j  will be 

somewhat reduced in the process. If this were to happen in a number of groups, then 1D  might 

also be reduced. But under certain conditions, a great change in 1D  is unlikely; we expect 1D  to 

be little affected by a reduced IMB. We justify this first by a model assisted theoretical argument 

in Section 4.6, then observe it empirically with actual survey data in Section 5. 

(b) It is not evident that 1D  and 2D  always have the same sign. When they do, an obtainable 

reduction of 2D  brings a reduced deviation CAL 1 2 ,D D    thus an improved accuracy. Under 

what conditions do they have the same sign? 

(c) When 1D  and 2D  have the same sign and 1D  stays roughly constant when IMB is reduced, then 

any reduction of CAL 1 2D D    comes from a reduction of 2 ;D  the relative size of the two 
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terms then determines whether such gain by adaptive design is considerable or just modest or 

even trivial. 

 
4.2  Within-group correlation between response and survey variable 
 

Response and survey variable y  are correlated, in the whole sample ,s  as within any sample group .js  

This unavoidable consequence of “missing not at random” is a key to interpreting 1 2,D D  and their sum 

CAL .  In group ,j  let j  be the coefficient of correlation between response indicator ( 1ki i   for ,jk r  

0ki   for )jk nr  and survey variable .y  This j  has a simple relation, through a multiplicative factor, 

to the group divergence :
j jj r nry y    

  1 ,j j j j yjP P S    (4.1) 

where    
1 2

2
jj j

yj k k k ss s
S d d y y



    is the y -variance in group .j  The expression (4.1) follows 

(see Appendix, part 2) from the customary definition of correlation coefficient as “covariance divided by 

the product of the two standard deviations”,   .j iyj ij yjS S S   

In the special case where y  is dichotomous 0 1  (as when 1ky   if k  is “Employed”, 0ky   

otherwise), then 
j j j

s k k ks s
y d y d    is a proportion, namely, the (design weighted) proportion of 

“1”  in group j  (the employment rate in group ),j  so the within-group y -variance is  2 1 .
j jyj s sS y y   

 
4.3  Analysis of the resisting term 
 

We now further examine the behavior of 1D  and 2D  for the group vector case in Result 4.1. Their 

(relative) sizes depend on several factors. The resisting term 1 1

J

j jj
D Q W 


   depends on the sizes and 

the distribution over the J  groups of the divergences ,
j jj r nry y    or, in an alternative view, of the 

within-group correlations  1 .j j j j yjP P S    

In a typical survey setting, a look at the distribution of ,j 1, , ,j J   where J  may be 30 or more, 

will typically reveal a mixture of positive and negative values. There may be “critical groups” with 

uncharacteristically large divergence ,j  of the same sign, be it positive or negative. Such j  are influential 

for the (weighted) mean 
1

J

j jj
W 


   and therefore for 1 .D Q  The majority of the j  may be quite 

small, although non-zero. 
 

Example 4.1. Consider y   Employed ( 1ky   if unit k  is employed, 0ky   if not). Positive within-

group correlation j  between Employed and Response ( 1ki   for ,jk r 0ki   for )jk nr  may be 

expected for groups of persons with one or more of characteristics such as male, young, low education 

and/or foreign origin. Such groups tend to be low (comparatively speaking) both on Response and on 

Employed. Alternatively expressed, employment rate is higher among respondents than among non-

respondents, thus j  positive. On the other hand, groups with characteristics such as middle aged, well 

educated and/or home owner tend to be high on both Response and Employed, so j  is likely to be positive 

for those groups as well. Another y -variable which may have a similar pattern is Income: In some sample 
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groups, Income may be higher for respondents than for non-respondents, so j  again positive. Thus for 

both y -variables, several distinctly positive and influential j  may make 
1

J

j jj
W 


   and 1D Q   

positive. This is confirmed in Section 5 for Swedish Labour Force Survey data. However in other countries, 

a variable such as Income may behave differently: In some groups, income may instead be higher for non-

respondents than for respondents, making j  negative, as when wealthy or high income persons tend to 

respond relatively less. This illustrates the difficulty in anticipating the sign of the group divergences for 

some survey variables. 

 
4.4  Analysis of the reducible term 
 

We can write the reducible term as    2 1
.

J

j j jj
D W Q Q  


    It is the covariance between 

nonresponse 1j jQ P   and divergence .
j jj r nry y    Here 2D  is a covariance across groups, 

1, , ,j J   whereas the divergence j  given in (4.1) reflects covariance within group j  between 

response indicator ki  and survey variable .ky  It is hard to draw general conclusions about the size of 2D  

and whether or not it has the same sign as 1.D  It depends on a number of factors. 
 

Example 4.1, continued. As argued in Example 4.1, a number of positive divergences j  are likely to 

occur for y   Employed ( 1ky   if k  is Employed, = 0 if not), for example, for groups characterized by 

male, young and/or low education. Then 1 1

J

j jj
D Q Q W 


    may be distinctly positive. But whether 

high nonresponse rate jQ  tends to go together with high divergence ,j  so as to make the covariance 2D  

also positive, this is less evident. It may happen for variables such as Employed and Income; it is so for the 

Swedish data in Section 5.  

 
4.5  Do the two terms have same sign? 
 

General conclusions about the signs of 1D  and 2D  do not seem possible. Too many factors are involved, 

the population, the survey design, the particular survey variable ,y  and others. When 1D  and 2D  have the 

same sign, a reduction of 2D  toward zero can give a (perhaps considerably) reduced deviation

CAL 1 2 .D D    On the other hand, if the terms are of opposite sign, they counteract each other; striving 

for low imbalance and low 2D  may not reduce CAL 1 2 .D D    In this undesirable and perhaps rare 

situation, attempts at balancing the response – reducing 2D   would defeat the purpose of achieving a lower 

deviation CAL ;  it may get larger, not smaller. Let us examine this “same sign issue”. 

Example 4.1 and its continuation in Section 4.4 outlined a situation, for the y -variables Employed and 

Income, where the mean 
1

J

j jj
W 


   and the covariance   21

J

j j jj
W Q Q D


   are likely to have 

the same sign, so that 1D Q  and 2D  have the same sign. But more generally, opposite signs are not 

excluded. An example is when uncharacteristically low nonresponse, 0,jQ Q   happens in influential 

groups with distinctly positive divergence .j  This may cause 2D  to be negative, while 1D  is positive. 

Then the two terms counteract each other. A positive prospect remains, however, when the two terms have 

the same sign: We can reduce 2D  to low levels by making all group nonresponse rates nearly jQ  equal. 
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Then, supposing that 1D  changes little, as under conditions suggested below in Section 4.6, a considerable 

reduction of the deviation CAL  can take place. These findings are summarized as follows. 
 

Proposition 4.1. For the group vector case, suppose that the mean divergence 
1

J

j jj
W 


   and the 

covariance  2 1

J

j j jj
D W Q Q 


   have the same sign, say positive. Then 1D Q  and 2D  are 

positive terms in the deviation CAL 1 2 1
.

J

j j jj
D D W Q 


      An adaptive data collection that reduces 

the imbalance   2

1
IMB

J

j jj
W Q Q


   will reduce 2D  (to zero if IMB = 0), whereas the resisting term 

1D  is likely to change little. 

The choice of x -vector, that is, the choice of variables entering into it and its dimension, can have 

important effects on 1D  and 2 .D  Suppose we double the number of groups coded by the group vector, as 

when 38 2J    already existing groups (obtained by crossing three dichotomous x -variables) are 

doubled in number to 416 2 ,J    by complete crossing on a fourth dichotomous x -variable. A certain 

skewness in the distribution of the divergences ,
j jj r nry y   1, , ,j J   is likely to persist. For a fixed 

response ,r 1D  and 2D  may be reduced by extending the x -vector. The empirical evidence in Section 5 

throws some light on this question. 

 
4.6  Insensitivity of group divergences 
 

For the group vector case in Result 4.1, the resisting term is 1 ,D Q  where 
1

J

j jj
W 


   is a 

weighted mean of the divergences ,j 1, , .j J   We would like to know more about how the j  evolve 

in a data collection that may extend, in a large survey, over a period of time. 

An adaptive data collection is monitored during the period. Assessment and modification of protocol 

and emphasis may take place, at one or more intervention points. For example, units whose computed 

response propensity is seen to be low, at a given point, may become henceforth specially targeted, so as to 

boost their response propensity towards an overall mean propensity. Some so far non-responding units 

become converted into respondents; their response status is changing. 

In the group vector case, the sample group js  consists, at a given point in the data collection period, of 

a certain response set and a corresponding nonresponse set. Contact attempts continue with units having not 

yet answered; a change in response status occurs for some units in .js  A few more become respondents, 

causing a certain change in the divergence .j  Under certain conditions, however, j  may be little affected. 

If this were to hold for most or all groups, 1D  would change little. Let us examine this possibility.  

That j  would change little only cannot be observed in a real survey, because ky  is missing for the 

nonresponse, but it can be made plausible by a model for response status change. We consider models where 

units within one and the same group are exchangeable or substitutable for one another, with respect to 

response status: At a given point in the data collection, all units are considered alike in regard to response 

status change; transfer from nonresponse into response, or vice versa, is equally probable for all units. 

Such a model can be justified for a sufficiently detailed breakdown of the sample s  into small and 

homogenous groups ,js  such that the units in one and the same group share important characteristics. It 



330 Särndal and Lundquist: An assessment of accuracy improvement by adaptive survey design 
 

 
Statistics Canada, Catalogue No. 12-001-X 

would be unrealistic in a large heterogeneous group with a mixture of units very different in regard to age, 

gender, income, education and other important aspects. In a heterogeneous group, some units have high 

conversion probability, others are unlikely to become converted. For example, if a group contains both older, 

well-educated persons and younger, less educated persons, conversion probability may be high for the 

former subgroup, considerably lower for the latter. 

At a certain point in the data collection, let us consider two models for response status change in a sample 

group .js  We assume for simplicity that s  is a simple random sample from ,U  of size ,N  so the sampling 

weights are constant, kd N n  for all .k  
 

Model 4.1. Suppose transfer takes place, in the group ,js  from the nonresponse set j j jnr s r   to the 

response set jr  (a conversion) in such a way that all transfer sets j jtr nr  of fixed size jq  are equally 

likely to occur. 

In this model, jnr  and jr  are fixed sets with respective sizes j jn m  and ,jm  while jtr  is a simple 

random selection of jq  non-respondents. Any particular transfer set jtr  of jq  units can get converted, and 

with equal probability. Every unit in the nonresponse set jnr  has the same conversion probability,

  .j j jq n m  

Before transfer, the divergence in group j  is .
j jj r nry y    After transfer, indicated by a star *  in 

the indices, the new divergence is * * * .
j jj r nry y    Its expected value under Model 1 satisfies 

   * * ,j j j jP E P   (4.2) 

where the new group response rate is  * .j j j j j j jP m q n m n P     The proof is given in the 

Appendix, part 3. If the group response rate change is small, as when jq  is small compared with ,jn  then

* ,j jP P  and the transfer may bring little change to the divergence. Its new value * j  is just marginally 

smaller, in expectation, than the before-transfer value .j  

In the empirical Section 5, we experiment with response sets that get smaller instead of larger. Model 

4.2 deals with a transfer in that direction, and leads to a similar conclusion. 
 

Model 4.2. Suppose a transfer takes place within group j  from the response set jr  to the nonresponse set 

j j jnr s r   in such a way that all transfer sets j jtr r  of fixed size jq  are equally likely to occur.  

A derivation analogous to the one that gave (4.2) shows that  

  * * .j j j jQ E Q   (4.3) 

The new (higher) nonresponse rate is  * 1 1 .j j j j j j jQ m q n m n Q       The new divergence 

* j  is just slightly smaller in expected value, when jq  is small compared with .jn  The proof is analogous 

to that of (4.2). 

The results (4.2) and (4.3) state that if it does not matter which particular units in group j  change their 

response status, then the divergence j  stays nearly the same, in expectation. But the assumption in 
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Models 4.1 and 4.2 of equally probable transfer sets is hard or impossible to substantiate in practice. It would 

be hard to specify a vector  0, , 1, , 0k
x    such that the groups coded by the vector will obey the 

models. We cannot claim “truth” of these models, only suggest that they may be plausible under a well-

diversified grouping of the sample. 

 
5  Empirical evidence 
 

The empirical work reported in this section illustrates some of the theory in earlier sections. We used 

survey data from Statistics Sweden’s Labour Force Survey (LFS) in its 2012 edition. Results are given in 

Tables 5.1 to 5.4. 

We created the LFS2012 data set by combining the 12 wave-one samples in 2012. The monthly first-

wave size counts approximately 2,650 units (persons). This LFS2012 data set is treated as a simple random 

sample s  of size n   32,265. Response or nonresponse in the actual data collection is recorded and 

available for all those units. The response rate in the actual data collection was 70.6%. The data and the 

construction of the experimental response sets in the tables are described in further detail in Särndal and 

Lundquist (2017). 

In analyzing the LFS2012 data set, we used different x -vectors obtained by crossing binary x -variables: 

Educ, equal to 1 for a person with high education, 0 otherwise; Owner, equal to 1 for an owner of his/her 

place of residence, 0 otherwise; Origin, equal to 1 for person born in Sweden, 0 otherwise; Civil, equal to 1 

for married or widower, 0 otherwise; Gender, equal to 1 for male, 0 otherwise. Results are presented here 

for two x -vectors. 

The x -vector in Tables 5.1 and 5.3 represents the crossing of the first three binary variables: 1 x x

(Educ   Owner   Origin); its dimension, equal to the number of groups, is 32 8.J    The x -vector in 

Tables 5.2 and 5.4 was obtained crossing also by the binary Civil: 2 x x  (Educ   Owner   Origin   

Civil), of dimension 42 16.J    

In this experimental study, we used two y -variables, Employed and Income. Both are register variables; 

with values ky  available for all units .k s  They are thus “pseudo -y variables” rather than real survey 

y -variables. Knowing ky  for k s  allows us to compute regression coefficients and y -means both for 

the response and for the nonresponse. The y -variable is Employed in Table 5.1 (with 1 )x x  and in 

Table 5.2 (with 2 ).x x  Employed is binary, with value 1ky   if k  is an employed person, zero 

otherwise. The y -variable is Income in Table 5.3 (with 1 )x x  and in Table 5.4 (with 2 ).x x  Income 

is a continuous register variable, available from the Swedish tax register. We standardized Income to have 

zero mean and unit variance over .s  Considerable variability and skewness of Income creates some volatility 

in the results. One individual ky -value can have considerable impact within a smallish group, as compared 

with the more stable performance of the 0 1  y -variable Employed. 

The four rows of Tables 5.1 to 5.4 refer to a series of four different response sets. The important feature 

is that they are, by construction, sets with progressively lower IMB. The first, Act, is the response set 
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recorded in the actual 2012 Labour Force Survey data collection for the 32,265 units (persons). The last 

three response sets, A65, A63, A60, taken from Särndal and Lundquist (2017), are constructed from Act by 

the threshold method to have successively lower imbalance IMB.  

To illustrate, the response set A65 was created from Act by dropping, at each of a sequence of 

intervention points, those responding units in Act whose computed response propensity exceeds the 

threshold 0.65. This tends to even out differences in response propensity, so this construction reduces IMB, 

and the overall response rate P  drops somewhat. The response sets denoted A63 and A60 were obtained by 

setting the threshold at 0.63 and 0.60, respectively; IMB and P  are again reduced. 

The table columns show: Response rate ,P  imbalance IMB (multiplied by 102), the components 1D  and 

2D  of the deviation CAL 1 2D D    (all three multiplied by 102), the 2D  proportion of CAL ,  

2 2 CALProp 100 / ,D D    and finally the 1D  size relative,  1 1 1Rel mean ,D D D  where mean  1D  

is the arithmetic mean of the four table values of 1.D  We use 1Rel D  to see if it is near one for all rows, in 

line with the contention that 1D  is little affected by a reduced imbalance IMB. 

The results in Tables 5.1 to 5.4 prompt the following observations, of which the second and third are 

particularly interesting, in that they confirm what theory in earlier sections suggests, namely that when IMB 

is reduced, 2PropD  drops quite distinctly, whereas 1Rel D  stays very close to one. 

1. In all four tables, 1D  and 2D  have the same sign. Both are positive, and the reduced IMB (from 

first to fourth row) brings a reduction in CAL 1 2 ,D D    due almost entirely to the drop in 2 .D  

2. In each table, the relatives 1Rel D  are not far from 1. Thus 1D  is remarkably constant over the 

four rows (response sets), thus insensitive to the reduced IMB. 

3. In each table, 2D  and 2PropD  are decreasing over the four rows, as theory makes us expect. In 

fact, 2PropD  tends to zero with IMB. The effect of the y -variable is important; 2PropD  is 

considerably greater for Income than for Employed. 

4. The change of x -vector is an important influence on 1 ,D  for both y -variables. Going from the 

smaller 1x x  (Tables 5.1 and 5.3) to the more extensive 2x x  (Tables 5.2 and 5.4) brings 

considerable reduction in 1 ,D  whereas 2D  changes very little. 
 

We also examined the distribution of the J  group divergences ,j 1, , ,j J   for the vectors 1x  

(with 8),J  2x  (with 16)J   and 3 x  (Educ   Owner   Origin   Civil   Gender) (with 32).J   

For both Employed and for Income, and for all four response sets, there are, not unexpectedly, a few large 

positive j  and a certain skewness in the distribution. For both variables, 
1

J

j jj
W 


   is clearly 

positive. That is, on average over the groups, y -means are, for these data, higher for respondents than for 

non-respondents. It is a feature of those particular y -variables. 

For 3 ,x  a plot of the 32 divergences j  against the nonresponse differential jQ Q  shows a majority 

of points in the vicinity of zero on both axes, and scattered values in the four quadrants of the plot. The plot 

does suggest a positive, although not very pronounced, correlation between j  and ,jQ Q  which is what 

makes the covariance term 2D  positive. 
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Table 5.1 
Survey variable y  Employed; x -vector: (Educ   Owner   Origin). Rows: Four response sets. Columns: 
Response rate ,P  imbalance IMB (multiplied by 102), components 1D  and 2D  of CAL 1 2D D    (all three 
multiplied by 102), 2Prop D  and 1Rel D  
 

Resp set P  IMB 
1D  2D  CAL  2Prop D  1Rel D  

Act 0.706 0.608 0.558 0.151 0.709 21.3 0.96 
A65 0.659 0.135 0.586 0.098 0.684 14.2 1.01 
A63 0.648 0.113 0.596 0.086 0.682 12.6 1.03 
A60 0.625 0.062 0.579 0.058 0.637   9.3 1.00 

 
 

Table 5.2 
Survey variable y  Employed; x -vector: (Educ   Owner   Origin   Civil). Rows: Four response sets. 
Columns: Response rate ,P  imbalance IMB (multiplied by 102), components 1D  and 2D  of CAL 1 2D D    
(all three multiplied by 102), 2Prop D  and 1Rel D  
 

Resp set P  IMB 
1D  2D  CAL  2Prop D  1Rel D  

Act 0.706 0.672 0.459 0.153 0.612 25.0 0.92 
A65 0.659 0.165 0.515 0.101 0.616 16.4 1.03 
A63 0.648 0.142 0.524 0.083 0.607 13.7 1.05 
A60 0.625 0.088 0.493 0.067 0.560 12.0 0.99 

 
 

Table 5.3 
Survey variable y  Income; x -vector: (Educ   Owner   Origin). Rows: Four response sets. Columns: 
Response rate ,P  imbalance IMB (multiplied by 102), components 1D  and 2D  of CAL 1 2D D    (all three 
multiplied by 102), 2Prop D  and 1Rel D  
 

Resp set P  IMB 
1D  2D  CAL  2Prop D  1Rel D  

Act 0.706 0.608 0.668 0.648 1.316 49.2 1.26 
A65 0.659 0.135 0.479 0.261 0.740 35.3 0.90 
A63 0.648 0.113 0.449 0.250 0.699 35.8 0.84 
A60 0.625 0.062 0.530 0.169 0.699 24.2 1.00 

 

 
Table 5.4 
Survey variable y  Income; x -vector: (Educ   Owner   Origin   Civil). Rows: Four response sets. Columns: 
Response rate ,P  imbalance IMB (multiplied by 102), components 1D  and 2D  of CAL 1 2D D    (all three 
multiplied by 102), 2Prop D  and 1Rel D  
 

Resp set P  IMB 
1D  2D  CAL  2Prop D  1Rel D  

Act 0.706 0.672 0.324 0.639 0.963 66.4 0.98 
A65 0.659 0.165 0.327 0.247 0.574 43.0 0.99 
A63 0.648 0.142 0.313 0.232 0.545 42.6 0.95 
A60 0.625 0.088 0.355 0.166 0.521 31.9 1.08 
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6  Concluding comments 
 

Behind this article lies the question: If calibrated weighting adjustment at the estimation stage removes 

some of the nonresponse bias in the estimates, why cannot a use of auxiliary variables also in a preceding 

adaptive data collection remove the rest of the bias? Grounds for believing so may be that after an adaptive 

data collection, one can have a final set of respondents that is in so many respects a copy of the selected (but 

nonresponse ridden) probability sample that no appreciable bias should remain. We have examined the 

calibrated weighting estimator and its deviation CAL  from the unbiased estimator requiring full response. 

It is a theoretical examination, because in a real survey with nonresponse, the unbiased (Horvitz-Thompson) 

estimator is not available. 

Respondents generally differ systematically from non-respondents. With this difference in mind, we 

were able to write CAL  as a sum of a resisting term 1D  and a reducible term 2 .D  For a sample divided 

into subgroups, the reducible term 2D  is determined by the covariance (over the groups) between group 

nonresponse rate and within-group correlation between Response and y -variable. Thus 2D  can be reduced 

to zero if all group nonresponse rates can be made equal in an adaptive data collection. But adaptive data 

collection does not get rid of the resisting term 1.D  This is in one sense a sobering message: The deviation 

from the unbiased estimate is not eliminated. But on the other hand, adaptive data collection can promise a 

better starting point for the estimation phase beginning after a terminated data collection. 

 
Appendix 
 
Part 1. Derivation of the decomposition CAL 1 2D D    in Result 3.1. By definition CAL   

 s r s s r sy    x b b x b  by a use of (2.6). Substitute  1s r nrP P  x x x  and s ry P y   

   1 1 .nr r r nr nrP y P P     x b x b  This gives    CAL 1 .nr r nrP    x b b  Finally, substitute nr x  

 s r nrP x x x  to arrive at the terms 1D  and 2D  in Result 3.1. That the two expressions for 2D  are 

equivalent follows from    1 .r nr r sP   x x x x  
 

Part 2. Derivation of the within-group correlation coefficient (4.1) between response indicator i  and survey 

variable .y  By definition, the correlation is ,j iyj ij yjS S S   where the covariance is iyjS   

     
1

j jj j
k k k s k ss s

d d i i y y


    with .
j j j

s k k k js s
i d i d P    A development gives iyjS   

 1j j jP P   with .
j jj r nry y    The y -variance is    

1 2
2 ,

jj j
yj k k k ss s

S d d y y


    and 2
ijS  is 

analogous with   2

jk si i  replacing   2
,

jk sy y  so  2 1 .ij j jS P P   The result j   

 1j j j yjP P S  follows. 
 

Part 3. Proof of (4.2): Under Model 4.1, jr  and jnr  are fixed sets, with respective sizes jm  and j jn m  

and fixed means 
jry  and .

jnry  The transfer set jtr  of fixed size jq  is random, withdrawn by simple random 
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sampling from the nonresponse j j jnr s r   and transferred to the response .jr  The new y -means, for 

response and nonresponse, are 

                 * *; .
j jj j j j

r k k j j nr k k j j jr tr nr tr
y y y m q y y y n m q            

Because jtr  is a simple random sample from the fixed ,jnr  the transfer set mean
j j

tr k jtr
y y q   has 

expected value .
jnry  Therefore, the expected values of the new y -means are 

                * *; .
j j j j j j jr j r j nr j j nr j j nr j nr j j j nrE y m y q y m q E y n m y q y n m q y           

The expression (4.2) for      * * *j jj r nrE E y E y    follows. 
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An alternative way of estimating a cumulative logistic model 
with complex survey data 

Phillip S. Kott and Peter Frechtel1 

Abstract 

When fitting an ordered categorical variable with L > 2 levels to a set of covariates onto complex survey data, it 
is common to assume that the elements of the population fit a simple cumulative logistic regression model 
(proportional-odds logistic-regression model). This means the probability that the categorical variable is at or 
below some level is a binary logistic function of the model covariates. Moreover, except for the intercept, the 
values of the logistic-regression parameters are the same at each level. The conventional “design-based” method 
used for fitting the proportional-odds model is based on pseudo-maximum likelihood. We compare estimates 
computed using pseudo-maximum likelihood with those computed by assuming an alternative design-sensitive 
robust model-based framework. We show with a simple numerical example how estimates using the two 
approaches can differ. The alternative approach is easily extended to fit a general cumulative logistic model, in 
which the parallel-lines assumption can fail. A test of that assumption easily follows. 

 
Key Words: Parallel-lines assumption; Design-sensitive estimation; Standard model; Extended model. 

 
 

1  Introduction: Fitting a regression model with complex survey data 
 

The goal of this paper is to show an alternative way of estimating a cumulative logistic model (also 

called the ordinal logistic model or the ordinal regression model), that is, a regression model with a 

categorical dependent variable having more than two ordered categories, given complex survey data. The 

standard estimation methods cannot be implemented with most conventional “design-based” software, such 

as SAS (SAS Institute Inc., 2015), except when the “parallel line assumption” holds as we shall see.  

The standard “design-based” framework for fitting a regression model to survey data was introduced by 

Fuller (1975) for linear regression and by Binder (1983) more generally. This framework treats the finite 

population as a realization of independent trials from a conceptual population. A maximum likelihood 

regression estimator could, in principle, be estimated from the finite-population values. The goal in the 

Fuller/Binder framework is to estimate the conceptual maximum-likelihood estimator, or its limit as the 

population grows arbitrarily large, from survey data. Skinner (1989) refers to this as the “pseudo-maximum-

likelihood” approach.  

Kott (2018) describes an alternative model-based approach to estimating regression models with 

complex survey data dubbed “design sensitive” robust model-based estimation. Following Kott (2007), the 

standard model is defined in this approach in this manner:  

   ,T
k k ky f  x β  where   0.k kE  x  (1.1) 

Although apparently very general, there is a key restriction imposed by the standard model in equation 

(1.1):   0kE    no matter the value of .kx  This assumption can fail and the standard model not be 

appropriate in the population being analyzed.  
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In the extended model,   0k kE  x  in equation (1.1) is replaced by   .k kE  x 0  Unlike the 

standard model, the robust more general extended model rarely fails.  

With an independent identically distributed (iid) population U  of N  elements, it is easy to see that 

    1lim T
k k kU

p N y f   x β x 0   

under the extended model. Given a complex sample S  with weights   ,kw  each (nearly) equal to the inverse 

of the corresponding element’s selection probability,  

    1lim T
k k k kS

p N w y f   x β x 0  (1.2) 

under mild conditions on the sampling design. The parenthetical “nearly” needs to be added when the 

weights include adjustments for unit nonresponse or coverage errors in the frame which the analyst assumes 

have been accounted for in an asymptotically unbiased manner. Calibration weight adjustments for 

statistical efficiency are another reason to add “nearly”. 

Whether the analyst assumes the standard or the extended model holds in the population, solving for b  

in the weighted estimating equation (Godambe and Thompson, 1986) 

   T
k k k kS

w y f  x b x 0  (1.3) 

provides a consistent estimator for β  under mild conditions.  

The pseudo-maximum-likelihood estimating equation in Binder is 

 
 

   ,
T
k T

k k k kS
k

f
w y f

v


 

x b
x b x 0   

where  2 .k k kv E  x  For logistic, Poisson, and ordinary least squares (OLS) linear regression, 

  1.T
k kf v x β  This equality may not hold for general least squares (GLS) linear regression, however 

even when the elements are uncorrelated. It also need not hold for a cumulative logistic regression model. 

The cumulative logistic model is a multinomial logistic regression model for L  categories with a natural 

ordering (e.g., always, frequently, sometimes, never). Being in the first category is assumed to fit a logistic 

model. Being in either the first or second category is assumed to fit a logistic model. Being in the first, 

second, or third category is assumed to fit a logistic model, and so forth. 

The general cumulative logistic model is (splitting out the intercept from the rest of the covariates) 

  
 
 

exp

1 exp

T
k

k k T
k

E y









x β

x
x β

 


 

 for 1, , 1,L     

where 1ky   when k  is in one of the first   categories, 0 otherwise. The parallel-lines assumption is that 

β β  for all integer values of   less than L  with each such value having its own intercept   .   The 
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cumulative logistic model under the parallel-lines assumption is often called a proportional-odds model. 

We will call it the “simple cumulative logistic model,” although it is more commonly referred to as the 

cumulative logistic model (or the ordinal logistic model).  

Finding the a  and b   that satisfy the estimating equation:  

 
 
 

1exp

1 exp

T
k

k kk S T
k k

a
w y

a






  
      


x b

0
x b x

 


 

 for 1, , 1L    (1.4) 

can be used for estimating the general cumulative logistic model. This is not the pseudo-maximum-

likelihood estimating equation in the surveylogistic routine in SAS/STAT 14.1 (An (2002, page 7) discusses 

the multivariate pseudo-maximum-likelihood estimating equation fit by this procedure), the logistic routine 

in SUDAAN 11 (Research Triangle Institute, 2012) or the gologit2 routine in STATA (Williams, 2005) for 

the simple cumulative logistic model. Only the STATA routine allows the b   to vary.  

Given L  nominal categories and complex survey data, SAS and SUDAAN can fit the general 

multinomial logistic model,  

  
 

 1

1

exp

1 exp

T
k

k k L
T

j k jj

E y












 

x β
x

x β

 
  for 1, , 1,L     

with 1ky   when k  is in the th  category, 0 otherwise; this is not the same thing as the general cumulative 

logistic model, which these programs cannot estimate with complex survey data.  

In what follows, we introduce a modest example of a simple cumulative logistic model. Given complex 

survey data, we fit the model both with the pseudo-maximum-likelihood technique and with equation (1.4). 

The latter is accomplished by creating a data set with 1L   observations for each respondent k  (note that 

1 1, ,k L ky y   are in the same primary sampling unit). We follow Kott (2018) and call this fitting method 

the “design-sensitive” technique, even though, strictly speaking, it is model based. Moreover, the pseudo-

maximum-likelihood approach is also sensitive to the design weights and other aspects of the sampling 

design.  

The article goes on to test the parallel-lines assumption. A simple example is presented in Section 2. 

Section 3 concludes with a discussion. 

 
2  A simple example 
 

The National Survey on Drug Use and Health (NSDUH) is an annual survey of the civilian, 

noninstitutionalized population aged 12 or older living in the United States. Using NSDUH data from 2006 

to 2010, we focus on a survey question given to adolescents (12-17) who received depression treatment in 

the past year: 
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During the past 12 months, how much has treatment or counseling helped you?  

The viable responses were: Not at all (l); A little (2); Some (3); A lot (4); or Extremely (5). 

We discarded missing and invalid responses both to this question and to the question of whether the 

respondent received depression treatment in the past year. We will return to this practice in the discussion 

section.  

Using SAS, we estimated the following simple cumulative logistic model: 

  
 
 

exp

1 exp
k

k k
k

meds
E y

meds

 
 



 

x 




 for 1, , 1,L    (2.1) 

where 1meds   when respondent k  was taking medication for depression (0 otherwise), with both pseudo-

maximum-likelihood and the design-sensitive technique. For pseudo-maximum-likelihood estimation, we 

reversed the order of the responses with 1 1ky   when k  responded that treatment (or counseling) helped 

extremely, 2 1ky   when k  responded that treatment helped extremely or a lot, 3 1ky   when k  responded 

that treatment helped more than a little, and 4 1ky   when k  responded that treatment helped at least a 

little. Finally, 5 41 1k ky y    when k  responded that treatment did not help at all. In SAS, this meant 

dependent variable Y  was set equal to 1 when treatment helped extremely, to 2 when treatment helped a 

lot, ,  and to 5 when treatment didn’t help at all. 

For the design-sensitive technique, we created four observations from k  in a new data set. In the thi  

observation labeled C i  in SAS, a class (categorical) variable added to the model statement, we created 

a dependent variable (D) equal to iky  in equation (2.1). We needed to add EVENT = “1” after D in the 

model statement because we were modeling when D 1.  

SAS code for both estimation techniques are in the appendix. The NSDUH data set we used had 60 

variance strata with two variance primary sampling units (PSUs) in each and analysis weights based on the 

probabilities of selection and unit response.  

The parameter estimates from our pseudo-maximum-likelihood and design-sensitive SAS runs are 

displayed in Tables 2.1 and 2.2, respectively. In Table 2.1, Intercept i  is the pseudo-maximum-likelihood 

estimate of ik  in equation (2.1). The sum of the Intercept and C i  in Table 2.2 is the design-sensitive 

estimate for ik  when 1, 2,i   or 3,  while the design-sensitive estimate for 4k  is the Intercept in 

Table 2.2 minus the sum: [C 1] [C 2] [C 3].      Finally (and more simply), meds in both tables 

estimates .  

In all cases, estimates of the same parameter from the two tables are close. The percent increase in every 

level of satisfaction with treatment due to having taken drugs for depression (the estimate for )  is roughly 

45% (in our discussion of the results of the logistic regressions, we treat differences of the log odds as equal 

to percent differences in the odds, even though this is only approximately true). That near equality suggests 

that the parallel-lines assumption is not violated by our NSDUH data.  
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Table 2.1 
Pseudo-maximum-likelihood estimates for the simple cumulative logistic model 
 

Parameter Estimate Standard Error t Value Pr > | t |
Intercept 1 -2.2917 0.0913 -25.10 < 0.0001
Intercept 2 -0.7617 0.0685 -11.11 < 0.0001
Intercept 3 0.2511 0.0624 4.02 0.0002
Intercept 4 1.3695 0.0739 18.53 < 0.0001

meds 0.4516 0.0965 4.68 < 0.0001
NOTE: The degrees of freedom for the t tests is 60. 

 
Table 2.2 
Design-sensitive estimates for the simple cumulative logistic model 
 

Parameter Estimate Standard Error t Value Pr > | t |
Intercept -0.3591 0.0583 -6.16 < 0.0001

C 1 -1.9329 0.0592 -32.63 < 0.0001
C 2 -0.4039 0.0356 -11.33 < 0.0001
C 3 0.6087 0.0392 15.52 < 0.0001

meds 0.4498 0.0955 4.71 < 0.0001
NOTE: The degrees of freedom for the t tests is 60. 

 
The parallel-lines assumption can be tested directly by adding a class variable M to the design-sensitive 

data set with  

 

M 1  when C 1  and 1,

M  2 when C  2 and 1,

M  3 when C  3 and 1,  and

M  4 otherwise.

meds

meds

meds

  

  

  



  

When added to the model statement in SAS, the class variable M captures the differing impacts of taking 

medication for depression in the previous year on the levels of satisfaction with treatment. For example, the 

estimated percent increase in the odds of being extremely pleased by treatment due to having taken drugs 

for depression during the year is, according to Table 2.3, 0.3816 (from )meds  plus 0.0717 (from M = 1) or 

45.33%. The other percent increases are lower, but none are significantly different from the others. We see 

that from the extremely low F value for M in Table 2.4. In addition, none of the t -values for an M in 

Table 2.3 is significant even at the 0.5 level (10 times larger than the standard 0.05 level). 

 
Table 2.3 
Estimating the general cumulative logistic model 
 

Parameter Estimate Standard Error t Value Pr > | t |
Intercept -0.2919 0.1270 -2.30 0.0251

C 1 -1.9636 0.0806 -24.37 < 0.0001
C 2 -0.4104 0.0440 -9.33 < 0.0001
C 3 0.6202 0.0490 12.66 < 0.0001

Meds 0.3816 0.1452 2.63 0.0109
M 1 0.0717 0.1273 0.56 0.5754
M 2 0.0234 0.0652 0.36 0.7215
M 3 -0.0236 0.0719 -0.33 0.7439

NOTE: The degrees of freedom for the t tests is 60.
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Table 2.4 
F tests for the general cumulative logistic model 
 

Effect F Value Num DF Den DF Pr > F
C 280.39 3 58 < 0.0001

Meds 6.91 1 60 0.0109
M 0.16 3 58 0.9239

 
3  Discussion 
 

When there is more than one explanatory variable in the cumulative logistic model then each one needs 

to be tested like meds  was in the previous section by adding an analogous class variable for each. A general 

F test can be used for testing whether every class variable is not significant (say at the 0.05 level). A better 

approach with complex survey data may be to follow Korn and Graubard (1990) and use the simple 

Bonferroni-adjusted t -test. For significance at the 0.05 level, one would compute the t -values for every 

tested component of each added class variable (there are three such in Table 2.3), then compare the p -value 

of the smallest of these to 0.05/the number of components tested.  

An advantage of the design-sensitive model-based approach to fitting a simple cumulative logistic model 

over the pseudo-maximum-likelihood approach is not apparent with our NSDUH data. When the parallel-

lines assumption doesn’t hold, and an extended model is being fit, satisfying the first “equation” in (1.4) 

assures us that  

 
 

 1

1

exp

1 exp

k
k k k Lk S k S

j kj

a
w y w

a
 






 
 


x b

x b


  for 1, , 1.L    (3.1) 

When kx  itself is a multi-level categorical variable (so that one and only one component of 

 1 , ,k k kQx xx   is 1 while the other components are 0), equation (3.1) assures that the weighted mean 

of ky   for each x -category (i.e., component of )kx  and cumulative level   equals its predicted value 

described by 

    
1

1

ˆ exp 1 exp ,
L

T T
k k j k

j

y a a




      
x b x b    

which is a reasonable property. Equation (1.4) is simply an extension of the property to more general .kx  

In our NSDUH example, although not generally, using the design-sensitive approach was slightly more 

efficient than using the pseudo-maximum-likelihood approach. This can be seen by comparing the t -values 

of meds  (the inverses of their respective estimated coefficients of variation) in Tables 2.1 and 2.2. When 

we ignore the analysis weights, the strata, and the clustering (by setting the weights and strata to 1, and 

treating each respondent as a primary sampling unit), this result reverses as expected. The point here is that 

pseudo-maximum likelihood with complex survey data is indeed “pseudo” (in this case that is likely because 

of the impact of the weights on the estimates).  
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Finally, the data set we created dropped responding observations with missing values of the dependent 

and meds variables. When fitting the extended model, this is only valid (i.e., resulting estimates are 

asymptotically unbiased) when an in-scope respondent  an adolescent who had treatment for depression in 

the previous year  being dropped occurred completely at random. When fitting the standard model, the 

probability of being dropped can be a function only of whether an in-scope adolescent has taken medication 

for depression in the previous year but nothing else. This suggests it may have been prudent to add variables 

to the model that are never missing even when they are not significant. If we add class variables for age, 

sex, race/ethnicity, urbanicity, and family income (all of which have values imputed for them when missing 

in the NSDUH) to our simple cumulative logistic model, none are significant at the 0.05 level. The major 

results do not change meaningfully (the estimate for   increases from roughly 0.45 to 0.50), although that 

the t -value for meds using the design-sensitive approach  0.4948; 5.49meds medsb t   is slightly smaller 

than that from using the pseudo-maximum-likelihood approach  0.4987; 5.52 .meds medsb t   

 

Appendix 
 

/* PML is a data set of adolescents NSDUH respondents in the 2006 to 2010 survey years who reported 

having treatment for depression and whether they had taken drugs for depression. Variables include:  
 

Y = 1 treatment was extremely helpful; Y = 2 treatment helped a lot; Y = 3 some; Y = 4 a little;  

Y = 5 not at all  

meds = 1 had taken drugs for depression, 0 otherwise 

VESTR variance stratum 

VEPSU variance primary sampling unit 

IDNUM respondent identification number 

ANALWT the analysis weight  
 

This set is employed for pseudo-maximum-likelihood estimation of the simple cumulative logistic model 

and to create the DS_SIMPLE data set, which is used for design-sensitive estimation of the simple 

cumulative logistic model, and it is employed to create DS_GENERAL data set, which is used for design-

sensitive estimation of the general cumulative logistic model. */ 

 

DATA DS_SIMPLE; SET PML; BY VESTR VEPSU IDNUM;  

D = 0; 

C = 1; IF Y < 2 THEN D = 1; OUTPUT;  

C = 2; IF Y < 3 THEN D = 1; OUTPUT;  

C = 3; IF Y < 4 THEN D = 1; OUTPUT;  

C = 4; IF Y < 5 THEN D = 1; OUTPUT;  
 

DATA DS_GENERAL; SET DS_SIMPLE;  

M = 4; 

IF C = 1 AND MEDS = 1 THEN M = 1;  

IF C = 2 AND MEDS = 1 THEN M = 2;  

IF C = 3 AND MEDS = 1 THEN M = 3; 
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/*The PROC below is used to produce Table 2.1*/ 
 

PROC SURVEYLOGISTIC DATA = PML; CLUSTER VEPSU; 

MODEL Y = MEDS;  

STRATA VESTR; WEIGHT ANALWT; RUN;  
 

/*The PROC below is used to produce Table 2.2*/ 
 

PROC SURVEYLOGISTIC DATA = DS_SIMPLE; CLASS C;  

CLUSTER VEPSU;  

MODEL D(EVENT = '1') = C MEDS; 

STRATA VESTR; WEIGHT ANALWT; RUN;  
 

/*The PROC below is used to produce Tables 2.3 and 2.4*/ 
 

PROC SURVEYLOGISTIC DATA =DS_GENERAL; CLASS M C; 

CLUSTER VEPSU;  

MODEL D(EVENT = '1') = C MEDS M; 

STRATA VESTR; WEIGHT ANALWT; RUN;  
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On combining independent probability samples 

Anton Grafström, Magnus Ekström, Bengt Gunnar Jonsson,  
Per-Anders Esseen and Göran Ståhl1 

Abstract 

Merging available sources of information is becoming increasingly important for improving estimates of 
population characteristics in a variety of fields. In presence of several independent probability samples from a 
finite population we investigate options for a combined estimator of the population total, based on either a linear 
combination of the separate estimators or on the combined sample approach. A linear combination estimator 
based on estimated variances can be biased as the separate estimators of the population total can be highly 
correlated to their respective variance estimators. We illustrate the possibility to use the combined sample to 
estimate the variances of the separate estimators, which results in general pooled variance estimators. These 
pooled variance estimators use all available information and have potential to significantly reduce bias of a linear 
combination of separate estimators. 

 
Key Words: Horvitz-Thompson estimator; Inclusion probabilities; Linear combination estimator; Variance estimation. 

 
 

1  Introduction 
 

The idea of using all available information to produce better estimates is very appealing, but it is seldom 

clear how to proceed to achieve the best results. There is a vast literature on what has become known as 

meta-analysis, that builds on the idea of combining results of multiple studies. Cochran and Carroll (1953) 

and Cochran (1954) are two early papers that treat combination of estimates from different experiments. 

Koricheva, Gurevitch and Mengersen (2013) and Schmidt and Hunter (2014) are two books that provide an 

updated and more comprehensive treatment of meta-analysis. In this paper we do not treat combination of 

results from traditional experiments, but rather from multiple probability samples. We present all required 

design elements, such as inclusion probabilities of first and second order, for a general combination of 

multiple independent samples from different sampling designs. We also present new estimators for the 

variance of separate estimators based on the design of the combined samples. These suggested variance 

estimators can be thought of as general pooled variance estimators using all available information. In 

particular such pooled variance estimators can be used in a linear combination of separate estimators to 

reduce the mean square error (MSE) compared to using the separate, and thus independent, variance 

estimators. 

A restriction is that we only treat combination of independent probability samples selected from the same 

population at the same point in time, or under the assumption that there has been a non-significant change 

in the target variable. Further, we assume that each sampling design is known to the extent that inclusion 

probabilities of first and second order are known for all units. In general we will also need to be able to 
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uniquely identify each unit so that we can detect if the same unit is selected in more than one sample, or 

multiple times in the same sample. At least some of these assumptions may be quite restrictive as they may 

not hold in some practical circumstances. 

Let  = 1, 2, ,U N  be the set of labels of the N  units in the population. Our objective is to estimate 

the total of a target variable ,y  that takes value iy  for unit .i U  Thus we wish to estimate 
=1

= .
N

ii
Y y  

We assume access to k  independent probability samples  ,S  = 1, , ,k   from ,U  where the samples 

may be from different sampling designs. Under these assumptions, we investigate different options for 

estimating the population total by use of all available information. Knowledge of what units have been 

included in multiple different samples is required in some cases. Such knowledge is more readily available 

today in environmental monitoring and natural resource surveys, following the widespread use of accurate 

satellite-based positioning systems (Næsset and Gjevestad, 2008). In environmental studies the units can 

often be considered as locations with given coordinates, so the situation is different from surveys of e.g., 

people that may be anonymous or unidentifiable. Further, in several countries landscape and forest 

monitoring programmes are performed (Tomppo, Gschwantner, Lawrence and McRoberts, 2009; Ståhl, 

Allard, Esseen, Glimskår, Ringvall, Svensson, Sundquist, Christensen, Gallegos Torell, Högström, 

Lagerqvist, Marklund, Nilsson and Inghe, 2011; Fridman, Holm, Nilsson, Nilsson, Ringvall and Ståhl, 

2014) which sometimes need to be augmented by special sampling programmes in order to reach specific 

accuracy targets for certain regions or years (Christensen and Ringvall, 2013). 

In Section 2 we first recall the theory for an optimal linear combination of separate independent 

estimators. Then, in Section 3, we present the theory for combining independent samples. As a unit may be 

included in more than one sample or multiple times in the same sample we need to choose between using 

single or multiple count of inclusion. By using single count the resulting design becomes a without 

replacement design and multiple count results in a form of with replacement design. Two examples 

comparing different alternatives for estimation are presented in Section 4. We end with a discussion in 

Section 5. 

 
2  Combining separate estimates 
 

We assume that we have 2k   estimators, 1 2
ˆ ˆ ˆ, , , kY Y Y  of a population total ,Y  resulting from k  

independent samples from the same population. Our options greatly depend on what information is 

available. If we have estimates and corresponding variance estimates, then a linear combination based on 

weights calculated from estimated variances may be an interesting option. We could also weight the 

estimators with respect to sample size, if available, but that is known to be far from optimal in some 

situations. We recall the theory for an optimal linear combination of independent unbiased estimators. The 

linear combination of 1 2
ˆ ˆ ˆ, , , kY Y Y  with the smallest variance is  

 1 1 2 2
ˆ ˆ ˆ ˆ= ... ,L k kY Y Y Y       

where  
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 

 
=1

ˆ1
=

ˆ1

i i

i k

j jj

V Y

V Y



  

are positive weights that sum to 1. The variance of ˆ
LY  is  

                                                            
 

=1

1ˆ = .
ˆ1

L k

j jj

V Y
V Y

  

It is common that variance estimates are used in place of the unknown variances when calculating the 

 -weights, see Cochran and Carroll (1953) and Cochran (1954). If the variance estimators are consistent, 

that approach will asymptotically provide the optimal weighting. Moreover, under the assumption that the 

variance estimators are independent of the estimators 1 2
ˆ ˆ ˆ, , , ,kY Y Y  the resulting estimator  

                                                                 *
1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ= ... ,L k kY Y Y Y       

is unbiased and its variance depends only on the variance of ˆ
LY  and the MSEs of the ˆ ’s,i  see Rubin and 

Weisberg (1974). However, as we soon will illustrate, the assumption of independence is likely to be 

violated in many sampling applications. In case of positive correlations between the estimators and their 

variance estimators, we will on average put more weight on small estimates because they tend to have 

smaller estimated variances. Thus the combined estimator (using weights based on estimated variances) will 

be negatively biased and the negative bias can increase as the number of independent surveys we combine 

increases, see Example 1. The opposite holds as well, in case of negative correlation, but that is likely a 

rarer situation in sampling applications. 
 

Example 1: A very simplistic example that illustrates that the bias can increase as the number of 

independent surveys we combine increase. Let the unbiased estimator Ŷ  for one sample take the values 1 

or 2 with equal probabilities and let the variance estimator take values c  times the estimator (perfectly 

correlated) and let it be unbiased  1 6 .c   Clearly the expected value of Ŷ  is 1.5. Next, we consider the 

linear combination of two independent estimators  1 2
ˆ ˆ,Y Y  of the same type as Ŷ  using estimated variances. 

The pair  1 2
ˆ ˆ,Y Y  has the following four possible outcomes (1,1), (1,2), (2,1), (2,2), each with probability 

1/4. The corresponding outcomes for the linear combination *ˆ
LY  with estimated variances are 1, 4/3, 4/3, 2 

with expectation 17 12 1.4167.  It is negatively biased. If a third independent estimator of the same type 

is added we have the eight outcomes (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2), each 

with equal probability 1/8. The corresponding outcomes for *ˆ
LY  are 1, 6/5, 6/5, 3/2, 6/5, 3/2, 3/2, 2, with 

expectation 111 80 = 1.3875.  It is even more negatively biased, and the bias continues to grow as more 

independent estimators of the same type are added in the combination.  

 
2.1 Why positive correlation between estimator and variance estimator is 

common in sampling applications 
 

The issue of positive correlation between the estimator of a total and its variance estimator has previously 

been noticed by e.g., Gregoire and Schabenberger (1999) when sampling skewed biological populations, 

but we show that a high correlation may appear in more general sampling applications. Assume that the 
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target variable is non-negative and that > 0iy  for exactly N   units. The proportion of non-zero (positive) 

’siy  is denoted by = .p N N  This is a very common situation in sampling and we get such a target 

variable if we estimate a domain total ( = 0iy  outside of the domain) or if only a subset of the population 

has the property of interest. 

The design-based unbiased Horvitz-Thompson (HT) estimator is given by  

                                                             ˆ = ,i

i S i

y
Y


   

where S  denotes the random set of sampled units and  = Pr .i i S   Under fixed size designs the 

variance of Ŷ  is  

                                                          
2

=1 =1

1ˆ = ,
2

N N
ji

ij i j
i j i j

yy
V Y   

 


   
 

   

where  = Pr ,ij i S j S    is the second order inclusion probability. The corresponding variance 

estimator is  

                                                        
2

1ˆ ˆ = .
2

ij i j ji

i S j S ij i j

yy
V Y

  
   

 
  

 
   

Provided that all ij  are strictly positive, it follows that the variance estimator is an unbiased estimator 

of  ˆ .V Y  

The number of non-zero ’siy  in S  (and hence in ˆ )Y  is here denoted by n  and it will usually be a 

random number. It can be shown that the number of non-zero elements in  ˆ ˆV Y  is approximately 

proportional to n  if p  is small, which indicates that there might be a strong correlation between Ŷ  and 

 ˆ ˆV Y  in general if p  is small. To show that the number of non-zero terms in  ˆ ˆV Y  is approximately 

proportional to n  we look at three cases, where the third case is the most general.   
 

Case 1: Assume that all the non-zero ’si iy   are different, i.e., i i j jy y   for ,i j  and 

ij i j    for all , .i j  The double sum in  ˆ ˆV Y  then contains  2n n n   non-zero terms of the form  

 
2

,ij i j k

ij k

y  
 
 


 

  

where k  is equal to i  or j  and .i j  There are  1n n    non-zero terms of the form  

 

2

,ij i j ji

ij i j

yy  
  
 

 
 

  

where .i j  In total the number of non-zero terms is  2 1 .n n n    If n  is fairly large and p  is small, 

then <<n n  and roughly we have  2 1 2 .n n n n n      The number of non-zero terms is approximately 

proportional to .n  
 



Survey Methodology, June 2019 353 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Case 2: Assume that all the non-zero ’si iy   are equal, e.g., iy  is an indicator variable and = ,i n N  

and ij i j    for all , .i j  Then the double sum in  ˆ ˆV Y  contain  2n n n   non-zero terms of the form  

 
2

,ij i j k

ij k

y  
 
 


 

  

where k  is equal to i  or j  and .i j  If n  is fairly large and p  is small, then <<n n  and roughly we 

have  2 2 .n n n n n     Thus, the number of non-zero terms is still approximately proportional to .n  
 

Case 3: If some of the non-zero ’si iy   are equal and the rest are different, then the number of non-zero 

terms will be between  2n n n   (case 2) and  2 1n n n    (case 1). Thus, the number of non-zero 

terms in  ˆ ˆV Y  is always approximately proportional to n  if p  is small.  
 

If ij i j    for all ,i j  then all non-zero terms are positive. This condition holds e.g., for simple 

random sampling (SRS) and high entropy unequal probability designs such as Conditional Poisson, 

Sampford and Pareto. More discussion about entropy of sampling designs can be found in e.g., Grafström 

(2010). The average size of the positive terms in  ˆ ˆ ,V Y  or ˆ ,Y  is not likely to depend much on .n  Thus, if 

Ŷ  contains n  positive terms, and  ˆ ˆV Y  contains a number of positive terms that is proportional to ,n  

their sizes are mainly determined by .n  A high relative variance in n  can cause a high correlation between 

Ŷ  and  ˆ ˆ ,V Y  see Example 2. 

Commonly used designs can produce a high relative variance for .n  If we do simple random sampling 

without replacement we get  Hyp , ,n N N n   and          = 1 1V n E n p N n N       

   1 1 ,p n N   which means that we need a large p  or a large sample fraction n N  in order to achieve 

a small relative variance for .n  In many applications we will have a rather small p  and a small sampling 

fraction n N  and, thus, for many designs (that do not use prior information which can explain to some 

extent if 0iy   or not) there will be a high relative variance for .n  To illustrate the magnitude of the 

resulting correlation between the estimator and its variance estimator an example for simple random 

sampling without replacement follows. 
 

Example 2: For this example we first simulate a population of size = 1,000N  where = 100,N   i.e., 

= 0.1.p  The 100 non-zero -y values are simulated from  2,N    with = 10  and = 2.  We select 

samples of size = 200n  with simple random sampling, so =i n N  and     = 1 1ij n n N N    for 

.i j  The observed correlation between Ŷ  and  ˆ ˆV Y  was 0.974 for 610  samples, see Figure 2.1 for the 

first 1,000 observations of   ˆ ˆ ˆ, .Y V Y  If we increase p  to 0.3, the correlation is still above 0.9. The results 

remain unchanged if the ratio    remains unchanged, e.g., we get the same correlations if = 100  and 

= 20.  

Now, assume we have access to more than one sample for the estimation of .Y  As previously noted, 

with high positive correlations between the estimators and their corresponding variance estimators there is 

a risk of severe bias if we use a linear combination with estimated variances. The interest of using combined 
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information may be the largest for small domains or rare properties, in which case the problem of high 

correlation is the most likely. Next, we turn to alternative options for using combined information from 

multiple samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Relationship between Horvitz-Thompson estimator and its variance estimator for a variable with 

90% zeros. 

 
3  Combining samples 
 

Here we derive the design elements (e.g., inclusion probabilities of first and second order) for the 

combined sample. There are however different options to combine samples. We must e.g., choose between 

multiple or single count for the combined design. When combining independent samples selected from the 

same population we need to know the inclusion probabilities of all units in the samples, for all designs. 

Second order inclusion probabilities are needed for variance estimation. In some cases we also need to have 

unique identifiers (labels) for the units so they can be matched, e.g., when we use single count or when at 

least one separate design has unequal probabilities. Bankier (1986) considered the single count approach for 

the special case of combining two independently selected stratified simple random samples from the same 

frame. Roberts and Binder (2009) and O’Muircheartaigh and Pedlow (2002) discussed different options for 

combining independent samples from the same frame, but not with general sampling designs. 

A somewhat similar problem is estimation based on samples from multiple overlapping frames, see e.g., 

the review articles by Lohr (2009, 2011) and the referenced articles therein. Even though having the same 
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frame can be considered as a special case of multiple frames, we have not found derivations of the design 

elements (in particular second order inclusion probabilities and second order of expected number of 

inclusions) for the combination of general sampling designs. Below we present, for general probability 

sampling designs, in detail two main ways to combine probability samples and derive corresponding design 

features needed for unbiased estimation and unbiased variance estimation. 

 
3.1  Combining with single count 
 

Here we first combine two independent samples  1S  and  2S  selected from the same population, and 

look at the union of the two samples as our combined sample. Thus, the inclusion of a unit is only counted 

once even if it is included in more than one sample. The first order inclusion probabilities are  

          1, 2 1 2 1 2= ,i i i i i       (3.1) 

where       1, 2 1 2= Pri i S S    and     = Pri i S    for = 1, 2.  We let  1 ,iI  2
iI  and  1, 2

iI  be the 

inclusion indicator for unit i  in  1 ,S  2S  and    1 2S S  respectively. The resulting design is no longer a 

fixed size design (even if the separate designs are of fixed size). The expected size of the union    1 2S S  

is given by     1, 21, 2
=1

= ,
N

ii
E n   where    1, 21, 2

=1
=

N

ii
n I  denotes the random size of the union. If we 

are interested in how much the samples will overlap on average, the expected size of the overlap is given 

by the sum    1 2

=1
.

N

i ii
   

The second order inclusion probabilities  1, 2
ij  for the union    1 2S S  can be written in terms of first 

and second order inclusion probabilities of the two respective designs. Let    1 2= ( ,B i S S   
   1 2 ),j S S   then    1, 2 = Pr .ij B  By conditioning on the outcomes for i  and j  in  1S  we get the 

following four cases  

 

   

     

         

         

           

11 1

1 1 21 1

1 1 21 1

1 1 1 21 1

1 , 1

2 ,

3 ,

4 , 1

ij

i ij j

j ij i

i j ij ij

i S j S

i S j S

i S j S

i S j S



  

  

   

 

  

  

    

Pr Prm m mm A A B A

  

where       = Pr ,ij i S j S      for = 1, 2.  The events ,mA = 1, 2, 3, 4,m  are disjoint and 

 4

=1
Pr = 1.mm

A  Thus, by the law of total probability, we have    1, 2 = Pr =ij B  

   4

=1
Pr Pr .m mm

B A A  This gives us  

                           1, 2 1 2 1 1 2 1 1 2 1 1 1= 1 .ij ij j i ij i j ij ij i j ij                    (3.2) 
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The equations (3.1) and (3.2) can be generalized to recursively obtain first and second order inclusion 

probabilities of the union of an arbitrary number k  of independent samples. After having derived 

probabilities for the union of the first two samples, we can combine the result with the probabilities of the 

third design using the same formulas and so on. To exemplify, let  1, ,
i
   be the first order inclusion 

probability of unit i  in the union of the first   samples. Then we have  

                                         1, , 1 1, , 1 1, , 1= ,i i i i i                 

as the first order inclusion probability of unit i  in the union of the first 1  samples. Similarly, for the 

second order inclusion probabilities we get the recursive formula  

                               

                 
        

1, , 1 1, , 1 1, , 1, , 1 1, , 1, ,

1 1, , 1, , 1, ,

=

1 .

ij ij j i ij i j ij

ij i j ij

       

   

  



   

   

             

      
  

Henceforth, for the combination of k  independent samples, we use the simplified notation 
 1, ,= ,k

i i    1, ,= k
ij ij    and  1, ,= .k

i iI I   Since the individual samples may overlap, the resulting 

design is not of fixed size. The unbiased combined single count (SC) estimator, which has Horvitz-

Thompson form, is given by 

                                                                      SC
ˆ = .i

i S i

y
Y


   

The variance is  

                                                                   SC
=1 =1

ˆ = ,
N N

ji
ij i j

i j i j

yy
V Y   

 
   

and an unbiased variance estimator is  

                                                                   SC
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j i j ij

y I Iy
V Y   

  
   

For the combination of independent samples with positive first order inclusion probabilities we always have 

> 0ij  for all pairs  , ,i j  which is the requirement for the above variance estimator to be unbiased. In 

terms of MSE it may be beneficial not to use the single count estimator, but instead use an estimator that 

accounts for the random sample size. However, here we restrict ourselves to using only unbiased estimators. 

 
3.2  Combining with multiple count 
 

We first look at how to combine two independent samples  1S  and  2S  selected from the same 

population, where we allow for each unit to possibly be included multiple times. The number of inclusions 

of unit i  in the combined sample is denoted by  1, 2 ,iS  and it is the sum of the number of inclusions of unit 
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i  in the two samples we combine, i.e.,      1, 2 1 2= ,i i iS S S  where  
iS   is the number of inclusions of unit 

i  in sample .  The expected number of inclusions of unit i  in the combination is given by  

                                                       1, 2 1, 2 1 2= = ,i i i iE S E E E  (3.3) 

where     =i iE E S   is the expected number of inclusions for unit i  in sample   ,S  = 1, 2.  The 

(possibly random) sample size is the sum  1, 2

=1

N

ii
S  of all individual inclusions and the expected sample 

size is the sum  1, 2

=1

N

ii
E  of all individual expected number of inclusions. It can be shown that  

                                                         1, 2 1, 2 1, 2 1 1 2 2 1 2= = ,i j ij ij i j i j ijE S S E E E E E E E    (3.4) 

where       = ,ij i jE E S S   = 1, 2  are the second order of expected number of inclusions in sample .  

Obviously    =ij ijE    if the design for sample   is without replacement. Note that as  
iS   may take other 

values than 0 or 1 we have that  
iiE   is generally not equal to   ,iE   but    = .ii i    The equations (3.3) and 

(3.4) can be used recursively to obtain  
iE   and  

ijE   for the combination of an arbitrary number k  of 

independent samples. We then get the recursive formulas  

                                                    1, , 1 1, , 1=i i iE E E        

and  

                                                            1, , 1 1, , 1, , 1 1, , 1 1= .ij ij i j j i ijE E E E E E E                  

The previous results and (3.4) follow from the fact that      1, , 1 1, , 1=i i iS S S       and that  1, ,
iS    and 

 1
iS   are independent. For example, we have  

       

                 
                

           

1, , 1 1, , 1 1, , 1 1, , 1 1, , 1

1, , 1, , 1, , 1 1, , 1 1 1

1, , 1, , 1 1, , 1 1

= = =

=

.

ij i j i i j j

i j i j j i i j

ij i j j i ij

E E S S E S S S S

E S S S S S S S S

E E E E E E

    

   

  

 

  

  

           

           

        

  

For the combination of k  independent samples we now use the simplified notation  1, ,= ,k
i iE E   

 1, ,= ,k
ij ijE E   and  1, ,= .k

i iS S   The total Y  can be estimated without bias with the multiple count (MC) 

estimator, of which the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) is a special case. It is given 

by  

                                                        MC
=1

ˆ = .
N

i
i

i i

y
Y S

E
   

We get the Hansen-Hurwitz estimator if = ,i iE np  where n  is the number of units drawn and ,ip  with 

=1
= 1,

N

ii
p  are probabilities for a single independent draw. The variance of MCŶ  can be shown to be  

                                                    MC
=1 =1

ˆ = .
N N

ji
ij i j

i j i j

yy
V Y E E E

E E
   

A variance estimator is  
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    MC
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j i j ij

y S Sy
V Y E E E

E E E
   

It follows directly that the above variance estimator is unbiased, because when combining independent 

samples with positive first order inclusion probabilities we always have > 0ijE  for all pairs  , .i j  

 
3.3  Comparing the combined and separate estimators 
 

Two examples that illustrate that the combined estimator is not necessarily as good as the best separate 

estimator. 
 

Example 3: Assume that the first sample,  1 ,S  is of fixed size with  1 ,i iy   and that the second is a 

simple random sample with  2 = .i n N  Then the Horvitz-Thompson estimator  
 

1

1
1̂ = ,i ii S

Y y 
  has 

zero variance, but the combined single count estimator with        1 2 1 2=i i i i i       has positive 

variance. Thus the combined estimator is worse than the best separate estimator.  
 

Example 4: Assume that the design for the first sample is stratified in such a way that there is no variation 

within strata. Then the separate estimator  
 

1

1
1̂ = i ii S

Y y 
  has zero variance. If the first sample is 

combined with a non-stratified second sample, then the resulting design does not have fixed sample sizes 

for the strata. Thus, the combined estimator has a positive variance.  
 

These examples tell us that we need to be careful before combining very different designs, such as an 

unequal probability design with an equal probability design or a stratified with a non-stratified sampling 

design. Especially, we need to be careful if we plan to estimate the total directly based on the combined 

sample. When combining samples from relatively similar designs, it is however likely that the combined 

estimator becomes better than the best of the separate estimators. 

Next, we investigate how to use the combined approach for estimation of the separate variances and then 

use the linear combination estimator. In fact, as we will see later, using the combined approach for variance 

estimation of separate variances can act stabilizing for the weights in the linear combination with weights 

based on estimated variances. There is a sort of pooling effect for the variance estimators when they are 

estimated with the same set of information. 

 
3.4 Using the combined sample for estimation of variances of separate 

estimators 
 

An alternative to estimating directly the total Y  based on the combined design is to use the combined 

design to estimate the variances of the separate estimators, and then proceed with a linear combination of 

the separate estimators. We assume access to k  independent samples and that we want to estimate the 

variance of a separate estimator, whose variance is a double sum over the population units. There are two 

main options for the variance estimator; multiply by  
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 ori j i j

ij ij

I I S S

E
  

in the variance formula to obtain an unbiased estimator of the variance based on the combination of all the 

k  samples   ,S  = 1, , .k   For example, assuming that the variance of 1̂Y  is  

                                                             
1 1 1

1 1 1
=1 =1

ˆ = ,
N N

ji
ij i j

i j i j

yy
V Y   

 
   

we can use the combination of   ,S  = 1, , ,k   to estimate  1̂V Y  by the single count estimator  

                                                          
1 1 1

SC 1 1 1
=1 =1

ˆ ˆ =
N N

j i ji
ij i j

i j iji j

y I Iy
V Y   

 
   

or the multiple count estimator  

                                                         
1 1 1

MC 1 1 1
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j iji j

y S Sy
V Y

E
  

 
   

Note that  1, ,= ,k
ij ij    1, ,= ,k

i iI I   1, ,= k
ij ijE E   and  1, ,= ,k

i iS S   so the above variance estimators 

use all available information on the target variable. Hence, these variance estimators can be thought of as 

general pooled variance estimators. It follows directly that both estimators are unbiased because all designs 

have positive first order inclusion probabilities, which imply that all ij  and all ijE  are strictly positive. 

Interestingly, the above variance estimators are unbiased even if the separate design 1 has some second 

order inclusion probabilities that are zero, which prevent unbiased variance estimation based on the sample 
 1S  alone. 

Despite the appealing property of producing an unbiased variance estimator for any design, the above 

variance estimators cannot be recommended for designs with a high degree of zero second order inclusion 

probabilities (such as systematic sampling). The estimators can be very unstable for such designs and can 

produce a high proportion of negative variance estimates. 

As we will see, if we intend to use a linear combination estimator, it is important that all variances are 

estimated in the same way. Then it is likely that the ratios, e.g.,  

 
 
 

 
 

SC 1 MC 1

SC 2 MC 2

ˆ ˆ ˆ ˆ
and

ˆ ˆ ˆ ˆ

V Y V Y

V Y V Y
  

become stable (have small variance). The ratios become more stable because the estimators in the numerator 

and denominator are based on the same information and are estimated with the same weights for all the pairs 

 ,i j  in all estimators. With estimated variances we get  

 
 
 

1

=1

ˆ ˆ
ˆ = ,

ˆ ˆ

k
i

i
j j

V Y

V Y



 
 
  
   
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so if the ratios of variance estimators have small variance then ˆ i  has small variance. The weighting in the 

linear combination *ˆ
LY  then becomes stabilized. As the following example demonstrates, the ratio of the 

variance estimators can even have zero variance. Thus it can sometimes provide the optimal weighting even 

if the variances are unknown. 
 

Example 5: Assume we want to combine estimates resulting from two simple random samples of different 

sizes. This can of course be done optimally without estimating the variances, but as an example we will use 

the above approach to estimate the separate variances by use of the combined sample. In this case the use 

of the estimators  SC 1
ˆ ˆV Y  and  SC 2

ˆ ˆV Y  provides the optimal weighting, and so does  MC 1
ˆ ˆV Y  and 

 MC 2
ˆ ˆ .V Y  This result follows from the fact that if both designs are simple random sampling we have  

 
 
 

 
 

 
 

SC 1 MC 1 1

SC 2 MC 2 2

ˆ ˆ ˆ ˆ ˆ
= = ,

ˆ ˆ ˆ ˆ ˆ

V Y V Y V Y

V Y V Y V Y
  

which is straightforward to verify. For two simple random samples the situation corresponds to using a 

pooled estimate for 2S  (the population variance of )y  in the expressions for the variance estimates, and 

this pooled estimate is then cancelled out in the calculation of the weights.  
 

The conclusion is that this procedure is likely to provide a more stable weighting also for designs that 

deviate from simple random sampling as long as the involved designs have large entropy (a high degree of 

randomness). The problem of bias for the linear combination estimator with estimated variances will be 

reduced compared to using separate and thus independent variance estimators. 

We believe that this can be a very interesting alternative, because the estimator of the total based on the 

combined design does not necessarily provide a smaller variance than the best of the separate estimators. 

With this strategy we can improve the separate variance estimators, especially for a smaller sample (if data 

is available for a larger sample). Hence the resulting linear combination with jointly estimated variances 

can be a very competitive strategy. 

With single count we might use a ratio type variance estimator such as the following  

             

2
1 1 1

1 1 1
=1 =11, ,

ˆ ˆ = ,
N N

j i ji
R ij i j

i jk iji j

y I IN y
V Y   

  




  

where 1, , =1 =1
= .i j

ij

N N I I

k i j     For multiple count we can replace i j ijI I   with .i j ijS S E  This ratio 

estimator uses the known size of the population of pairs    2, ,1, 2, ,i j N   which is 2 ,N  and divides 

by the sum of the sample weights for the pairs. Note that   2
1, , = .kE N   This correction is useful because 

the number of pairs in the estimator may be random (since the union of the samples may have random size). 

This rescales the sample (of pairs) weights to sum to 2 .N  This will introduce some bias (as usual for ratio 

estimators), but the idea is that this will reduce the variance of the variance estimator. However, this 

approach is only useful if we are interested in the separate variance as the correction term will be the same 

for all separate variance estimators. Hence it does not change the weighting of a linear combination estimator 

with estimated variances. 
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4  Simulation examples 
 

Two Monte-Carlo simulation examples are presented here. In the first example we combine two Poisson 

samples using inclusion probabilities approximately proportional to the target variable. In the second 

example we combine an unstratified simple random sample with a stratified simple random sample. 

 
4.1  Combining two Poisson samples 
 

We generate a population of size = 200,N  with an auxiliary variable  2= 20, = 16 .iX N    

The target variable is generated as  = = ,i i i i iY X x x    where   20, 20 .i iN x  Two sets of 

inclusion probabilities are generated    1 2 ,i i ix    where  1
1=1

=
N

ii
n  and  2

2=1
= .

N

ii
n  We let 

the expected sample sizes be 1 = 15n  and 2 = 25.n  For simplicity we let both designs be Poisson designs 

(where units are selected independently). This allows us to calculate exactly the variances for both separate 

estimators (and thus the optimal linear combination) and for the combined samples with single and multiple 

count. For the strategies with linear combination using estimated variances, we performed a Monte-Carlo 

simulation with 1,000,000 repeated sample selections. True variances for the two separate HT estimators, 

the SC/MC estimators for the combined samples and the optimal linear combination of the separate 

estimators are presented (Table 4.1). Simulation results for the different linear combinations with estimates 

variances are also presented (Table 4.1). 

 
Table 4.1 
Results for the combination of Poisson samples. True variances for the two separate HT estimators, the SC/MC 
estimators for the combined samples and the optimal linear combination of the separate estimators. Simulation 
results, in terms of estimated bias and MSE, for three linear combination estimators with estimated variances 
 

Estimator   Bias (Rel. bias)   MSE  

1̂Y    0   1,053,083 

2Ŷ    0   596,069 

SCŶ    0   361,088  

MCŶ    0   380,929  

ˆ
LY  Optimal   0   380,626 

*ˆ
LY  Separate   -92.8 (-2.24%)   412,248 

*ˆ
LY  Pooled SC   1.6 (+0.04%)   381,106 

*ˆ
LY  Pooled MC   1.6 (+0.04%)   381,106 

 
Using combined (pooled) variance estimators reduced both the bias and the variance for a linear 

combination in comparison to using separate variance estimators. For this example, the linear combination 

with pooled variance estimation came very close to the optimal linear combination in performance. The 

negative bias with separate variance estimators is mainly due to a positive correlation between the total 
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estimator and its variance estimator under the Poisson design. For this setting, the best result was obtained 

by combining the samples using a single count. 

 
4.2  Combining an unstratified SRS with a stratified SRS 
 

Here we generated a population of size = 1,000,N  with two strata of sizes 1 = 600N  and 2 = 400.N  

The target variable ,iy = 1, , ,i N  was generated as follows. In stratum 1 there were 500 ’siy  equal to 

zero and the other 100 ’siy  were drawn from  2
1 = 10, = 4 .N    In stratum 2 there were 300 ’siy  

equal to zero and the other 100 ’siy  were drawn from  2
2 = 15, = 4 .N    The first sample is an 

unstratified simple random sample of size = 50n  and the second sample is a stratified simple random 

sample with stratum sample sizes 1 = 30n  and 2 = 20.n  The variances for both separate HT estimators 

and for the combined samples with single and multiple count were calculated exactly. A Monte-Carlo 

simulation with 10,000 repetitions was performed to evaluate the performance of a linear combination 

estimator with estimated variances. The results are presented in Table 4.2. Bias is reduced by using a linear 

combination with pooled variance estimators compared with using separate variance estimators. Also for 

this setting, the best result was obtained by combining the samples using a single count. 

 
Table 4.2 
Results for the combination of a SRS and a stratified SRS. True variances for the two separate HT estimators, 
the SC/MC estimators for the combined sample and the optimal linear combination of the separate estimators. 
Simulation results, in terms of estimated bias and MSE, for three linear combination estimators with estimated 
variances 
 

Estimator   Bias (Rel. bias)   MSE  

1̂Y    0   516,835 

2Ŷ    0   498,321 

SCŶ    0   248,888  

MCŶ    0   253,789  

ˆ
LY  Optimal   0   253,704 

*ˆ
LY  Separate   -77 (-3%)   287,680 

*ˆ
LY  Pooled SC   9 (+0.4%)   257,229  

*ˆ
LY  Pooled MC   9 (+0.4%)   257,217 

 
5  Discussion 
 

The simulation examples in the previous section are only intended to demonstrate the different 

approaches and we make no claim of the generality of the result. However, we find it very likely that using 

pooled variance estimators is better than using separate variance estimators in a linear combination 

estimator, especially in cases where the separate total estimators are highly correlated to their variance 

estimators. 
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We have presented in detail how to combine independent probability samples and derived corresponding 

design features needed to do unbiased estimation and variance estimation. The danger of using the combined 

sample approach for very different designs has been illustrated. Moreover, we have shown that there is often 

a risk for a strong positive correlation between the HT estimator and its variance estimator. Such dependence 

can be a source for bias if estimated variances are used in a linear combination. Thus, as an alternative 

approach, we have shown how to use the combined sample to estimate separate variances. This alternative 

approach can lead to more stable weights in a linear combination of separate estimators, and has potential 

to reduce both bias and variance. 

There are of course limitations to when this methodology can be applied due to our assumption of fully 

known designs and use of the same frame with identifiable units. Sensitivity for deviations from some of 

these assumptions, such as having unidentifiable units or using approximate second order inclusion 

probabilities, needs further investigation. 

In particular, knowledge of this methodology is important if an initial sampling effort was proven 

insufficient. Such situations are common in e.g., environmental monitoring (Christensen and Ringvall, 

2013). Then a complementary sample may be designed in such a way that it allows for a combination with 

improved efficiency. 
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Bayesian benchmarking of the Fay-Herriot model using 
random deletion 

Balgobin Nandram, Andreea L. Erciulescu and Nathan B. Cruze1 

Abstract 

Benchmarking lower level estimates to upper level estimates is an important activity at the United States 
Department of Agriculture’s National Agricultural Statistical Service (NASS) (e.g., benchmarking county 
estimates to state estimates for corn acreage). Assuming that a county is a small area, we use the original Fay-
Herriot model to obtain a general Bayesian method to benchmark county estimates to the state estimate (the 
target). Here the target is assumed known, and the county estimates are obtained subject to the constraint that 
these estimates must sum to the target. This is an external benchmarking; it is important for official statistics, not 
just NASS, and it occurs more generally in small area estimation. One can benchmark these estimates by 
“deleting” one of the counties (typically the last one) to incorporate the benchmarking constraint into the model. 
However, it is also true that the estimates may change depending on which county is deleted when the constraint 
is included in the model. Our current contribution is to give each small area a chance to be deleted, and we call 
this procedure the random deletion benchmarking method. We show empirically that there are differences in the 
estimates as to which county is deleted and that there are differences of these estimates from those obtained from 
random deletion as well. Although these differences may be considered small, it is most sensible to use random 
deletion because it does not give preferential treatment to any county and it can provide small improvement in 
precision over deleting the last one benchmarking as well. 

 
Key Words: Constraint; Direct estimates; Fay-Herriot model; Multivariate normal density; Official statistics; Small area 

estimation. 

 
 

1  Introduction 
 

In official statistics, it is important for lower level estimates to sum to upper level estimates. For example, 

the National Agricultural Statistics Service (NASS) often uses a “top-down” sequence in the release of its 

official estimates in which national and state estimates, e.g., estimated corn acreage totals, are published 

prior to the completion of supplemental data collection and estimation of corresponding county estimates 

(Cruze, Erciulescu, Nandram, Barboza and Young, 2019). Within these small administrative areas, the 

survey data often become sparse. Several popular modeling techniques give rise to more reliable small area 

estimates. However, the small area estimates may not automatically satisfy relationships with estimates at 

other levels of aggregation, and benchmarking procedures may be applied to enforce consistency among 

estimates. 

There is a considerable history on benchmarking techniques which have been used to impose agreement 

among multiple levels and to protect against possible model misspecification. These procedures can be 

broadly classified in two categories: internal benchmarking, in which a target is derived from current survey 

data, and external benchmarking, in which a desired target may be taken from other sources such as 

administrative data or previously established estimates. We discuss external benchmarking, in accordance 

with NASS’s “top-down” procedure, of the Fay-Herriot (FH) model (Fay and Herriot, 1979). 
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The most recent review of small area estimation is given in Pfeffermann (2013), but see Rao and Molina 

(2015) for the most updated textbook on small area estimation. Earlier Jiang and Lahiri (2006) gave an 

extensive review of the classical inferential approach for linear and generalized linear mixed models that 

are used in small area estimation. There are discussions of benchmarking in these works as well, but the 

latter review was not on the hierarchical Bayes approach that is of primary interest in this paper. 

Within the hierarchical Bayes framework, You, Rao and Dick (2004) studied benchmarked estimators 

for small area estimation based on unmatched sampling and linking models proposed earlier by You and 

Rao (2002). They applied this approach to undercoverage estimation for the ten provinces across Canada 

for the 1991 Canadian Census. Wang, Fuller and Qu (2008) gave a characterization of the best linear 

unbiased predictor (BLUP) for small area means under an area level model that satisfies a benchmarking 

constraint and minimizes the loss function criterion that all linear unbiased predictors satisfy. They also 

presented an alternative way of imposing the benchmarking constraint such that the BLUP estimator would 

have a self-calibrated property (discussed in You and Rao, 2002). Wang et al. (2008) characterized a class 

of benchmarked estimators as the predictors that minimize a quadratic loss function subject to a 

benchmarking restriction. Their proposed self-calibrated augmented model reduces bias both at the overall 

and small area level. Other benchmarking procedures are given by Bell, Datta and Ghosh (2013), Ghosh 

and Steorts (2013), Pfeffermann, Sikov and Tiller (2014) and Pfeffermann and Tiller (2006). 

Whether fitting unit-level or area-level models, incorporating a fixed, external target amounts to 

imposing the general constraint 
=1

= ,i ii
w a 

 where a  is a known constant and the i  denote small area 

estimates to be benchmarked; for totals, the weights iw  are all equal to 1. One way to do so is by using the 

following transformation, 
=1

= ,ii
a   

 keeping , = 1, , 1,i i    unchanged and “deleting” the last 

small area, replacing it with  1

=1
= .ii

a  
   

  Janicki and Vesper (2017) introduced a slightly 

different transformation, 
=1

= , = 1, , 1, = ,i i ii
i     

   which is essentially an internal 

benchmarking that preserves the sum of all   estimates. If that sum (of all   unbenchmarked estimates) 

were prescribed as an external target, then 
1

=1
= ,ii

  
  

   and Janicki and Vesper’s transformation 

becomes equivalent to deleting last small area estimate. 

External benchmarking procedures, which deleted the last small area estimate, were explored by 

Nandram and Sayit (2011) and by Nandram, Berg, and Barboza (2014) for the purposes of benchmarking 

binomial probabilities and forecasts of crop yield, respectively. (In both of these contexts the constraint was 

actually imposed on the weighted sum of small area estimates.) Erciulescu, Cruze, and Nandram (2019) 

considered a variety of external benchmarking techniques including deletion, difference benchmarking, and 

ratio benchmarking in the context of hierarchical Bayesian small area models. Collectively, the external 

benchmarking constraint has been inserted in the likelihood function (e.g., Toto and Nandram, 2010), the 

joint density of the area effects (e.g., Nandram and Sayit, 2011), or in the posterior density of the area effects 

(Janicki and Vesper, 2017), although the latter choice is using the prior knowledge or requirements 

embodied in the constraint a posteriori rather than on the prior distributions themselves. 

Datta, Ghosh, Steorts and Maples (2011), henceforth DGSM, proposed a general class of constrained 

Bayes estimators to provide benchmarked estimates. Referring specifically to the method of Toto and 
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Nandram (2010) for unit level models, DGSM wrote the following: “A disadvantage to such an approach 

is that results can differ depending on which unit is dropped ”. This statement also applies to Nandram and 

Toto (2010), Nandram, Toto and Choi (2011), Janicki and Vesper (2017) and others. It also applies in the 

same way to an area-level model subject to an external constraint. The procedures of DGSM depend on an 

important area-specific parameter (see Section 4). This parameter also has several different specifications, 

and it can be argued that the resulting estimates could also be affected by the choice of specification. 

Moreover, the procedures of DGSM do not provide posterior standard errors or credible intervals. 

In response to DGSM’s comment on the last area deletion benchmarking, we introduce a random deletion 

benchmarking, giving a chance to each area to be deleted, and not just the last one. The random deletion 

benchmarking method is motivated mathematically in Appendix A. Empirical results show that there are 

slight differences between the last one deletion benchmarking and the random deletion benchmarking. 

In this paper, we discuss random deletion benchmarking in the context of a Bayesian FH (BFH) model. 

In Section 2, the BFH model without constraint is introduced. The methodology for imposing an external 

target on the BFH model through random deletion is developed in Section 3. In Section 4, we describe the 

empirical studies to assess features of estimates obtained from random deletion benchmarking, including 

related measures of uncertainty. Finally, Section 5 has concluding remarks; more technical details are 

provided in several appendices. 

 
2  Bayesian Fay-Herriot model  
 

Assume that the observed data are  ˆ , , = 1, , ,i is i    where î  and is  are respectively an estimate 

and its standard error (for simplicity, assumed known) of a quantity under study, e.g., the thi  area total .i  

The BFH model is  

                                                                  ind
2ˆ Normal , ,i i i is     

  ind
2 2, Normal , ,i i  β x β   

  2, , β  (2.1) 

where = 1, , ,i   ix  are a set of covariates with p  components (including intercept) and  2, β  is 

the joint prior distribution for  2, .β  A priori it is assumed that      2 2, ,    β β  i.e., β  and 
2  are independent, with 

       22 21 and = 1 1 .    β  (2.2) 

By Bayes’ theorem, the joint posterior density of 1p   model parameters is  

  
 

   
2

2 2
2

2 2 2 22 =1

1 1 1 1 1ˆˆ, , exp .
21

i i i i
i is

    
 

                      
θ β θ x β

 

 (2.3) 
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In (2.2),  2   is a proper prior distribution, flatter than  2 21    near zero, with no moments. In 

fact, any proper prior for 2  is fine; an improper prior on 2  may lead to improper posterior density. 

Because   β  is improper, the product      2 2,    β β  is improper, and this could cause the joint 

posterior density of  2, , θ β  to be improper, an undesirable scenario. Theorem 1 below establishes the 

propriety of the joint posterior density (2.3). 

More details about the BFH model are presented in Appendix B. Specifically, letting 2

2 2= ,
i

i s

   

= 1, , ,i    we have shown that  

                                       ind
2 2ˆˆ, , Normal 1 , 1 , = 1, , ,i i i i i i i         β θ x β    (2.4) 

                                          2 ˆ ˆ ˆ, Normal , , β θ β  (2.5) 

                                         
 

2 2
3 22

1ˆ ,
1

Q  





θ  (2.6) 

where 

                                                     1
2 2 2 2

=1 =1

ˆ
ˆ ˆ ˆ= , = ,i i i i

i ii is s


 




 
  
x x x

β
 

  

                                             
 

  21/2
2

1 2 2 22 2=1 =1

1 1 1 ˆ ˆˆ= exp .
2 i i

i i ii

Q
ss

 


 
    

  
  x β
 

  

 
Theorem 1 

The joint posterior density (2.3) is proper provided the design matrix is full rank. 
 

Proof of Theorem 1 

Because the design matrix is full rank, β̂  and ̂  are well defined for all 2 .  This implies that  2Q   is 

bounded in 2 .  Therefore, as  
 22

12
1 

 


  is proper, the posterior density  2
3

ˆ  θ  is proper. Then, 

by applying the multiplication rule of probability, it follows that the joint posterior density,  2 ˆ, , , θ β θ  

is proper. 

With propriety assured, sampling from the joint posterior density and inference about i  can be achieved 

through a simple Monte Carlo procedure. Using the multiplication rule and drawing samples from (2.6), 

(2.5) and (2.4), the procedure follows. First, draw a sample from  2
3

ˆ  θ  in (2.6). Draws from this 

distribution can be made using a grid method; see Appendix B. It is then easy to draw samples from the 

conditional posterior density of β  in (2.5). Finally, samples of the i  can be drawn independently from 

(2.4). Sampling in this manner from the joint posterior density under the unconstrained BFH model does 

not need monitoring (unlike Markov chain Monte Carlo methods). The unconstrained BFH model will 
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provide a basis for comparison of the estimates and related measures of uncertainty obtained under the 

proposed random deletion benchmarking method. 

 
3  Random deletion methodology 
 

As remarked earlier, the random deletion methodology is obtained by introducing a new variable which 

takes the values 1, ,   with equal, possibly different, probabilities (weights). In Section 3.1, we show 

how to construct the joint posterior density of the parameters of the BFH model under random deletion, and 

in Section 3.2, we show how to sample from the joint posterior density. 

 
3.1  Construction of the joint posterior density 
 

The Basic Benchmarking Theorem is motivated by the work reviewed in Section 1. The next goal is to 

construct the joint prior density of 1 , ,    subject to the benchmarking constraint that 
=1

= ,ii
a 

 

where a  is a known external target. The joint prior density of 1 , ,    will be used to complete the 

constrained Fay-Herriot model for the last one deletion benchmarking (see Section 1). 
 

Theorem 2 

Let  ind
2Normal , , 1, , .i i i  u β    Then, under the constraint, 

=1
= ,ii

a 
 where a  is constant, 

letting  θ   be the vector of all the i  except the last one, the joint density of , = 1, , ,i i    is  

  

1
2

=1

1 1
Normal , , = ,i

i

I J I J a  
         

   
θ c


  
  (3.1) 

    1 1, , ,a J
     c j u u β u u β    and j  are respectively a    1 1     matrix and a 

 1  vector of ones. 
 

Proof of Theorem 2 

See Appendix C. 

The proof of Theorem 2 uses the multivariate normal distribution, and it will be used to prove the more 

general theorem when the prior is adjusted to delete any area. 

The constrained BFH model is 

  ind
2ˆ Normal , , = 1, , ,i i i is i      (3.2) 

                                                ind
2 2

=1

, Normal , , = ,i i i
i

a    β x β


   

  2, . β   

The constraint on the prior on 1 , ,    essentially adjusts the joint prior density. However, to incorporate 

the constraint, we will use Theorem 2 to adjust the posterior density under the unconstrained model. 
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For = 1, , ,i    let 2

22=
i

i s


   and  ˆ̂ ˆ= 1 .i i i i i     x β  Also, let  2 2ˆ = 1 , = 1, , .i i i      

Then, under the unconstrained model the joint posterior density is 

      2
2 2 2

ˆ
1

ˆ̂ˆ ˆ, , , Normal , Normal , .
ii

nb i i i
i i




     



  
   

  
θ β θ β x β


  

We now extend the result of Theorem 2, to reflect our interest in the constrained BFH model. Theorem 3, 

below, is used to construct the random deletion benchmarking method. 
 

Theorem 3 

Using a general notation, let  ind
2Normal , , = 1, , .i i iy i     Let  iy  denote the vector of all the iy  

except the thi  one. Also, let 2 2
1

, = 1, , ,i i jj
v i 


      and * 2 2

1
, = 1, , .i i jj

v i 


      

Under the constraint 
1

,ii
y a


 

 

             
2*

1

Normal , diagonalji i i i i i
j

u a


       
  

y u v σ v v


  (3.3) 

with = .i jj i
y a y


   Then,  

    
            

2*

=1

, = = 0 = Normal , diagonal ,
r ry j jr r r r r

j r j

p z r a y a  


            
    

 yy μ v σ v v


 (3.4) 

for = 1, ,r    and 
=1

= .ii
a y   

 
 

Proof of Theorem 3 

The proof of Theorem 3 is similar to Theorem 2. See Appendix C. 

In what follows, one of the   area parameters will be deleted randomly (i.e., with probability 1 ).  Let 

= 1, ,z    represent the county that is deleted. That is,  = = 1 , = 1, , .P z r r    Then, under the 

constrained BFH model, using Theorem 3, the joint posterior density is 

 

   

            

2
2 2

ˆ
=1

2*

1

ˆ, = , , , Normal ,

ˆˆ ˆˆ ˆNormal , diagonal ,

ri

r

b i j
i j ri

jr r r r r
j

z r a

a




     









             

        
  

 

θ

θ β θ β x β

θ v σ v v




 

(3.5)

 

where = 1, , ,r    and for = 1, , ,i   * 2 2
=1

ˆ ˆ=i i jj
v   

 and 2 2
=1

ˆ ˆ= .i i jj
v   

 

 
3.2  Sampling the joint posterior density 
 

Unlike the BFH model, the constrained model in (3.2) cannot be fit using random draws; we use a Gibbs 

sampler. The joint conditional posterior density (cpd) of  , zθ  is  



Survey Methodology, June 2019 371 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

            

2

2*

=1

ˆ, = , ,

ˆˆ ˆˆ ˆNormal , diagonal ,

r

r

j
j r

jr r r r r
j

z r a

a

   





  
 

        
  



θ

θ β θ

θ v σ v v


 

(3.6)

 

where  = 1, , , rr θ   denotes the vector of i  with the thr  component deleted, and v  and *v  are defined 

in Theorem 3. Then, the joint conditional posterior density of  2, β  is 

 

   

            

2
2 2

ˆ
=1

* 2

=1

ˆ, , , = , Normal ,

ˆˆ ˆˆ ˆNormal , diagonal .

i

r

i
i i

jr r r r r
j

z r

a




   






  

 

        
  



θ

β θ θ β x β

θ v σ v v




 

(3.7)

 

It is straight forward to sample the cpd’s of θ  and .z  However, it is not so simple to sample the cpd’s 

of β  and 2  that we will next discuss. 

First, to obtain the cpd’s of β  and 2 ,  we define 

 1 12 2
1 1

1 1ˆ and .i i i i i i
i i

A  
  

   g x x x
 

  

Second, for = 1, , ,i    let   *
1

ˆ ˆ
i i i j j ij

d a v   


   
 and    *

1
1 1 .i i i i j jj

v 


   x x x


 

Let  rd  and  rX  respectively denote the vector with entries id  excluding the thr  component and the matrix 

with columns ix  excluding .rx  Now, let 

               2 2and ,r r r r r r rX A X X      g θ d      

where  r  is the covariance matrix without the thr  row and column. Third, with a multivariate normal prior 

on β  of the form  0 0Normal , ,β β  where 0β  and 0  are specified, we let  

 1
0 0 0 0 0and = ;A A  g β   

thereby offering some protection against posterior impropriety. It follows that  

 
1 12 2 2

2

=0 =0 =0

ˆ, = , , Normal ,  .s s s s
s s s

z r A A A
    

    
   
  β θ θ g   

We can eliminate the prior of β  by letting 0    (i.e., noninformative prior) to get   1 β  as in the 

BFH model. 

Finally, we consider the cpd of 2 .  Let 

      *

1

ˆ ˆ1 1 , 1, , ,i i i i i j j j j i
j

U a v i     


           
 
x β x β


    

and 

                                   2
1

1

diagonal 1 , , 1 1 1 1 .i i j
j

     


         
 




   
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Then, the cpd of 2  is 

      
      2 2 2 2

ˆ
1

ˆ, , , Normal , Normal , ,
ri

i i r r
i

z r s    


       
 θθ β θ x β U


  

where  rU  denotes the vector of the iU  excluding the thr  component and  2   is a prior on 2 .  As in 

the BFH model (see Section 2), we assign the prior density     22 2 21 1 , > 0      to 2 .  Because 

the baseline BFH posterior density is proper, the constraint BFH posterior density will also be proper. 

 
4  Empirical studies 
 

The purposes of these empirical studies are twofold. First, it is demonstrated that the BFH model can be 

fit as stated in Section 2 and the deleting the last one benchmarking and random benchmarking methods are 

performed. Second, the benchmarking methods are compared in a simulation study that uses a well-used 

dataset in the small area literature. 

In the data generation process, we use the data on corn and soybean acres in Battese, Harter and Fuller 

(1988), available for 12 counties (areas) in Iowa. The resulting county-level corn and soybean acreages are 

constructed using a number of segments sampled from the population (known number of segments). Landsat 

satellite data on the number of pixels of corn and soybean in the sampled segments (i.e., two covariates) are 

also available. The finite population means of the number of pixels classified as corn and soybean for each 

county are also reported. Starting with this dataset, we construct new datasets with any number of areas. 

The data generation process has two steps. In the first step, the unit-level model ,ij ij ijy e  x β  

1, , , 1, , ,ii j n     where  iid
20, ,ije   is fit to the data available for the 12  counties in Iowa. 

The area sample sizes are 1 2 3 1,n n n   4 5 6 7 82, 3,n n n n n     9 10 114, 5,n n n    and 

12 6.n   Using least squares, we estimate β  and 2  by β̂  and 2ˆ ,  respectively. For the areas with sample 

size greater than one, we set 2
is  equal to the estimated variance of the sample mean  1

in

i i ij ij
y y y n


   

and we let 2S  be their geometric mean. For the areas with sample size equal to one, we set 2
is  equal to 2 .S  

The vector of covariates iX  has three elements, the integer one (for the intercept), followed by the 

population means of pixels classified as corn and soybean. 

In the second step, the data generation process for any desired number   of small areas is illustrated. 

The covariates , 1, , ,i i x    are sampled with replacement from , 1, , 12.i i X   Then, the area-level 

means are drawn using 

  ind
2ˆ ˆNormal , , 1, , ,i i i  x β     

where β̂  and 2̂  are the least squares estimates defined above. The sample variances 2
is  are generated in 

two steps. First, the sample sizes are drawn from a uniform distribution,  iid
Uniform 5, 25 ,in   

= 1, , .i    Second, let  2 2= 1 ,i i is S V n   where 
ind 2

1ii nV    and 2S  defined above. Finally, the small 

area survey estimates are drawn using  ind
2ˆ Normal , , = 1, , .i i is i     The benchmarking target is set 

equal to the sum of the î  and variants of this value, 
=1 îi
 

 scaled up or down by 50%. In NASS’s practice, 
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for crop county estimates, this target is an already set state value. To evaluate the benchmarking methods in 

extreme cases, we consider additional simulation scenarios, where an area sample size is set to 2 or 50, or 

where the factor 2S  is multiplied by ten. 

In what follows, we report empirical results mostly for a simulation scenario using 12 areas. Examples 

using larger number of areas are briefly discussed. For example, Iowa has 99 counties, and one of NASS’s 

interests is in benchmarking county estimates for planted acres, harvested acres and production (bushels) to 

the predefined state-level total. For such small numbers of areas, no adjustment is needed to the 

benchmarking procedures, deleting the last one or random deletion, introduced in the previous sections. 

However, the computation may be intolerable for an extremely large number of areas (say, one million), 

and some adjustments would be needed to the current procedures. 

It is pertinent to discuss the computations for the simulation scenario with 12 areas. For posterior 

inference under the BFH model, we have used 1,000 random draws, and this runs in just a few seconds. On 

the other hand, it is more difficult to run a Gibbs sampler for deleting one at a time or random deletion 

benchmarking. However, we have provided an efficient Gibbs sampler as follows. We used a long run of 

20,000 iterations, with a “burn in” of the first 10,000 iterations, choosing every tenth iterate thereafter. This 

was obtained by trial and error that is gauged by the autocorrelations, the Geweke test for stationarity and 

the effective sample sizes. For the 1,000 selected iterations, the autocorrelations are all negligible. For 

random deletion benchmarking, the p-values of the Geweke test for the three regression coefficients and 2  

are, respectively, 0.651, 0.087, 0.828 and 0.699 (i.e., stationarity is not rejected), and the effective sample 

sizes are all 1,000. Also, the trace plots show no evidence of nonstationarity. Therefore, the Gibbs sampler 

is efficient, taking a few seconds despite the large number of runs. 

The performance of benchmarking methods is assessed using a set of metrics that include posterior 

means (PM) and posterior standard deviations (PSD), and when it is convenient, posterior coefficients of 

variation (PCV), numerical standard errors (NSE) of the estimates and 95% highest posterior density 

intervals (95% HPD). Numerical results are presented in Tables 4.1-4.8. 

A summarized version of the basic results is presented in Table 4.1, and serves for comparison of the 

average, standard error and coefficient of variation of the observed data with the PMs, PSDs, PCVs from 

the BFH model, benchmarking (deleting the last one, LO) model and random benchmarking (RD) model. 

The results in Table 4.1 apply to two simulation scenarios, where 2 = 163,S  small variation in the observed 

data, and where 2 = 1,630,S  relatively larger variation in the observed data. When 2 = 163,S  there are 

very little differences between the observed data and the posterior quantities from the BFH, LO and RD 

models. Given the small coefficients of variation for the survey estimates, it is difficult for any model to 

further reduce variability. Hence, the PCVs are comparable to the CVs of the survey estimates. On the other 

hand, three interesting points can be made for the scenario where 2 = 1,630.S  First, the PMs under the 

BFH model can be very different from those of LO and RD models and these latter two PMs are very close. 

Second, the PSDs are much smaller than the standard errors of the observed data; there are substantial gains 

in precision under the BFH model. However, the PSDs are about four to five times smaller than those for 

the observed data and the PSDS under the LO and RD model are about twice those of the BFH model. The 
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PCVs follow the same pattern. Third, LO and RD are very close in all three measures (PMs, PSDs, PCVs) 

with RD model having just slightly smaller PSDs. As expected, there is small difference between the LO 

model and the RD model. But one must also observe that benchmarking the BFH model is important because 

we can get answers that are different from the BFH model at least in terms of posterior standard deviations 

and coefficients of variation. Benchmarking is a jittering procedure, which helps to protect the model from 

misspecification, and therefore it must lead to increased variability in the small area estimates. 

 

Table 4.1 
Comparison of BFH model with no benchmarking, deleting the last one benchmarking and random 
benchmarking via posterior mean (PM), posterior standard deviation (PSD) and posterior coefficient of 
variation (PCV) for two values of 2S  
 

  PM PSD PCV 
 A OB BFH LO RD OB BFH LO RD OB BFH LO RD
a. 2 = 163; 1,435S a   1 135.6 134.0 133.8 133.5 6.03 5.62 5.47 5.41 0.044 0.042 0.041 0.041

2 102.0 103.5 103.1 103.0 7.10 6.50 6.11 5.82 0.070 0.063 0.059 0.057
3 117.7 121.0 120.7 120.5 7.31 6.72 6.55 6.25 0.062 0.056 0.054 0.052
4 77.0 81.5 81.4 81.0 5.88 6.00 5.46 5.53 0.076 0.074 0.067 0.068
5 126.9 127.8 127.5 127.5 5.63 5.25 5.25 5.06 0.044 0.041 0.041 0.040
6 113.1 113.4 112.9 113.1 8.06 7.15 6.82 6.74 0.071 0.063 0.060 0.060
7 137.2 133.7 133.5 133.9 6.74 6.38 5.93 6.02 0.049 0.048 0.044 0.045
8 124.8 124.7 124.7 124.7 4.03 3.91 3.83 3.76 0.032 0.031 0.031 0.030
9 118.3 116.5 115.8 116.6 7.54 6.79 6.29 6.65 0.064 0.058 0.054 0.057

10 156.5 153.4 153.3 153.3 4.37 4.45 4.12 4.18 0.028 0.029 0.027 0.027
11 109.5 110.3 110.3 110.2 4.88 4.64 4.70 4.70 0.045 0.042 0.043 0.043
12 116.3 118.1 117.9 117.7 7.23 6.62 6.26 6.00 0.062 0.056 0.053 0.051

b. 2 = 1,630; 1,482S a   1 129.1 129.8 127.2 126.5 19.07 4.64 10.71 10.45 0.148 0.036 0.084 0.083
2 117.3 126.3 122.1 122.1 22.46 5.08 12.73 12.51 0.191 0.040 0.104 0.102
3 120.0 145.5 137.3 136.9 23.11 5.93 12.91 12.68 0.193 0.041 0.094 0.093
4 68.8 107.3 94.0 93.6 18.60 7.47 12.04 11.86 0.270 0.070 0.128 0.127
5 142.4 146.4 142.3 142.2 17.80 4.52 11.98 11.15 0.125 0.031 0.084 0.078
6 108.8 120.2 115.2 115.4 25.49 5.43 11.75 11.66 0.234 0.045 0.102 0.101
7 136.8 116.2 118.2 119.0 21.31 5.37 11.32 11.90 0.156 0.046 0.096 0.100
8 124.5 132.5 127.3 127.3 12.76 4.39 9.00 8.91 0.102 0.033 0.071 0.070
9 144.2 127.5 128.0 129.5 23.86 5.33 12.74 14.00 0.165 0.042 0.100 0.108

10 172.9 129.2 145.5 145.3 13.81 9.23 10.28 10.37 0.080 0.071 0.071 0.071
11 109.1 114.7 110.6 110.2 15.42 4.31 10.53 10.43 0.141 0.038 0.095 0.095
12 108.4 120.3 114.6 114.2 22.87 5.10 12.42 12.01 0.211 0.042 0.108 0.105

 

Note: OB: observed data; BFH: Bayesian Fay-Herriot model; LO: benchmarking (deleting the last one) model; RD: random benchmarking
model; a is the target. For OB, the direct estimate, standard error and coefficient of variation are presented under PM, PSD and PCV, 
respectively. Under the DGSM benchmarking procedure, at 2 = 163,S  the benchmarking values are 133.7, 103.3, 120.8, 81.3, 127.6, 
113.2, 133.4, 124.5, 116.3, 153.1, 110.1, 117.9, and at 2 = 1,630,S  the benchmarking values are 126.9, 123.5, 142.3, 105.0, 143.2, 117.5, 
113.6, 129.5, 124.7, 126.4, 112.1, 117.6. 

 
Under the basic simulation scenario, we compare the deletion benchmarking methods to one of the 

methods in DGSM that provides benchmarked posterior estimates without deletion. To match the notation 

in DGSM, the benchmarking equation must be rewritten as  

 
=1

= = ,i i
i

a
t 




  

where 
=1

= 1 , = 1.i ii
    Let  ˆ B

i  denote the posterior means from the BFH model. Now, define 

 
=1

ˆ ˆ= ,B
B i ii

   
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 

= , = , = 1, , ,
ˆ

i i
i iB

ii

r i
 




    

and * 2
=1

= .i ii
S   

 Note that among the several specifications in DGSM, we have selected i  at random 

(no preference). Then, the benchmarked Bayes estimators of DGSM are  

            *ˆ ˆ ˆ= , = 1, , .BM B
i i B it r S i        

Empirical results using the estimator  ˆ BM
i  are presented in the note to Table 4.1. The largest difference 

between the benchmarked estimates under different benchmarking methods is for area 10 (OB: 172.9; BFH: 

129.2; LO: 145.5; RD: 145.3; DGSM: 126.4). In general, the PMs from LO and RD are closer to OB 

(observed data). Otherwise, these estimates compare reasonably well with the LO benchmarking and RD 

deletion although there are some small differences; DGSM does not provide posterior standard deviations 

and credible intervals. 

More detailed results for 2 = 163,S  are presented in Tables 4.2-4.8 and in Figures 4.1-4.4. Our interest 

is mainly to compare deletion of a single area (e.g., LO) and RD. 

Using the results in Table 4.2, we conclude that the PMs from the BFH model (without benchmarking) 

are slightly different from the direct estimates, and as expected, larger than the smaller direct estimates and 

smaller than the larger ones. Except for two areas, as expected, the PSDs are smaller than the direct standard 

deviations. For example, the smallest direct estimate (76.997) has the largest shrinkage with a larger 

standard deviation (5.881 vs. 5.995); the results are consistent with the standard shrinkage that occurs in 

small area estimation. We note that the PCVs are all small and the NSEs are reasonably small, too. 

 

Table 4.2 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.985 5.617 0.042 0.057 (123.422, 145.402) 
2 7 101.980 7.101 103.461 6.498 0.063 0.065 (90.598, 116.134) 
3 24 117.655 7.309 121.006 6.716 0.056 0.066 (107.730, 134.124) 
4 23 76.997 5.881 81.473 5.995 0.074 0.058 (69.046, 92.578) 
5 21 126.917 5.629 127.832 5.248 0.041 0.052 (117.850, 138.406) 
6 9 113.132 8.061 113.393 7.147 0.063 0.068 (99.441, 127.451) 
7 5 137.236 6.739 133.661 6.378 0.048 0.064 (121.771, 146.662) 
8 20 124.839 4.034 124.732 3.906 0.031 0.039 (117.233, 132.309) 
9 16 118.306 7.544 116.479 6.785 0.058 0.071 (103.225, 130.003) 
10 9 156.503 4.368 153.355 4.449 0.029 0.045 (144.785, 162.031) 
11 23 109.546 4.877 110.348 4.637 0.042 0.047 (101.179, 119.294) 
12 9 116.314 7.232 118.098 6.623 0.056 0.068 (105.135, 131.186) 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435 and the sum of the posterior mean is 1,437.823 (not benchmarked).

 
The estimates from the BFH model with deleting the last area and with random deletion under a uniform 

prior (equal weights) are presented in Tables 4.3 and 4.4. The posterior weights barely differ from 0.083 
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with the largest one (0.097) of the last area and smallest one (0.056) of the th8  area. Both random deletion 

and deleting the last one provide improved precision, as the PSDs of the benchmarked estimates are all 

smaller than the observed standard errors, for both benchmarking methods. The NSEs are larger than for no 

benchmarking, but this barely matters as these are errors of the PMs (the characteristic of the PM has three 

digits). 

 

Table 4.3 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters under random deletion benchmarking 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.516 5.431 0.041 0.171 (123.414, 143.541) 
2 7 101.980 7.101 102.903 5.793 0.056 0.199 (92.378, 114.250)
3 24 117.655 7.309 120.671 6.237 0.052 0.194 (107.744, 132.190)
4 23 76.997 5.881 81.170 5.597 0.069 0.202 (69.781, 91.177)
5 21 126.917 5.629 127.652 5.036 0.039 0.170 (118.293, 137.228)
6 9 113.132 8.061 112.805 6.707 0.059 0.223 (100.926, 126.074)
7 5 137.236 6.739 133.908 6.007 0.045 0.177 (122.135, 145.344)
8 20 124.839 4.034 124.703 3.757 0.030 0.120 (117.962, 132.304)
9 16 118.306 7.544 116.451 6.650 0.057 0.249 (103.400, 129.316)
10 9 156.503 4.368 153.222 4.216 0.028 0.134 (144.392, 160.854)
11 23 109.546 4.877 110.221 4.694 0.043 0.150 (101.038, 119.570)
12 9 116.314 7.232 117.780 5.997 0.051 0.208 (104.619, 128.158)

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435. Under a uniform prior (equal weights) the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are deleted 
are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097.

 

Table 4.4 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters under deleting the last area 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.772 5.519 0.041 0.151 (122.213, 143.991) 
2 7 101.980 7.101 103.026 6.319 0.061 0.171 (89.424, 113.857)
3 24 117.655 7.309 120.470 6.458 0.054 0.209 (108.783, 134.261)
4 23 76.997 5.881 81.391 5.906 0.073 0.171 (69.636, 92.634)
5 21 126.917 5.629 127.883 5.158 0.040 0.142 (117.282, 137.305)
6 9 113.132 8.061 112.895 6.270 0.056 0.216 (100.664, 124.320)
7 5 137.236 6.739 133.298 5.948 0.045 0.178 (121.831, 144.727)
8 20 124.839 4.034 124.664 3.810 0.031 0.124 (117.321, 131.941)
9 16 118.306 7.544 116.542 6.531 0.056 0.203 (104.238, 129.622)

10 9 156.503 4.368 153.229 4.353 0.028 0.132 (144.443, 161.593)
11 23 109.546 4.877 109.997 4.563 0.041 0.168 (101.428, 118.953)
12 9 116.314 7.232 117.835 6.344 0.054 0.215 (106.421, 131.483)

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435. 

 

The three methods (BFH, RD, LO) are compared using the results in Table 4.5. The PMs are comparable, 

so that benchmarking (RD, LO) does not distort (shrink) the estimates much beyond the shrinkage under 

the BFH model. Also, the PSDs under LO and RD are almost always smaller than those under the BFH 

model. For eight of the twelve areas, RD has smaller PSDs than LO; in these areas, RD shows roughly 1% 

decrease in PSD over LO and roughly 4% over the PSDs from BFH. 
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To investigate how sensitive the PSDs are to different benchmarking targets, we present results using 

three choices of targets in Table 4.6. The PSDs change only slightly over different targets and are still better 

than the standard errors of the direct estimates. 

As part of designing a complex set of simulations, we consider using unequal probabilities (weights) in 

the random deletion benchmarking, and present results in Table 4.7. Uniform weights (EW) are compared 

to weights inversely proportional (IW) to the sample sizes and to weights directly proportional (DW) to the 

samples sizes. Again, small differences are present among the three PMs and among the three PSDs. The 

PSDs are still smaller than those of the direct estimates. 

Using the results in Table 4.8, we study how extreme sample sizes in the last county (to be deleted) affect 

posterior inference. For this, we set the sample size of the last county to be outside the simulation range (5-

25), at 2 and 50. First, consider the case in which the sample size of the last county is 2. Consistent with 

previous findings, there are minor differences of the PMs over no benchmarking, deleting the last one and 

random deletion for all counties. The PSDs for LO and RD are smaller than those of BFH with nine of these 

PSDs for RD smaller than LO. However, for the last county, we observe relatively large posterior standard 

deviations (10.00, 8.771, 8.525), roughly 15% decrease in PSD of RD over no benchmarking. Next, consider 

the case in which the sample size of the last county is 50. The patterns are similar, except the PSDs for the 

last county are comparable to the others under BFH, LO and RD and again there is an approximately 10% 

decrease (6.282, 5.958, 5.702) in PSD of RD over no benchmarking. It appears that deliberately putting the 

county with the most extreme sample size (small or large) as the last county can affect the benchmarking 

procedure. In contrast, minor changes are observed when the areas with extreme sample size are not 

systematically deleted. When the sample size is 2, the new PMs and PSDs are the following, BFH: 124.307, 

9.993; LO: 123.371, 9.000 RD: 123.540, 8.887. When the sample size is 50, the new PMs and PSDs are the 

following, BFH: 118.167, 6.284; LO: 117.802, 6.094; RD: 117.716, 5.948. 

 
Table 4.5 
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, 
random deletion (RD) benchmarking and deleting the last one (LO) 
 

    BFH RD LO 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.985 5.617 133.516 5.431 133.772 5.519 
2 7 101.980 7.101 103.461 6.498 102.903 5.793 103.026 6.319 
3 24 117.655 7.309 121.006 6.716 120.671 6.237 120.470 6.458 
4 23 76.997 5.881 81.473 5.995 81.170 5.597 81.391 5.906 
5 21 126.917 5.629 127.832 5.248 127.652 5.036 127.883 5.158 
6 9 113.132 8.061 113.393 7.147 112.805 6.707 112.895 6.270 
7 5 137.236 6.739 133.661 6.378 133.908 6.007 133.298 5.948 
8 20 124.839 4.034 124.732 3.906 124.703 3.757 124.664 3.810 
9 16 118.306 7.544 116.479 6.785 116.451 6.650 116.542 6.531 

10 9 156.503 4.368 153.355 4.449 153.222 4.216 153.229 4.353 
11 23 109.546 4.877 110.348 4.637 110.221 4.694 109.997 4.563 
12 9 116.314 7.232 118.098 6.623 117.780 5.997 117.835 6.344 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. 
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Table 4.6 
Comparison of posterior inference of the area parameters under random deletion benchmarking with different 
targets (a = 1,435) 
 

    a 1.5a 0.5a 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.516 5.431 189.249 5.385 77.769 5.561 
2 7 101.980 7.101 102.903 5.793 175.963 5.794 29.847 5.899 
3 24 117.655 7.309 120.671 6.237 197.219 6.099 44.145 6.461 
4 23 76.997 5.881 81.170 5.597 134.628 5.871 27.771 5.460 
5 21 126.917 5.629 127.652 5.036 177.209 5.165 78.125 5.053 
6 9 113.132 8.061 112.805 6.707 201.949 7.145 23.614 6.995 
7 5 137.236 6.739 133.908 6.007 200.989 6.018 66.781 6.024 
8 20 124.839 4.034 124.703 3.757 151.951 3.952 97.484 3.924 
9 16 118.306 7.544 116.451 6.650 196.849 6.990 35.990 6.607 

10 9 156.503 4.368 153.222 4.216 184.720 4.019 121.708 4.706 
11 23 109.546 4.877 110.221 4.694 148.724 4.966 71.752 4.760 
12 9 116.314 7.232 117.780 5.997 193.050 5.954 42.514 6.081 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When the benchmarking 
value is increased by 50%, these probabilities are 0.090, 0.084, 0.095, 0.079, 0.064, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When 
the benchmarking value is decreased by 50%, these probabilities are 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.057, 0.097, 0.068, 
0.079, 0.097. 

 

Table 4.7 
Comparison of posterior inference of the area parameters under random deletion benchmarking with equal 
weights (EW), weights inversely proportional sample sizes (IW) and weights directly proportional to sample 
sizes (DW) 
 

    EW IW DW 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.516 5.431 133.508 5.518 133.436 5.404 
2 7 101.980 7.101 102.903 5.793 103.042 5.737 103.049 5.809 
3 24 117.655 7.309 120.671 6.237 120.529 6.176 120.634 6.247 
4 23 76.997 5.881 81.170 5.597 81.167 5.571 81.111 5.567 
5 21 126.917 5.629 127.652 5.036 127.669 5.079 127.541 5.055 
6 9 113.132 8.061 112.805 6.707 112.762 6.704 113.074 6.716 
7 5 137.236 6.739 133.908 6.007 133.965 5.968 133.798 6.027 
8 20 124.839 4.034 124.703 3.757 124.829 3.734 124.719 3.757 
9 16 118.306 7.544 116.451 6.650 116.300 6.707 116.502 6.640 

10 9 156.503 4.368 153.222 4.216 153.238 4.198 153.204 4.220 
11 23 109.546 4.877 110.221 4.694 110.190 4.697 110.208 4.690 
12 9 116.314 7.232 117.780 5.997 117.802 6.010 117.726 5.989 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When the benchmarking 
is done using weights inversely proportional to sample sizes, these probabilities are 0.167, 0.127, 0.039, 0.037, 0.026, 0.105, 0.184, 0.030, 
0.061, 0.078, 0.039, 0.107. When the benchmarking is done using weights directly proportional to sample sizes, these probabilities are 
0.032, 0.048, 0.168, 0.124, 0.103, 0.061, 0.036, 0.083, 0.112, 0.044, 0.123, 0.066.

 

For comparison, different posterior densities are presented in Figures 4.1-4.4. In Figures 4.1 and 4.2, we 

present posterior densities of all twelve area parameters when each area, in turn, is deleted. We observe that 

the posterior densities are slightly different around the modes, but nothing remarkable. In Figures 4.3 and 

4.4, we present posterior densities of all twelve area parameters under the FH model (unconstrained), 

random deletion benchmarking and deleting the last one. There are some differences among the three 

densities, but again these are not alarmingly different. 
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Finally, empirical results are presented for a simulation scenario with 99 areas, reflecting the 99 counties 

in Iowa. The data are generated as previously described, and the BFH model without benchmarking, with 

random deletion benchmarking, and with deleting the last one benchmarking is fit using 20,000 iterations 

for the Gibbs sampler. For each model fit, the first 10,000 iterations are used as a burn-in and every tenth 

iteration is kept thereafter. The BFH model fitting takes 15 seconds, while the deletion benchmarking 

models takes slightly less than three minutes each. For the random deletion benchmarking model 

parameters, the regression coefficients β  and the variance 2 ,  the p-values of the Geweke test are, 

respectively, 0.822, 0.128, 0.752 and 0.219, and the effective sample sizes are all 1,000 for the 1,000 selected 

iterations (i.e., an efficient Gibbs sampler). Note that the target is 12,162.93 and the sum of the PMs from 

the BFH model is 12,168.49, a difference of 5.56. In Figure 4.5, we present a plot of the coefficients of 

variation under random deletion benchmarking, deleting the last one benchmarking and BFH model versus 

the direct estimates by area. The differences among these models are not remarkable. Most of the points 

with direct CVs larger than about 0.04 fall below the o45  straight line. However, some points (diamond) 

under the BFH model are above the o45  line, four of them are noticeable, possibly shrinking too much. We 

conclude that it is sensible to perform the random deletion benchmarking. 

 
Table 4.8 
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, 
deleting the last one (LO) and random deletion (RD) benchmarking when the last county is extreme 
 

  BFH LO RD 
 Area n  ̂  s  PM PSD PM PSD PM PSD 
a. The last county size is 2. 1 5 135.575 6.031 134.116 5.607 133.772 5.473 133.510 5.409 
 2 7 101.980 7.101 103.205 6.482 102.818 6.118 102.745 5.837 
 3 24 117.655 7.309 121.110 6.730 120.911 6.577 120.666 6.260 
 4 23 76.997 5.881 81.586 6.021 81.741 5.544 81.196 5.631 
 5 21 126.917 5.629 127.901 5.252 127.552 5.264 127.619 5.041 
 6 9 113.132 8.061 113.454 7.147 112.889 6.818 113.074 6.815 
 7 5 137.236 6.739 133.938 6.339 133.479 5.968 133.947 5.994 
 8 20 124.839 4.034 124.753 3.906 124.699 3.824 124.738 3.735 
 9 16 118.306 7.544 116.199 6.806 115.329 6.327 116.065 6.785 
 10 9 156.503 4.368 153.419 4.434 153.148 4.174 153.240 4.213 
 11 23 109.546 4.877 110.512 4.645 110.473 4.696 110.324 4.686 
 12 2 121.881 12.75 124.243 10.00 123.755 8.771 123.444 8.525 
b. The last county size is 50. 1 5 135.575 6.031 133.984 5.618 133.745 5.461 133.452 5.385 
 2 7 101.980 7.101 103.462 6.499 103.136 6.086 103.044 5.780 
 3 24 117.655 7.309 121.006 6.716 120.832 6.536 120.698 6.232 
 4 23 76.997 5.881 81.473 5.995 81.596 5.512 81.162 5.728 
 5 21 126.917 5.629 127.832 5.248 127.519 5.238 127.661 5.001 
 6 9 113.132 8.061 113.393 7.146 112.929 6.777 112.899 6.675 
 7 5 137.236 6.739 133.659 6.380 133.351 5.947 133.851 5.941 
 8 20 124.839 4.034 124.732 3.906 124.713 3.821 124.726 3.825 
 9 16 118.306 7.544 116.480 6.785 115.766 6.269 116.319 6.601 
 10 9 156.503 4.368 153.355 4.449 153.225 4.173 153.306 4.230 
 11 23 109.546 4.877 110.347 4.637 110.378 4.692 110.155 4.689 
 12 50 116.538 6.791 118.117 6.282 118.035 5.958 117.952 5.702 
 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. When the sample size of the last county is 50 (2), the benchmarking value is 1,435 (1,441). The uniform prior is used in the random 
benchmarking. 
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Figures 4.1  Comparison of the posterior densities for 1  to 6  when each area is deleted at a time (e.g., the first 

area is deleted in the first panel etc.). 
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Figure 4.2 Comparison of the posterior densities for 7  to 12  when each area is deleted at a time. 
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Figure 4.3 Comparison of the posterior densities for 1  to 6  under the Fay-Herriot model (-1), random 

deletion benchmarking (0) and area-12 deletion. 
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Figure 4.4 Comparison of the posterior densities of 7  to 12  under the Fay-Herriot model (-1), random 

deletion benchmarking (0) and area-12 deletion. 
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Figure 4.5 Plot of the coefficients of variation under the random deletion benchmarking, deleting the last one 

and the Bayesian Fay-Herriot model for 99 areas. 

 
5  Concluding remarks 
 

The Bayesian Fay-Herriot (BFH) model is discussed in detail. We show that the BFH can be fit using 

random samples rather than a Markov chain Monte Carlo sampler. Since random samples required no 

monitoring, this method is beneficial because there is little time at NASS between receiving the county-

level survey summary data and presenting the final estimates. In support to the BFH model, we show that 

the posterior density under the BFH model is proper, providing a baseline for benchmarking. The effects of 

benchmarking are studied in a simulation study, comparing the BFH model without benchmarking to the 

BFH model with two benchmarking methods.  

In this study, we assume that the benchmarking constraint is of the form 
1

.ii
a


 

 A straightforward 

generalization of the benchmarking methods may be developed for the constraint of the form 

1
,i ii

w a


 
 where the iw  are weights. For example, this latter situation occurs for benchmarking yield, 

ratio of production and harvested acres. 
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Our major contribution is the extension of BFH model to accommodate benchmarking. Previous 

approaches delete the last area, giving rise to the question “Does it matter which area is deleted?”. In this 

paper, we develop and illustrate a method that gives each area a chance to be deleted. We show how to fit 

this extended BFH model using the Gibbs sampler. Because of the complexity of the joint posterior density, 

a sampling based method, without Markov chains, cannot be used. Using empirical studies, we show that 

the differences in the posterior means over no benchmarking, deleting the last county and random deletion 

are very small. 

The effects of changing the benchmarking target are studied in a sensitivity analysis. As expected, 

changing the benchmarking target leads to different estimates, but, unexpectedly, the changes in the 

posterior standard deviations are small. Small changes in the estimates are noted for the benchmarking 

methods using different probabilities of deletion. 

It is expected that the posterior standard deviations from deleting the last one benchmarking and random 

benchmarking be larger than those from the BFH model because of the jittering effect from benchmarking. 

However, in the empirical studies we present, deleting the last one benchmarking and random benchmarking 

have about the same posterior standard deviations with a small reduction when random benchmarking is 

used. The key strength of the random benchmarking approach is that there is no preferential treatment for 

any area/county. 
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Appendix A 
 

Exemplification of the sensitivity of deletion 
 

Let  ind
2Normal , , 1, 2,i i iy i    such that 1 2 ,y y a   and  2 2 2

2 1 2 .      Then, if we 

start by deleting 2 ,y  the joint density of  1 2,y y  is 

           
1

2
1 2 2 1 2 2, 0 Normal 1 , 1 ,yf y y a y a               

where   1a b   if a b  and   0a b   if .a b  However, if we start by deleting 1 ,y  the joint density 

of  1 2,y y  is 
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           2
1 2 1 2 1 2 2, 0 Normal 1 , 1 .yg y y a y a                

It will matter in the estimation procedure which variable is deleted because the two joint distributions are 

different. Note that the two distributions are the same if and only if 

        1 2 1 21 1 ,a a               

which gives 

               1 22 1 2 .a a         

Even if we assume that 2 2
1 2 ,   the two distributions are different. However, under this assumption, 

1 2 ,   and the condition for the two distributions to be the same is that 1 2 .   That is, overall the 

condition for the two joint distributions to be the same is that 1 2   and 1 2 ,   thereby making 1y  

and 2y  exchangeable. However, this is a very restricted situation. 

One way out of this diffculty is to actually delete both 1y  and 2y  in the following way. Let 1z   if 1y  

is deleted and let 0z   if 2y  is deleted. Then, 

          1
1 2 1 2 1 2, , 0 , 0 1 , 0 ,z zp y y z pg y y p f y y          

where we have taken  Bernoulliz p  and, because z  is not really identifiable, we will take 1 2p   

(i.e., we randomly delete one or the other). However, note that 

 
 

       
1 2

1 2
1 2 1 2

, 0
, , 0 Bernoulli .

, 0 1 , 0

pg y y
z y y

pg y y p f y y




 
 

  
    

   

 
Appendix B 
 
Fitting the Bayesian Fay-Herriot model 
 

The Bayesian Fay-Herriot (BFH) model is given in (2.1) and the joint posterior density under the BFH 

model is given in (2.3), which for convenience we state here, 

  
 

   
2

2 2
2

2 2 2 22 1

1 1 1 1 1ˆˆ, , exp .
21

i i i i
i is

    
  

                      
θ β θ x β

 

 (B.1) 

We show how to fit the joint posterior density of the parameters using random samples (not even a Gibbs 

sampler), thereby avoiding any monitoring. We will use the multiplication rule to write  

        2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ, , = , , , ,       θ β θ θ β θ β θ θ   

where  2
1

ˆ, , θ β θ  and  2
2

ˆ, β θ  have standard forms and  2
3

ˆ  θ  is nonstandard but it is 

density of a single parameter. 
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Momentarily, we will drop the term, 
 

 2 22

21 1

1
,


 because it only affects the posterior density of 2 .  

That is,  

      2 2
2

1 2 2
=1

1 1 1ˆˆ, , exp .
2 i i i i

i is
    


    

         
    

θ β θ x β


  

Standard calculations reduce the argument (without 1 2)  of the exponential term to  

 
 

     
22 2

2 2 2 2

1 ˆ ˆ1 , , 1, , .
1

i
i i i i i i i i

i i

i
s

 
     

   
        

 
x β x β     

Hence, for  2
1

ˆ, , , θ β θ  

     ind
2 2ˆˆ, , Normal 1 , 1 , = 1, , .i i i i i i i         β θ x β    (B.2) 

Momentarily, we will drop the term,   1 22
=1

1 .ii
  

 Then, integrating out the ,i  we get  

     2
2

2 2
=1

1 ˆˆ, exp .
2

i
i i

i


  


     
 

β θ x β


  

Hence, the exponent (without 1 2)  can be written as,  

      2
1

2
=1

ˆ ˆ ˆ ˆˆ ,i
i i

i





      x β β β β β



  

where  

 1
2 2 2 2

=1 =1

ˆ
ˆ ˆ ˆ= and = .i i i i

i ii is s


 




 
  
x x x

β
 

  

It is worth noting that β̂  and ̂  are well defined for all 2  provided that the design matrix, ,X  where 

 1 , ,X   x x   is full rank. Then, 

        2
2 1

2 2
1

1 1ˆˆ ˆ ˆ ˆˆ, exp .
2 2

i
i i

i


  






         
 

β θ x β β β β β


  

That is, 

  2 ˆ ˆ ˆ, Normal , . β θ β  (B.3) 

Now, integrating out β  and incorporating the terms in 2 ,  which were dropped, we have 

     
 

2 2
3 22

1ˆ ,
1

Q  





θ  (B.4) 

where  

  
 

  21 2
2

1 2 2 22 2=1 =1

1 1 1 ˆ ˆˆ= exp .
2 i i

i i ii

Q
ss

 


 
    

  
  x β
 
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To obtain a random sample from (B.1), we sample 2  from (B.4), β  from (B.3) and the i  

independently from (B.2). The conditional posterior density in (B.4) is nonstandard, and to draw a sample 

from it, we use a grid method (e.g., Nandram and Yin, 2016). First, we transform 2  to  2 21     

so that 0 < < 1.  Then, we divide (0, 1) into 100 grids. Actually, we have located the range of   in (0, 1) 

and we have divided this interval into 100 grids. This gives us a probability mass function that we sample. 

Jittering is used in the selected grid to get deviates, which are different with probability one; see Nandram 

and Yin (2016) for more details. 

 
Appendix C 
 
Proof of Theorem 2 
 

It is convenient to make the following transformations, 

 
1

, 1, , 1, .i i i
i

i a   


    


    

Here,   is a dummy variable, which holds the benchmarking constraint, and it ensures a non-singular 

transformation. The Jacobian is unity and the inverse transformation is 

      
1

1

, 1, , 1, .i i i
i

i a    




      


    

The transformed density is 

  1 1, , , .       

Then, the density that holds the benchmarking constraint exactly is 

  
1

1 1
1

, , 0 , .i
i

a     





   


     

Therefore, 

       21 12

1 1 2
1 1

1
, , 0 exp .

2 i i i i
i i

a     


 


 

   
          

   
 u β u β
 

   

Dropping terms that do not involve    1 1, , ,  
θ    it is easy to show that the exponent is 

             1 12

1
2 , , .

2
I J a

 
        θ θ u u β u u β j θ       

Then, using the properties of a multivariate normal density, we have 

           1 12
1 10 Normal , , , .I J a I J  



         
 

θ j u u β u u β      
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Finally, using the Sherman-Morrison formula,   1 1 ,I J I J     we have 

        2
1 1

1 1
0 Normal , , , .I J a I J 

             
   

θ j u u β u u β   
 

   

It is worth noting that the matrix determinant lemma gives  det I J    and so   12det I J    

  11 2 . 
  
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