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Abstract

The inclusion of stakeholder behaviour in Operations Research / Industrial Engineering (OR/IE)

models has gained much attention in recent years. Behavioural and cognitive traits of people and

groups have been integrated in simulation models (mainly through agent-based approaches) as

well as in optimization algorithms. However, especially the influence of relations between different

actors in human networks is a broad and interdisciplinary topic that has not yet been fully inves-

tigated. This paper analyses, from an OR/IE point of view, the existing literature on behaviour-

related factors in human networks. This review covers different application fields, including: supply

chain management, public policies in emergency situations, and Internet-based human networks.

The review reveals that the methodological approach of choice (either simulation or optimization)

is highly dependent on the application area. However, an integrated approach combining simula-

tion and optimization is rarely used. Thus, the paper proposes the hybridization of simulation with

optimization as one of the best strategies to incorporate human behaviour in human networks and

the resulting uncertainty, randomness, and dynamism in related OR/IE models.

MSC: 90B50, 91B06.
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1 Introduction

Operations Research/Industrial Engineering (OR/IE) methods such as simulation and

optimization are frequently employed in the design, development and optimization of

complex networks and systems (Derigs, 2009). The realistic representation of these

systems and networks through suitable models is hereby of major importance. Even
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though complex systems and networks from different application fields have been ex-

tensively studied by the OR/IE community, the consideration of realistic stakeholder be-

haviour in these models is not so usual (Crespo Pereira et al., 2011, Elkosantini, 2015,

Neumann and Medbo, 2009). However, behavioural factors (either associated to iso-

lated individuals or complete collective entities) are usually among the most important

components in any real-life system. As such, simplifying behavioural assumptions ne-

glecting the major impact of uncertainty, randomness, and dynamism that characterizes

individual stakeholder behaviour often make OR/IE methods inapplicable in practice

(Baines et al., 2004, Bendoly, Donohue and Schultz, 2006, Schultz, Schoenherr and

Nembhard, 2010, Wang et al., 2015).

Nevertheless, the consideration of behavioural factors related to cognitive and social

psychology is only one side of the coin. As individual agents are highly influenced

by the contacts, ties, and connections shaping the group- and system dynamics of the

human networks in which they operate, the modelling of human network interrelations is

also of highest importance (Renfro, 2001, Russel and Norvig, 2003). Knoke and Yang

(2008) even suggest that structural relations between different network actors follow the

same patterns: (i) they are often more important in explaining behaviour than individual

traits such as age, gender, etc.; (ii) they affect the perceptions, beliefs, and actions of

individual network agents through structural mechanisms of human networks; and (iii)

they are dynamic over time.

Figure 1: Evolution of publications related to human behaviour in combination with simulation and/or

optimization in Scopus indexed journals.

The inclusion of human behaviour in simulation and optimization models has re-

ceived increased attention in recent years. Figure 1 shows a clear increase in Scopus-

indexed publications related to human behaviour in the context of simulation or opti-
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mization. Especially in the areas of computer science, engineering, and mathematics

the incorporation of complex system dynamics through behavioural traits seems to be

of interest (Figure 2).

Figure 2: Subject area of publications related to human behaviour in combination with simulation and/or

optimization in Scopus indexed journals.

Figure 3: Representation of a multi-agent human network.

Simulation is mostly used to evaluate complex systems in which multiple actors in-

teract in specific multi-agent human networks, similar to the one outlined in Figure 3. In

this context, multi-agent systems (MAS) and agent-based modelling (ABM) arose with

the desire to study complex and adaptive systems and their behaviours (Heath and Hill,

2010). Individual agents are thus modelled with unique attributes and behaviours, re-

acting to the actions, perceptions, and interrelations with other stakeholders in the mod-
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Table 1: Overview over reviewed human network environments.

Human Network

Environment
Main Focus

Supply Chain

Management

(Section 2)

Manufacturing & Production

x Cooperation among workers

x Workload balance and corporate social responsibility

x Workers initiative and autonomy

x Ergonomic conditions at work

x Robustness of human network with increasing size

Logistics & Transportation

x Personal attitudes towards uncertainty in demands

x Collaborative transportation management

x Horizontal cooperation among carriers

x Collaboration of urban freight stakeholders

x Coordination in the use of shared parking spots

Public Policies in

Emergency Situations

(Section 3)

Disease & Epidemics Dynamics

x Disease propagation and dynamics

x Policies to limit the impact of fatal disease spreading

x Infection control policies

Healthcare Emergencies

x Policies for an efficient patient care

x Human resources allocation for managing patient overflow

Evacuations

x Perception of hazards in emergency situations

x Efficient and real-time communication during evacuations

x Navigation within social groups (crowd flow patterns)

x Evacuation policies and procedures

x Human interaction during evacuation of buildings

x Movements of vehicles and pedestrians under emergencies

x Detouring and avoiding congestion vs. greedy behaviour

Internet Social

Networks

(Section 4)

Influential User Definition

x Viral marketing campaigns

x Optimal display of advertising

x Asymmetric influence relationships

x Pricing policies

Community Establishment

x Discovery of network communities

x True and false friend links

x Degree of separation among users

x Identification of market target groups

Other

x Trust-based relationships

x Propagation of Internet-based human network viruses

x Evolution of the network due to individual behaviour

x Multi-agent rumor spread

x Information propagation
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elled system environment (Bandini, Manzoni and Vizzari, 2009, Kennedy, 2010, Macal

and North, 2010, Siebers, Aickelin and Menachof, 2008). While ABM is the most

common simulation approach to model behavioural traits in a human network envi-

ronment, discrete event simulation (DES) has also been applied in to model resulting

system dynamics (Robinson, 2014). However, this more process-oriented approach is

less commonly applied to model agent behaviour and their impact on human networks

(Siebers et al., 2010). DES frameworks for modelling social behaviour in networks are

presented for example by Alt and Lieberman (2010) and Hou et al. (2013).

While simulation seems to be the natural way to incorporate human behaviour dy-

namics and the resulting randomness in the evaluation of human network structures,

optimization is usually required to increase the efficiency of related processes. Result-

ing optimization problems are either addressed by exact solution methods for smaller

instances, or approximate methods such as metaheuristics for larger problem settings

(Talbi, 2006, Vazirani, 2012). Dynamic and uncertainty conditions are usually modelled

using random variables in objective functions and constraints, e.g. through Monte Carlo

simulation (MCS) or fuzzy logic.

This paper reviews existing work from the simulation and optimization fields in

which human behaviour in human networks has been successfully modelled. Accord-

ingly, the focus is put on three human network environments in which agent behaviour

and stakeholder interrelations play a decisive role, namely supply chain management

(SCM), the evaluation of public policies in emergency situations, and the structural

analysis human network users in the Internet. Table 1 provides a more detailed overview

over the discussed application fields. From this critical analysis of existing simulation

and optimization models, a second contribution emerges: we provide arguments sup-

porting the need for hybridizing simulation with optimization methods as a natural way

to include human network behaviour in OR/IE models.

Accordingly, this work is structured as follows: Section 2 analyses the literature

focusing on human behaviour in SCM. Section 3 discusses works on human behaviour

in public policies in emergency situations. Section 4 is devoted to examine literature

on human behaviour in Internet human networks. Hybrid simulation-optimization, as

a natural way to include human network behaviour in optimization models, is closer

discussed in Section 5. To conclude, Section 6 highlights the main contributions of this

work.

2 Considering behavioural traits in supply chain networks

The efficient organization of material and information flows in SCM requires effec-

tive interaction and cooperation between different supply chain agents. To realistically

model the resulting human network dynamics, different behavioural issues have to be

addressed. In the following, Section 2.1 analyses existing literature concerning manu-

facturing & production processes in which human network dynamics (mainly through
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the interaction between individual employees) are considered. Later, behavioural as-

pects in the design and evaluation of logistics & transportation concepts such as col-

laborative transportation management or city logistics are reviewed in Section 2.2. An

overview of the analysed papers and their OR/IE modelling approach to address human

network behaviour is given in Table 2. Notice that many of these papers do not consider

optimization.

2.1 Applications in Manufacturing & Production

The importance of considering human behaviour in manufacturing systems by integrat-

ing psychological and emotional aspects is stressed by Elkosantini and Gien (2009). In

their work, they propose an agent-based simulation model to represent a production line

including workers, whereby special attention is paid to individual behaviour and social

relationships between workers. The authors highlight the influence of social interaction

among employees on individual performance levels. Other OR/IE models in the con-

text of manufacturing & production address individual human factors such as fatigue,

motivation, education, or personalities (Digiesi et al., 2009, Elkosantini, 2015, Huerta,

Fernandez and Koutanoglu, 2007, Khan, Jaber and Guirida, 2012, Riedel et al., 2009,

Silva et al., 2013). Also in this context, Grosse et al. (2015) developed a framework that

allows the integration of human-related factors into models associated with the planning

of tasks.

Spier and Kempf (1995) were among the first authors in proposing the inclusion of

human interrelations in simulation models. The authors use object-oriented simulation

to test learning effects among workers in a small manufacturing line, showing that proac-

tive and cooperative agents provide the best company performance. More recent work

on similar issues apply ABM or DES to analyse, simulate, and evaluate production lines,

workforce allocation in manufacturing cells, or the impact of engineers in the product

design process. Okuda et al. (1999) stress that cooperation can be a key attribute in the

planning of efficient production lines. The authors test different production process de-

signs (e.g. U-shaped production lines and manufacturing cells) in terms of workload

balance and total throughput in small-lot manufacturing, characterized by a high need

for production flexibility. By using ABM, the impact of cooperation through human-

oriented production lines is assessed. The paper concludes that production processes

taking into account human behaviours (inter-worker learning effects) achieve the most

balanced working times and the highest company output.

Various simulation models focusing on workforce allocation in production lines have

been developed in the past. However, most of them do not consider the impact of hu-

man behaviour and collaboration in their models. Zhang et al. (2015) overcome this

drawback by integrating different models of human agents in the context of a dynamic

systems with a discrete-event behaviour, which they use to evaluate changeover pro-

cesses in manufacturing processes. By modelling and simulating the dynamics of work

process together with the dynamics of human behaviour, the authors show that the in-
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corporation of different cooperation styles and skill levels can has a noticeable effect on

the expected throughput of the system. From the reported simulation experiments, it can

also be concluded that changeover assignments based on collaborative strategies lead to

the best system performance.

The effects of collaborative product design processes (PDPs) are studied by Yang,

Song and Zhang (2007). They argue that many simulation methods applied in the plan-

ning of efficient PDPs are too task oriented and do not represent the central role of

designers in the process, which is deeply impacted by human initiative and autonomy,

but also by collaboration within project teams. They elaborate an ABM to predict,

manage, evaluate, and improve manufacturing design processes. Therefore, the design

evaluation depends on the degree of cooperative behaviour among the product design

team-members. Furthermore, human factors such as efficiency of designer and organi-

zation, human workload, error, and collaboration levels are taken into account. Another

ABM to represent the dominant role of product designers in PDPs is proposed by Li,

Zhang and Zhang (2011). The designer agents in their model have distinctive character-

istics such as initiative, autonomy, and collaboration skills. They construct a simulation

model of a motorcycle design project, allowing to analyse PDP traits such as organiza-

tional structure, scheduling strategies, and partner selection while considering individual

and social behavioural traits.

ABM seems to be the predominant method of choice for modelling and simulat-

ing social interactions in manufacturing systems. However, there are some works that

address the issue by using DES approaches. Crespo Pereira et al. (2011) propose a man-

ufacturing DES environment that allows them to conduct training and research on how

human operations take place. Their experimental system allows the consideration of

human factors such as inter-group differences, worker experience, buffer capacities,

work-sharing, and process state perception. Experimental results based on a real-life

case show that inter-group variations, experience, and ergonomic conditions have a sig-

nificant impact on the process outcome. Also using DES, Putnik et al. (2015) test the

robustness of large production networks in environments with demand uncertainty. By

modelling the behaviour of socially connected individuals, their work shows that system

robustness and production rates depend on system sizes and human networks. Accord-

ing to their simulation experiments, large human networks with lots of business relations

positively impact network robustness, while the production rate exhibits a nontrivial re-

lation to the number of connections.

2.2 Applications in Logistics & Transportation

In the face of increasing market complexity driven by rapidly changing customer prefer-

ences, globalization, and fierce competition, the need for effective supply chain manage-

ment (SCM) among suppliers, manufacturers, distributors, and retailers lead to complex

dynamic systems. In response to this, many innovative planning models of logistics &

transportation systems such as collaborative transportation management (CTM) or city
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logistics (CL) are based on the idea of stakeholder collaboration (Crainic, Ricciardi and

Storchi, 2009, Taniguchi, Thompson and Yamada, 2012, Benjelloun and Crainic, 2009).

Consequently, behavioural factors on an individual and network level have to be con-

sidered in the design of sustainable and integrated transportation & logistics structures

(Geary, Disney and Towill, 2006, Sarimveis et al., 2008).

In the context of CTM, different simulation approaches have been used to include

cognitive behaviour (e.g., individual thinking, deciding, and reasoning processes) and

social factors (e.g., relationships and inter-organizational influences). As such, Yuan

and Shon (2008) propose a CTM model based on the collaboration in transportation

management among different supply chain partners. Their simulation tool is developed

as realistic representation of a beer supply chain with four levels. The authors show

that transportation costs and vehicle utilization levels can be significantly improved by

collaboration and coordination of transportation activities. Chan and Zhang (2011) use

Monte Carlo simulation (MCS) to evaluate benefits of CTM in long term relationships

between retailers and carriers. The authors illustrate the concept of carrier flexibility to

optimize delivery lead times. Their results show that collaboration between both parties

can reduce retail costs while improving service levels. A conceptual framework for a

behavioural multi-agent model considering the impact of cognitive and social behaviour

is presented by Okdinawati, Simatupang and Sunitiyoso (2014). They propose the in-

clusion of Drama Theory (see Bryant (2003, 2004)) in their model. This allows the

consideration of stakeholder behaviour in conflict and collaboration scenarios during

the hierarchical decision making process of CTM strategies on an operational, tactical,

and strategic level.

Using ABM, Li and Chan (2012) describe the impact of CTM on SCM with stochas-

tic demands. They simulate a three-level supply chain while taking into account factors

such as company characteristics, their types of action, and changes in company be-

haviour. By comparing the efficiency level reached in non-cooperative scenario with

the cooperative case, the authors show that CTM can reduce global costs while increas-

ing supply chain flexibility. Their work concludes that CTM is an efficient approach to

tackle demand disruptions. Yu, Ting and Chen (2010) use DES to test different informa-

tion sharing scenarios between supply chain members. More specifically, they consider

information sharing about demand, inventories, capacities, and their different combi-

nations. Their results suggest that especially information-sharing concerning customer

demands is critical for supply chain success. Furthermore, they show that a full cooper-

ative scenario based on shared information and assets is ideal for obtaining higher levels

of efficiency in most supply chains. There are some metaheuristic approaches that ad-

dress similar concepts (e.g. Horizontal Cooperation) in which interactions between net-

work actors are highly important (Pérez-Bernabeu et al., 2015, Quintero-Araujo et al.,

2019), but these optimization methods have not yet reached the same integration level

of behavioural issues as simulation approaches.

Related to CL, Tamagawa, Taniguchi and Yamada (2010) develop a multi-agent

methodology to evaluate different CL measures (road pricing, truck bans, motorway
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tolls) taking into account the behaviour of partners in urban freight transportation. More

specifically, the modelled agents represent motorway operators, administrators, resi-

dents, shippers, and freight carriers. The authors develop an acceptable network envi-

ronment for all stakeholders by considering conflicting objectives, transportation cost,

profits, and environmental effects. To evaluate different road networks, they apply a ge-

netic algorithm to calculate different routing options from the resulting vehicle routing

problem (VRP), which has to consider time windows. Furthermore, a learning prototype

affecting the behaviour of different agents is implemented. This paper extends a similar

work of Taniguchi, Yamada and Okamoto (2007), in which the authors show that the

implementation of road pricing can reduce pollution emissions but may increase freight

shipment costs. To avoid such effects, cooperative freight transportation systems are

proposed.

Teo, Taniguchi and Qureshi (2012) test government measures affecting urban road

networks (e.g., road pricing for trucks) in an e-commerce delivery system. Their ABM

considers the behaviour of major stakeholders in the transportation environment. In par-

ticular, they propose a reinforcement learning strategy for administrators to represent

realistic agent behaviour. Furthermore, the resulting routing problem is optimized with

an insertion heuristic. According to their outcomes, when the government administra-

tor considers freight vehicle road pricing, truck emissions can be significantly reduced.

A multi-agent approach to evaluate the financial and environmental impact of imple-

menting urban distribution centres in urban areas is presented by Duin et al. (2011).

The authors consider and test the dynamic behaviour among different CL stakeholders.

Moreover, the impact of stakeholders’ behaviour and actions towards city measures like

tolls, operational subsidies, or time windows, and entry restrictions within city centres is

evaluated. Experimental results suggest that the development of a positive business en-

vironment for urban freight consolidation centres depends not only on physical factors

such as traffic congestion, but also on the actions and behaviour of each system agent.

Their ABM also incorporates a genetic algorithm for routing optimization.

Joint delivery systems, urban distribution centres, and car parking management within

city centres are the CL measures analysed by Wangapisit et al. (2014). The focus of this

study lies on the interaction and cooperation among urban freight stakeholders when CL

measures are implemented. The authors use ABM combined with reinforcement learn-

ing and an insertion heuristic to solve extended VRP versions with pick-up-and-delivery

and time windows. Their results suggest that urban distribution centres and joint deliv-

ery systems can improve the environmental impact of urban freight transportation. They

fine-tune the distribution centre implementation by applying urban parking management

and subsidies for shopping street associations. Car parking management in an ABM is

also the matter of research in the paper by Boussier et al. (2009). Their simulation

models considers the behaviour of different agents, focusing of shared parking spaces

between private and commercial vehicles. Furthermore, the use of electric vehicle fleets

in the development of ‘greener’ transportation systems is taken into account in some

works (Juan et al., 2016, Eskandarpour et al., 2019).
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Table 2: Summary of reviewed papers related to Supply Chain Management.

Area Paper
Simulation Optimization

ABM DES Other
(Meta-)

Heuristics

Manufacturing

&

Production

Spier and Kempf (1995) x

Okuda et al. (1999) x

Yang et al. (2007) x

Li et al. (2011) x

Crespo Pereira et al. (2011) x

Zhang et al. (2015) x

Putnik et al. (2015) x

Logistics

&

Transportation

Taniguchi et al. (2007) x x

Yuan and Shon (2008) x

Boussier et al. (2009) x

Yu et al. (2010) x

Tamagawa et al. (2010) x x

Chan and Zhang (2011) x

Li and Chan (2012) x

Teo et al. (2012) x x

van Duin et al. (2012) x x

Wangapisit et al. (2014) x x

Okdinawati et al. (2014) x

3 The impact of public policies on human networks
behaviour in emergency situations

This section reviews different approaches in which human network behaviour in emer-

gency situations is addressed. In this field, especially the reaction of complete popu-

lation groups to public policies in the face of disease and epidemic dynamics (Section

3.1), other healthcare emergencies (Section 3.2), and evacuation situations (Section 3.3),

has recently been a topic of interest. Table 3 summarizes the reviewed works.

3.1 Applications in Disease & Epidemics dynamics

Human behaviour in human networks has a strong influence on how civil infrastructures

are used. Thus, whenever public polices have to be designed these human factor should

be considered. Likewise, social interactions provide an ideal environment in which

diseases can easily be spread out. For those reasons, social interactions need to be

considered when designing public policies, since the behaviour of citizens in response

to these policies as well as their reaction to situations of crisis can modify the usual

social patterns.
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The most remarkable papers in the literature regarding simulation of these issues use

ABM simulation. Thus, related to policy making in large-scale networks, Kasaie and

Kelton (2013) consider the problem of resource allocation in the control of epidemics.

They assume a fixed budget to be allocated among competing healthcare interventions,

with the goal of achieving the best health benefits. Interventions thus include vacci-

nation, prevention, or treatment programs. Their constructed ABM is combined with

a response surface methodology as sequential optimization technique for the resulting

resource allocation problem, depending on different investment strategies.

Considering realistic and large-scale human networks, Bisset et al. (2009) analyse

the evolution of human behaviour and disease dynamics. These authors use a highly

detailed interaction-based simulator to simulate sixteen scenarios, established by com-

bining different types of intervention policies during the spreading of fatal diseases:

closure and reopening of schools, quarantine policies, and vaccinations policies. Pub-

lished results indicate that quarantine and other isolation polices seem to have a limited

impact on the overall rate of infection. Also, individual isolation policies are typically

employed at late stages of the epidemic outspread, which in practice limits their effec-

tiveness. Other isolation policies (e.g, quarantine of some individuals) tend to affect

only a small portion of the total population, which also limits their efficiency. How-

ever, a combination of vaccinations and quarantine policies seems to be effective since

the number of key citizens infected is reduced. Concerning school closures, the results

suggest that even very low levels (<0.1%) of residual infection rates among pupils can

cause new infection waves after disease epidemics.

Focusing on a smaller and enclosed area, Laskowski et al. (2011) proposed a model

to study, by means of simulation, the spread of influenza virus infections in the emer-

gency department of a Canadian hospital. Their simulation used a set of patients and

healthcare workers, modelling their individual properties as well as their social interac-

tions. According to their results, those policies oriented to controlling the infection in

patients (e.g., masking symptomatic patients or alternate treatment streams) are usually

more efficient than those other policies focused just on healthcare workers.

3.2 Applications in Healthcare Emergencies

Effective management of Emergency Departments (ED) is an important problem in

healthcare systems. The frequency of arrival of patients, the waiting time of patients,

the treatment given, the emotions of the doctor, the nurse management of patients, etc.

are factors that affects the quality of ED. Overcrowding and high flow in ED will have

higher probability of conflict occurrence. Conflict happens in every ED, so a good pol-

icy is needed to confront the crowded situation in order to maintain the quality of ED.

The analysis of this particular human network behaviour play a key role in developing

policies and decision tools for overall performance improvement of the system. The

ability to accurately represent, simulate and predict performance of ED is invaluable for

decision makers.
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Brailsford (2016) develop a review on simulation models for healthcare applications

in which the simulated objects (entities) are human beings. This study focuses specif-

ically on whether it is desirable (and possible) to incorporate human behaviour within

the conceptual design of a simulation model. However, the reality is that, although there

are many approaches in the literature dealing with healthcare emergencies through sim-

ulation (Almagooshi, 2015), only a few of them consider human network behaviour and

optimization. Thus, Rico, Salari and Centeno (2007) study the best nurse allocation pol-

icy to manage patient overflow during a pandemic influenza outbreak. Their approach

combines DES with OptQuest - an optimization software that includes metaheuristics,

exact methods and neural networks - in order to analyse different configurations re-

garding the number of nurses needed for healthcare delivery. Some other works in the

literature apply the same combination of a DES model and OptQuest including human

network behaviour in healthcare emergencies. Thus, Silva and Pinto (2010) evaluate the

performance of a medical emergency system creating a simulation model and using op-

timization to analyse different scenarios and find the best parameters for it. Similarly,

Weng et al. (2011) use this combination to optimize the allocation of human resources

in a hospital emergency department. With a different methodology, Liu (2017) analyse a

complex Spanish ED and provide an ABM simulation considering patient arrivals based

on historical data. The interaction between doctors, nurses, technicians, receptionists,

and patients is studied and modelled. Additionally, some optimization methodology is

used for calibrating model parameters under data scarcity.

3.3 Applications in Evacuation Situations

The perception of risk during emergency evacuations can generate stress on the popu-

lation, which can derive in selfish and unorganized behaviours driven by the survival

instinct (for example, by blocking narrow evacuation exits). This seriously effects sur-

vival rates and the evacuation efficiency levels. In this context, the analysis of human

behaviour during emergency situations contributes to build efficient emergency manage-

ment plans. As such, Parikh et al. (2013) note the importance of communication in such

events. Their ABM considers population behaviour and its interaction with various in-

terdependent infrastructures, in order to develop efficient evacuation plans considering

a nuclear detonation. Their results stress the key role of agent communication, as it can

beneficially alter human behaviour in the evacuation phase by reducing crowd panic and

increase mobility levels.

Chu et al. (2015a) propose an agent-based simulation tool that is able to consider

both human and social behaviours previously analysed in scientific works related to

management of disaster and safety situations. They use several approaches to model

the behaviour of each agent: (i) the user follows exits that are familiar to her; (ii) the

user follows cues from building features; (iii) the user will navigate within a group of

related people; (iv) and the user will follow the crowd. As expected, their simulation

results show that the flow patterns might be greatly influenced by the specific arrange-
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ment of exit signs, knowledge of the environment, and even social settings. Thus, these

authors are able to pinpoint and evaluate the effect of social features on flow patterns.

Their analysis provides insights concerning architecture, building layouts, and facility

management in the design of user-centric facilities, emergency procedures, and related

training programs. Later, the authors applied the same simulation tool to examine egress

performance of a museum (Chu et al., 2015b). Their simulation considers different sce-

narios of people and group behaviour in emergency situations. Their approach allows

a closer analysis of museum visitors in emergency situations to improve the design of

safe egress systems and procedures.

Similarly, to represent an evacuation situation Chu and Law (2013) propose an agent-

based simulation study in which social behaviour is considered. Agents are represented

considering the incorporation of behavioural rules on an individual, group, and crowd

level. Results reveal that social behaviour during evacuation processes can affect the

overall egress time and pattern. In a model combining human behaviour with build-

ings, Liu et al. (2016) study the dynamic effect of damaged structures on the evacuation

of buildings. Their agent-based model hybridizes probabilistic components with finite-

element theory to analyse how people interact during the evacuation process. The re-

ported simulation results show that the evacuation time can suffer a noticeable increment

when considering the grouping behaviour.

Table 3: Summary reviewed papers related to public policies in emergency situations.

Area Paper
Simulation Optimization

ABM DES Other

Exact &

Approximation

Methods

(Meta-)

Heuristics
Other

Dynamics of

Diseases &

Epidemics

Bisset et al. (2009) x

Laskowski et al. (2011) x

Kasaie and Kelton (2013) x x

Healthcare

Emergencies

Rico et al. (2007) x x

Silva and Pinto (2010) x x

Weng et al. (2011) x x

Liu (2017) x x

Evacuations

Kagaya et al. (2005) x

Zhang et al. (2009) x

Song et al. (2010) x

Luh et al. (2012) x x

Chu and Law (2013) x

Parikh et al. (2013) x

Chu et al. (2015a) x

Chu et al. (2015b) x

Fu et al. (2015) x

Liu et al. (2016) x

Unlike the studies mentioned above, Luh et al. (2012) make an effort to integrate

optimization techniques into their model. In order to do so, these authors use a macro-

scopic network-flow model. Their model takes into account different factors related to
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the desire of escaping, such as smoke, fire, and even psychological ones. Thus, they

employ stochastic dynamic programming to optimize escape routes for both groups and

individuals. To reduce the impact of limited passage capacities on the evacuation flow,

these routes are also coordinated in their model. According to the reported results, their

approach is able to reduce evacuation time by diminishing bottlenecks through the path.

Next to the evacuation of people from buildings and facilities, human behaviour in

human networks concerning traffic management play an important role when people are

forced to leave whole areas, such as villages or cities. In particular, human behaviour

might be influenced by different circumstances: (i) people tend to focus mainly on the

prevailing situation instead of long-term interests; (ii) the availability and quality of traf-

fic information might have a strong impact on human behaviour, including the choice

of the escaping route; and (iii) instructions on evacuation paths might also affect the se-

lection of the evacuation route. The route choice behaviour during evacuation processes

is formulated by Fu et al. (2015) as a combination of the instructed route and the own

user’s perception on the time it might take to complete it. Thus, to model the user’s

behaviour a logit model and fuzzy set theory is used. According to the results provided

by a simulation, there is a nonlinear impact of traffic data on the efficiency of the evac-

uation flow. Also, whenever real-time traffic data is available online, users are able to

adapt their chosen paths, thus reducing the associated egressing times. Furthermore,

a strong compliance enforcement concerning policy instructions contributes to higher

evacuation efficiency.

Another urban emergency transportation simulation system is presented by Song,

Yang and Du (2010). Their system is based on the Beijing metropolitan area with the

focus of simulating vehicle and pedestrian movements in emergency situations. Results

demonstrate the effectiveness of this system for producing evacuation routing strategies,

optimizing emergency resources, identifying total evacuation times, and evaluating the

performance of the whole operation. Similarly, Zhang, Chan and Ukkusuri (2009) ad-

dress human interaction during evacuation processes. They use greedy agents that use

a probabilistic rule and take into account the dynamic conditions of the network to se-

lect between the shortest path and the least congested one. By detouring and avoid-

ing congested roads, some agents might be able to diminish their individual egressing

times. However, this greedy behaviour also tends to increase the total time employed

by all the agents to evacuate the system. Considering hazards caused by earthquakes,

Kagaya et al. (2005) build the reproduction of human traffic behaviour and considering

agent interaction. They classify evacuation behaviour into various patterns, which they

then use to establish different rules concerning evacuation behaviour.
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4 User behaviour in Internet-based human networks

The growing use of Internet-based human networks increasingly influences individual

and collective conduct of people (Jin et al., 2013). Especially in the context of defining

influential users and communities – for example, related to internet security and online

marketing – structural network analysis using network and graph theories has received

much attention. Social factors are implicit in this application area. For this reason,

OR/IE problems related to the analysis of Internet-based human networks are a direct

consequence of human networks and their dynamic behaviours. In contrast to previous

application areas, where social factors should to be taken into account because of their

influence on particular situations, problems discussed in this Section can be seen as

direct consequence of human network behaviour among users. In more detail, Section

4.1 deals with research on individual network users. Then, Section 4.2 reviews papers in

which network community structures are defined and analysed using OR/IE approaches.

Furthermore, other related works are discussed in Section 4.3. Table 4 summarizes the

works discussed in this section. Notice again that column DES is not included in this

table, since none of the approaches use it.

4.1 Identifying influential network users

Internet-based human networks are becoming more important for companies in the con-

text of efficient and productive viral marketing campaigns. The influence maximization

problem in Internet-based human networks was proposed by Domingos & Richardson

(Domingos and Richardson, 2001, Richardson and Domingos, 2002). When modelling

the Internet-based human network on a graph, the goal is to find a subset of nodes with

the highest influence on the rest of the network. As shown in Figure 4, some individuals

(nodes) might be more ‘influential’ than others, meaning that they have a larger number

of connections (i.e., their opinions or actions might reach a large number of individuals).

Also, not all connections are symmetrical: while some agents might be very influential

over their contacts, the opposite is not always true. Heuristics are proposed as a tool to

decide upon the most influential customers in the network. The idea is to focus market-

ing activities on customers with a high network value, instead of only considering the

related expected intrinsic (direct) marketing value of each network member.

Kempe, Kleinberg and Tardos (2003, 2005) develop probabilistic rules based on find-

ings from sociology and economics, which they embed into a decreasing cascade- and

linear threshold model. They use greedy approximation algorithms to achieve influence

maximization. The proposed greedy algorithms were later improved by Chen, Wang and

Yang (2009). These authors also discuss an efficient degree discount heuristic, which is

able to reach similar influence spreading results in substantially decreased calculation

times. Considering a probabilistic voter model, Even-Dar and Shapira (2007) analyse

the spread maximization problem. For that, they elaborate simple and efficient algo-
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Figure 4: Internet-based human network with influential nodes and asymmetric relationships.

rithms. Kimura et al. (2010) later introduced an approach based on graph theory and

bond percolation to reduce algorithmic computation times.

Some studies deal with the problem by considering competitive diffusion. Carnes et al.

(2007) employ viral marketing to introduce a new product when a competing one al-

ready exists in the market. They assume that if an influential user chooses one product

over another, then the members of his/her Internet-based human network will tend to

do the same. These authors propose an approximation algorithm that is able to reach

63% of the optimal value. Later, Borodin, Filmus and Oren (2010) discussed a similar

competitive environment, introducing a different approach to the original greedy one.

Also, taking into account display advertising, the influence maximization problem has

been explored by Abbassi, Bhaskara and Misra (2015). Here, online advertisement is

shown to a pre-defined number of users. In order to find the optimal display strategy,

these authors introduce alternative optimization heuristics. After completing a MCS

study, their results show that especially a two-stage algorithm inspired by influence-

and-exploit strategies yields promising results.

Most of the reviewed papers consider that social relationships can be modelled using

undirected graphs (i.e., they are symmetric). However, trust and other social relation-

ships might need to be modelled using directed graphs (i.e., they might be asymmetric

or even unilateral). Xu et al. (2012) model the Internet-based human network on a di-

rected graph including asymmetric influence relationships. In order to find a subset

of users that have the highest influence in the network, they propose a mathematical

programming approach. This is empirically evaluated using real-life data from Internet-

based human networking sites. Ahmed and Ezeife (2013) develop a diffusion model

that considers positive and negative trust influences in Internet-based human networks.
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Influential nodes are identified with a local search based algorithm, which outperforms

greedy approximation methods by as much as 35%.

The network influence effect is also considered in combination with the optimal

pricing problem, in which different pricing policies are considered in the diffusion of a

product. Considering a monopolistic market setting, Candogan, Bimpikis and Ozdaglar

(2010) consider different scenarios concerning pricing policies (uniform, two-fold, and

individual prices for the customers in the network) for a divisible good. Considering

these scenarios, the authors propose an approximation algorithm for finding the opti-

mal set of agents. Chen et al. (2010) propose an analogous concept. By taking into

account incomplete information, these authors are able to extend the original model.

Also related to this, a multi-stage pricing model is introduced by Hartline, Mirrokni and

Sundararajan (2008). In this model, different price levels are set, at each different stage,

by the manager. This work was later improved by Akhlaghpour et al. (2010) to include

imperfect information of the considered agents.

4.2 Community discovery and structural analysis

Apart from identifying key network members and their influence on the behaviour of

related nodes, another major research field concerning internet human networks is re-

lated to the detection of clusters and communities to structurally analyse large networks.

In their comparison of network detection methods (i.e., approximation and heuristic al-

gorithms), the concept of ‘network community’ is defined by Leskovec, Lang and Ma-

honey (2010) as “a group of nodes with more and/or better interactions amongst its

members than between its members and the remainder of the network”. The goal is

to define such communities to study their behaviour over time. The authors name dif-

ferent approaches to identify network clusters. Principal component analysis are used

in spectral algorithms to find communities (Kannan, Vempala and Vetta, 2004). Like-

wise, algorithms based on network flow represent edges by means of pipes with unitary

capacity, and then are able to find communities by employing algorithms such as the

max flow-min cut one (Flake, Tarjan and Tsioutsiouliklis, 2003). Other authors count

the number of edges pointing inside and outside a giving community (Flake, Lawrence

and Giles, 2000, Radicchi et al., 2004), which allows them to identify clusters in the

network. Other works are concerned with maximizing the modularity of the identified

communities (Girvan and Newman, 2002, Newman and Girvan, 2004).

Addressing the problem of maximizing modularity, Nascimento and Pitsoulis (2013)

propose the use of a GRASP metaheuristic combined with path relinking. In other re-

lated work especially the use of memetic- and bio-inspired algorithms seem to be a

major trend in recent years. Chen and Qiu (2013) introduce a novel particle swarm

optimization algorithm, showing through synthetic and real-world networks that it can

effectively extract the intrinsic community structures. Other particle swarm optimiza-

tion algorithms have been applied in the same context by several works (Cai et al., 2014,

2015, Biswas et al., 2015). Ant colony optimization (ACO) has been applied by Sercan,
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Sima and Sule (2009) in mapping network-cliques to graph nodes. The resulting graph is

then analysed using clustering based algorithms. Additional publications applying ACO

algorithms to discover network communities include (Javadi et al., 2014, Jin et al., 2011,

2012, Mandala et al., 2013, Xu, Chen and Zou, 2013, Zhou et al., 2015). Further bio-

inspired metaheuristics, such as artificial bee colony optimization algorithms, have also

been used to deal with the problem (Abu Naser and Alshattnawi, 2014). Finally, also

memetic or hybrid algorithms have been proposed in this context, e.g.: crossover opera-

tors combined with local search procedures (Gach and Hao, 2012), or a particle swarm

optimization-based global search operator and tabu local search operator (Zhang et al.,

2016).

Related as well to network community research and their structural analysis, in

human networks over the Internet Huang, Lin and Wu (2011) propose an exact- and

heuristic algorithm to define links that are either true- or false-friend ones. Other works

are interested in identifying the degree of separation between two users. For instance,

Bakhshandeh et al. (2011) present new heuristic search techniques to provide optimal

or near-optimal solutions. Finally, Rivero et al. (2011) elaborated a metaheuristic algo-

rithm based on ACO to perform the path search between two nodes in a graph. This

algorithm outperforms other ACO algorithms when considering large-scale networks.

4.3 Other Internet-based human network analysis

Next to the definition of influential users and analysis of community structures in Internet-

based human networks, other related topics can be defined in the discussed context.

Zhang et al. (2008) and Ben-Zwi et al. (2009) determine marketing target groups – the

set of users with the highest influence on their network acquaintances – by studying

the trust relationships between customers in virtual communities. On the one hand, this

problem is not exactly the same as the influence maximization one, since the objective

is not to arrive to a higher number of nodes, but to identify node clusters with high trust

levels. On the other hand, it is also different from the community discovery problem,

since it is not based on network connectivity, but rather on trust-based relationships,

making traditional clustering algorithms inapplicable in this kind of scenario.

Wen et al. (2013) use numerical simulation for their susceptible-infectious-immuniz-

ed model, which allows them to analyse worm propagation in Internet-based human

networks. In a similar approach, Singh and Singh (2012) study the inoculation of a cer-

tain fraction of nodes against rumors. For the modelling of specific agent behaviour

in particular situations (e.g., when studying the evolution of the network as a result of

personal member attributes and behaviours), numerical approaches are unsuitable, usu-

ally making ABM the preferred method of choice. Blanco-Moreno, Fuentes-Fernández

and Pavón (2011) make use of agent-based simulation to analyse Internet-based human

networks. Their framework allows the study of scenarios in which network members

are modelled by characterized agents. These agents are customized taking into account

other individuals, environmental conditions, groups, and the status of the entire net-
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Table 4: Summary of reviewed papers related to Internet human networks.

Area Paper
Simulation Optimization

ABM Other

Exact &

Approximation

Methods

(Meta-)

Heuristics

Influence of

Individual

Network Users

Domingos and Richardson (2001) x

Richardson and Domingos (2002) x

Kempe et al. (2003) x

Kempe et al. (2005) x

Even-Dar and Shapira (2007) x

Carnes et al. (2007) x

Hartline et al. (2008) x

Chen et al. (2009) x x

Kimura et al. (2010) x

Borodin et al. (2010) x

Candogan et al. (2010) x

Chen et al. (2010) x

Akhlaghpour et al. (2010) x

Xu et al. (2012) x

Ahmed and Ezeife (2013) x

Abbassi et al. (2015) x x

Analysis of

Network

Community

Structures

Shi et al. (2009) x

Sercan et al. (2009) x

Jin et al. (2011) x

Huang et al. (2011) x x

Bakhshandeh et al. (2011) x

Rivero et al. (2011) x

Jin et al. (2012) x

Jin et al. (2011) x

Gach and Hao (2012) x

Nascimento and Pitsoulis (2013) x

Chen and Qiu (2013) x

Mandala et al. (2013) x

Chang et al. (2013) x

Xu et al. (2013) x

Qu (2014) x

Cai et al. (2014) x

Javadi et al. (2014) x

Abu Naser and Alshattnawi (2014) x

Biswas et al. (2015) x

Cai et al. (2015) x

Zhou et al. (2015) x

Zhang et al. (2016) x

Other related

Papers

Zhang et al. (2008) x

Ben-Zwi et al. (2009) x

Blanco-Moreno et al. (2011) x

Xiao and Yu (2011) x

Singh and Singh (2012) x

Sabater and Sierra (2002) x

Kannabe et al. (2012) x x

Wen et al. (2013) x
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work. Notice that the use of agent-based simulation helps to develop more realistic

models as well as to understand how the networks perform from the interactions among

their nodes. Xiao and Yu (2011) develop a multi-agent rumor spread model in virtual

communities. Different simulation tests are conducted to show the impact of network

structures, rumor tolerance frequency, and the user’s believing rate. Also using ABM,

Sabater and Sierra (2002) propose a model based on the user’s reputation, which con-

tributes to enhance its level of representativeness as regards as certain networks.

Finally, Kannabe et al. (2012) constitute an excellent example of a hybrid approach

combining metaheuristics with simulation (ABMS). These authors develop a propaga-

tion model to analyse how information spread in a Internet-based human network, thus

affecting human behaviour. According to their outcomes, the effects of this propagation

varies from homogeneous networks (those in which agents share similar characteristics)

to heterogeneous ones.

5 Need for an integrated simulation-optimization approach

The literature review completed in the previous sections shows that the choice of the

appropriate OR/IE methodology is highly context dependent. It seems that in some

application areas (especially Manufacturing & Production and public policies in emer-

gency situations), individual and network behaviour is mainly considered within the

simulation community, whereas optimization tools are often applied in the design and

evaluation of Internet human networks. However, in all discussed application areas it

is necessary to account for the uncertainty associated with individual behaviour And

the system dynamics that characterize complex network interactions when modelling

behavioural traits.

Simulation techniques seem to offer a natural and efficient way to model both un-

certainty and system dynamics over time. In particular, ABM has been successfully

applied in a myriad of different application fields. Simulation itself, however, is not an

optimization tool. Thus, whenever the problem at hand requires maximization or min-

imization of a given objective function (or several ones in the case of multi-objective

optimization), simulation alone is not enough. A logical way to proceed in those cases

is to combine simulation with optimization techniques.

As pointed out by Figueira and Almada-Lobo (2014), ‘sim-opt’ methods are de-

signed to combine the best of both worlds in order to face: (i) optimization problems

with stochastic components; and (ii) simulation models with optimization requirements.

A discussion on how random search can be incorporated in simulation-optimization ap-

proaches is provided by Andradóttir (2006), while reviews and tutorials on simulation-

optimization can be found in Fu, Glover and April (2005), Chau et al. (2014), and

Jian and Henderson (2015). Since most human networks tend to be large-scale, the

integration of simulation with metaheuristics (i.e., simheuristics) might become an ef-
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fective way to include human factors inside NP-hard combinatorial optimization prob-

lems. Juan et al. (2018) provides a complete review of simheuristics (combination of

simulation with metaheuristics), which facilitates to account for uncertainty in this kind

of OR/IE problems. As discussed in Ferone et al. (2018), simheuristics allow for ex-

tendng traditional metaheuristic frameworks to solve large-scale complex problems with

stochastic components, from transportation (Gonzalez-Martin et al., 2018) to telecom-

munication systems (Cabrera et al., 2014).

Figure 5: Agent-based simheuristic framework.

Accordingly, an open research line in modelling human factors inside large-scale

human networks is the one related to exploring the fundamentals and potential applica-

tions of agent-based simheuristics (Panadero et al., 2018), where metaheuristic-driven

algorithms make use of ABM to account for the uncertainty and dynamism present in

these networks. As depicted in Figure 5, given an optimization problem involving hu-

man factors in human networks (i.e., a stochastic and dynamic large-scale system), the

metaheuristic algorithm acts as an engine which proposes ‘promising’ solutions (one at a

time) to the ABM module. Each of these solutions is then analysed by the ABM compo-

nent, which provides estimates on the real performance of the proposed solution under

the uncertainty and dynamic conditions associated with human factors. The feedback

from the ABM module is used by the metaheuristic to guide the search process. This

iterative process continues until a time-related ending condition is met. At that point,

the best-found solution (or, alternatively, a set of top solutions with different properties)

is offered to the decision maker.

Yet another interesting research area in this direction is that of ‘learnheuristics’

(Calvet et al., 2017), where metaheuristics are combined with machine learning in order

to address variations in human behaviour due to changes in the environmental condi-

tions. Thus, for instance, Calvet et al. (2016) propose a hybrid approach combining
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metaheuristics with statistical learning in order to account for variations in the willing-

ness to spend of consumers as the ‘best-fit’ shopping centres have been already assigned

to other costumers.

6 Conclusions

This paper reviews how human behaviour in human networks is included in two of the

most popular OR/IE techniques: simulation and optimization. The paper comprises an

extended survey of related works in different types of human networks: supply chain

management, public policies in emergency situations, and Internet-based human net-

works. Based on the literature review, different techniques typically employed to model

human behaviour and social interactions are identified. Furthermore, the main research

issues when modelling behavioural traits are depicted, including: cooperation among

workers, workload balance, workers’ initiative and autonomy, ergonomic conditions at

work, personal attitudes, horizontal cooperation among carriers, disease propagation

and dynamics, efficient and real-time communication during evacuations, crowd flow

patterns, human interaction during evacuation of buildings, movements of vehicles and

pedestrians under emergencies, viral marketing campaigns, pricing policies, discovery

of network communities, identification of market target groups, information propaga-

tion, etc. Likewise, the pros and cons of each modelling technique have been high-

lighted. Thus, while agent-based simulation is the preferred methodology to modelling

network systems dynamics and uncertainty, it is not a valid tool for optimization pur-

poses. At the same time, metaheuristics are well suited to optimize large-scale human

networks. However, they show severe limitations when human factors need to be fully

considered. Accordingly, the paper argues in favour of hybridizing both techniques.

One of these combinations is the so called ‘agent-based simheuristics’ approach. This

integrated methodology benefits from the extraordinary capacity of metaheuristics to

generate ‘promising’ solutions to large-scale combinatorial optimization problems. At

the same time, stochastic and dynamic conditions that characterize human behaviour and

social interaction can also be taken into account without compromising the resolvability

of the corresponding optimization problem.
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Abstract

We propose a new type of risk measure for non-negative random variables that focuses on the

tail of the distribution. The measure is inspired in general parametric distributions that are well-

known in the statistical analysis of the size of income. We derive simple expressions for the

conditional moments of these distributions, and we show that they are suitable for analysis of tail

risk. The proposed method can easily be implemented in practice because it provides a simple

one-step way to compute value-at-risk and tail value-at-risk. We show an illustration with currency

exchange data. The data and implementation are open access for reproducibility.
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1 Introduction

Monitoring risk is one of the most difficult problems in many areas such as finance and

insurance. When risk changes dynamically there is no guarantee that the distribution

remains stable over time, for instance even if the same family of distributions can be as-

sumed, there may be a drift and, moreover, dispersion may change. When the deviation

from the mean is not constant over time, then we encounter the well-known concept of

changing volatility.

We propose new risk measures that concentrate on the far-end tail of the distribution.

We show that these new measures, under suitable mild regularity conditions, can be im-

plemented easily because they have simple analytical (or numerical) expressions. This

characteristic makes them suitable for monitoring risk, when a direct method is needed

with the same protocol along time.
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A rich variety of risk measures can be calculated under the approach that is pre-

sented here, when we consider flexible distributions for non-negative random variables.

Our work is inspired by the analysis of the size of income distributions, for which there

is a long tradition in economics. However, our main contribution is that we find straight-

forward formulas for the conditional moments of the distributions. Since we concentrate

on estimating the tails of the distributions and we are also concerned about being able to

implement these risk measures in practice using fast and direct computation, the simple

moment expressions are very convenient, for instance to compute the expectation con-

ditional on the variable exceeding the value at risk. We believe that these new measures

have a large field of application and they offer an interesting new and tractable approach

for practitioners.

2 Basic result

Since we aim at analysing the tail of the distribution, our first result is about moments

and, in particular, on higher order moments beyond a certain value. Our interest on

moments implies that we study the expectation of the transformation of a random vari-

able through a power function and, just like it is done in conditional tail expectation, we

condition on the domain beyond a certain level.

Theorem 1 Let X be a non-negative and continuous random variable with PDF f (x),

CDF F(x), and we assume that E[X r] is finite for some value r > 0. Let us denote by

F(r) the CDF of the rth incomplete moments, that is, F(r)(x) =
∫ x

0 zrdF(z)
E [X r] , e.g. defined in

Kleiber and Kotz (2003). Then, if t > 0 we have,

E[X r|X > t] = E[X r] ·
1−F(r)(t)

1−F(t)
. (1)

In particular, when t = xα denotes the α quantile of X, that is Pr(X ≤ xα) = F(xα) = α,

formula (1) is then,

E[X r|X > xα] = E[X r] ·
1−F(r)(xα)

1−α
. (2)

Proof: The result follows directly from the definition of incomplete moments given

above and standard properties of the cumulative distribution function.

The interest of the previous result is that conditional tail higher-order moments can

be easily derived if the assumed distribution has simple expressions for the (uncondi-

tional) moments, E(X r), and for the CDF of the rth incomplete moment. As we will see

below, there are some distributions for which these expressions can easily be found.
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3 McDonald’s model

McDonald (1984) analysed distributions for the size of income and found a compre-

hensive framework that allows a straightforward estimation of parameters and addi-

tional features of many distributions for non-negative random variables. The general-

ized gamma (GG) distribution was proposed by Stacy (1962), while the generalized beta

of the first kind (GB1) and the generalized beta of the second kind (GB2), sometimes

termed Generalized Beta Prime, were proposed in this context by McDonald (1984) and

they are defined in terms of their probability density functions (a,b, p,q > 0) as follows:

fGG(x;a, p,b) =
axap−1 exp(−(x/b)a)

bapΓ(p)
, x > 0, (3)

fGB1(x;a, p,q,b) =
axap−1[1− (x/b)a]q−1

bapB(p,q)
, 0 ≤ x ≤ b, (4)

fGB2(x;a, p,q,b) =
axap−1

bapB(p,q)[1+(x/b)a]p+q
, x ≥ 0, (5)

and 0 otherwise. Here Γ(α) =
∫

∞

0 tα−1 exp(−t)dt represents the gamma function and

B(p,q) =
∫ 1

0 t p−1(1− t)q−1dt the beta function, where α, p,q > 0. Note that the param-

eter b is a scale parameter.

A random variable X with PDF (3)-(5) will be denoted by X ∼ GG(a, p,b), X ∼
GB1(a, p,q,b) and X ∼ GB2(a, p,q,b) respectively. These models include an important

number of income distributions. As such, they have been wildly used in many applica-

tions. Here we present a few simple examples:

• The generalized gamma (GG) distribution includes: the exponential distribution

(a = p = 1), the classical gamma distribution (a = 1); if a = 1 and p = n/2, a chi-

squared distribution with n degrees of freedom is obtained, the classical Weibull

distribution (p = 1), the half normal distribution (a = 2 and p = 1/2). More-

over, the two-parameter lognormal distribution is a limiting case of the generalized

gamma distribution given by a → 0, p,b → ∞, a2 → σ−2 and bp1/a → µ.

• The GB1 distribution includes the three-parameter classical beta distribution with

support (0,b) if we set a = 1 in (4). When letting a = b = 1, we obtain the usual

classical beta distribution of the first kind. Chapter 25 of the book of Johnson,

Kotz, and Balakrishnan (1995) contains a careful study of beta distributions. See

also Balakrishnan and Nevzorov (2004), Chapter 16.

• The GB2 includes the usual second kind beta distribution (a = 1), the Singh-

Maddala distribution (Singh et al. (1976)) (p= 1), the Dagum distribution (Dagum

(1977)) (q = 1), the Lomax or Pareto II distribution (a = p = 1) and the Fisk or
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log-logistic distribution (p = q = 1). The GB2 distribution was referred to as a

Feller-Pareto distribution by Arnold (1983), including an additional location pa-

rameter.

One of the main advantages of the McDonald’s family is the huge variety of particu-

lar or limiting cases that it contains. Many of the models that are basic in the analysis of

size and income can be expressed in this framework. According to McDonald (1984),

both of the generalized beta distributions include the generalized gamma as a limiting

case.

3.1 Properties of the generalized function for the size distribution
of income

In this section we describe several properties of the members of the McDonald family,

which will be used in the rest of the paper. We aim at finding those characteristics that

are useful to describe the tails, as we are mainly concentrated on measuring the risk.

In order to obtain the CDF of the GG distribution, we consider the incomplete

gamma function ratio defined by,

G(x;ν) =
1

Γ(ν)

∫ x

0
tν−1 exp(−t)dt, x > 0, (6)

with ν > 0. Note that (6) corresponds to the CDF of the classical gamma distribution

with shape parameter ν > 0 and scale parameter b = 1. As a consequence,

xα = G−1(α;ν) (7)

represents the quantile of order α corresponding to the classical gamma distribution with

shape parameter α, scale parameter b = 1 and PDF f (x) = xν−1e−x

Γ(ν) .

Using (6), the CDF of (3) is given by,

FGG(x;a, p,b) = G((x/b)a; p), x ≥ 0. (8)

Now, we consider the incomplete beta function ratio defined by,

B(x; p,q) =
1

B(p,q)

∫ x

0
t p−1(1− t)q−1dt, 0 ≤ x ≤ 1 (9)

with p,q > 0. Function (9) corresponds to the CDF of the classical beta distribution

with PDF f (x) = xp−1(1−x)q−1

B(p,q) . Therefore,

xα = B−1(α; p,q) (10)

represents the quantile of order α of a classical beta distribution with parameter (p,q).
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The CDF of the GB1 distribution is:

FGB1(x;a, p,q,b) = B((x/b)a; p,q), 0 ≤ x ≤ b, (11)

where B(·; ·, ·) is defined in (9).

The CDF of the GB2 can be easily defined in terms of the incomplete beta function

ratio (9) and their CDF is given by,

FGB2(x;a, p,q,b) = B

(

(x/b)a

1+(x/b)a
; p,q

)

, x ≥ 0. (12)

Butler and McDonald (1989) showed that many inequality measures depend upon

the incomplete moments of the income distribution, see also Kleiber and Kotz (2003).

They showed that they are easily calculated for a very broad family of distributions

because they possess a closure property. This is the case of the GG, GB1 and the GB2

distributions. The CDF, the distribution of the rth incomplete moment X(r) and the

moments of the GG, GB1 and GB2 distributions are summarized in Table 1.

Table 1: The CDF, the distribution of the rth incomplete moment X(r) and the moments of the GG, GB1

and GB2 distributions. For the GB2 distribution E[X r] and X(r) exist if q < r/a.

Distribution GG GB1 GB2

CDF G((x/b)a; p) B((x/b)a; p,q) B
(

(x/b)a

1+(x/b)a ; p,q
)

X(r) GG(a, p+ r
a
,b) GB1(a, p+ r

a
,q,b) GB2(a, p+ r

a
,q− r

a
,b)

E[X r]
br

Γ(p+ r
a
)

Γ(p)

brB(p+ r
a
,q)

B(p,q)

brB(p+ r
a
,q− r

a
)

B(p,q)

Summarized from Butler and McDonald (1989) and Kleiber and Kotz (2003)

3.2 Estimation of the GG, GB1 and GB2

In order to implement the calculation of the tail risk measures for the distributions of

the McDonald family, it is necessary to provide a simple way to fit these distributions.

These models can be estimated by maximum likelihood but, as already noted by Prentice

(1974) among others, maximization can be difficult. Alternatively, moment estimates

can be used.

For a given data set, the sample moments should be calculated and then the parameter

estimates can be found, solving the expressions for the theoretical moments given in the

last row of Table 1. All positive moments exist for the GG and the GB1. It is not the case

for the GB2. Estimation by the method of moments up to four implies the existence of

moments up to four in the GB2 case, which implies constraints of the parameters space.
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3.3 Conditional moments

Using the results of the previous sections, we can obtain simple expressions for the tail

moments. These results follow immediately.

3.3.1 Formulation for the GG Distribution

For the GG distribution, the conditional moments in formula (2) can be expressed as,

E[X r|X > xα] =
br

Γ(p+ r/a)

(1−α)Γ(p)
·
{

1−G

((xα

b

)a

; p+
r

a

)}

, (13)

where the quantile, also called value at risk (VaR) is

xα = b ·
{

G−1(α; p)
}1/a

.

3.3.2 Formulation for the GB1 Distribution

For the GB1 distribution, the conditional moments in formula (2) are expressed as fol-
lows:

E[X r|X > xα] =
brB(p+ r/a,q)

(1−α)B(p,q)
·
{

1−B
((xα

b

)a
; p+

r

a
,q
)}

,

=
br

Γ(p+ r/a)Γ(p+q)

(1−α)Γ(p+q+ r/a)Γ(p)
·
{

1−B
((xα

b

)a
; p+

r

a
,q
)}

, (14)

where

xα = b ·
{

B−1(α; p,q)
}1/a

.

3.3.3 Formulation for the GB2 Distribution

For the GB2 distribution, formula (2) gives the following expression for the conditional
moments,

E[X r|X > xα] =
brB(p+ r/a,q− r/a)

(1−α)B(p,q)
·

{

1−B

(

(xα/b)a

1+(xα/b)a
; p+

r

a
,q−

r

a

)}

,

=
br

Γ(p+ r/a)Γ(q− r/a)

(1−α)Γ(p)Γ(q)
·

{

1−B

(

(xα/b)a

1+(xα/b)a
; p+

r

a
,q−

r

a

)}

, (15)

if q > r/a where

xα = b ·

{

B−1(α; p,q)

1−B−1(α; p,q)

}1/a

.
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4 Tail risk measures

One of the advantages of having obtained the expressions in the previous section is that

it is straightforward to define tail risk measures. This means that we concentrate on the

part of the distribution that exceeds a certain level, for instance a certain quantile. In

fact, the expected shortfall is one of the easiest forms of tail risk measure, because in

plain words, it measures the expected loss beyond a given quantile level and, as such, is

only concerned about the size of losses in the worst-case part of the domain.

The different risk measures are given by,

E[X |X > xα] = m, (16)

var[X |X > xα] = E[(X −m)2|X > xα], (17)

γ1[X |X > xα] =
E[(X −m)3|X > xα]

{var[X |X > xα]}3/2
, (18)

γ2[X |X > xα] =
E[(X −m)4|X > xα]

{var[X |X > xα]}2
−3. (19)

These tail risk measures can be written in terms of the tail moments

mr = E[X r|X > xα], r = 1,2, . . .

as (m1 = m),

var[X |X > xα] = m2 −m2, (20)

γ1[X |X > xα] =
m3 −3 ·m ·m2 +2 ·m3

{m2 −m2}3/2
, (21)

γ2[X |X > xα] =
m4 −4 ·m ·m3 +6 ·m2 ·m2 −3 ·m4

{m2 −m2}2
−3. (22)

Note that the notion of tail value at risk (TVaR) corresponds to m1. Risk measures

other than the value at risk and the tail value at risk, such as GlueVaR proposed by

Belles-Sampera, Guillén, and Santolino (2014) can also be calculated. Guillen, Prieto,

and Sarabia (2011) analysed risk measures in tails that have a Pareto shape and Gener-

alized beta-generated distributions were studied in Alexander et al. (2012).

5 Case study: tail measures in currency exchange series

Series of daily currency exchange are considered. An example using data from currency

exchanges is suitable because exchanges always take a positive value. Three currency

exchanges were selected: Australian to US dollars, US dollar to British pound sterling

and US dollar to Yen. We only show here the results for the US dollar to British pound
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sterling with a series ranging from January 1971 to July 2014. We have selected this

particular time frame because it corresponds to a long interval covering several periods

of crisis, and thus serves as a good illustration. The other exchange rates lead to similar

conclusions, with the exception of the location in time of the periods of high risk, which

do not necessarily coincide with those between US dollar and British pound. Results for

the other currencies together with the R implementation can be obtained from the au-

thors. Figure 1 displays the raw data for daily exchange rate series and Table 2 presents

some summary statistics.

Table 2: Descriptive summary of the observed exchange rate

between the US dollar and the British pound from 1970 to 2014.

Observed USD/GBP exchange (N = 10921)

min 1.052

max 2.644

median (IQR) 1.67 (1.56, 1.91)

mean (95% CI) 1.77 (1.76, 1.77)

second moment 3.22

third moment 6.05

fourth moment 11.78

The second, third and fourth moments for the whole observed pe-
riod (from 1970 to 2014) do not necessarily reflect the relative size
with respect to the first moment at every window.

Figure 1: US dollar/British pound exchange rate from 1971 to 2014.

The fourth moment is much larger than the first, even if exchange rates means are

smaller than 2, which implies that the importance of the fourth moment in the minimiza-

tion procedure is the largest. A weighted method of moments that gives roughly the

same order of magnitude to all four moments could be compared with the unweighted

method. In the same vein, more recent observations could be weighted more that distant

past observations in a rolling window. There are many possibilities on how to construct

such weights and there is not a consensus in finance about this. We have preferred to

leave this point as an open question for further research.

A rolling window is implemented, so that the tail risk is calculated using a window

of 250 observations. Each new window drops the first observation and adds a new one at

the end of the 250 observation days. In this way, a long daily series of tail risk measures

can be obtained, using in each case a window of 250 days.
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Figure 2: Empirical estimates of 95% value at risk (solid line) and tail value at risk (dashed line) for the

exchange rate between the US dollar and the British pound from 1971 to 2014, in 250-days windows.

Figure 3: McDonald model (GG) estimates of 95% value at risk for exchange rates between the US dollar

and British pound from 1971 to 2014, in 250-days windows (dot points). Empirical estimates are presented

in dashed lines.

Our optimization method is based on minimizing the Euclidean distance between

the theoretical moments and the empirical moments, where we always checked that

distance was close enough to zero, less than 0.001. We have also compared parametric

estimates versus empirical estimates as suggested by McDonald and Ransom (1979) .

We always achieved convergence in our examples. However, as suggested by one of the

reviewers, a useful recommendation when implementing this kind of optimization in a

rolling window is to take the result of parameter estimation (in the previous window) as

the seed in numerical optimization in the following one.

Figure 2 shows the results and compares the tail analysis for a 95% value at risk

(VaR) and the 95% tail value at risk when using an Empirical CDF. Figures 3 and 4

present the analysis of the 95% VaR and the 95% TVaR of the McDonald generalized

gamma model for the exchange rate, respectively. To save space, we only present the
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graphical results for the GG distribution but the results (available upon request) are sim-

ilar when we use de GB1 and GB2 distributions. The conclusion is that the proposed

model is able to capture fluctuations of the risk in the exchange rate that the empirical

analysis cannot capture. Note that the spikes in specially risky days are spotted much

better with our method. There are periods of high risk around 1973 (oil crisis), 1985 (in-

ternational intervention in the currency markets to depreciate the dollar), 1987 (market

crash), 2004 (dot-com bubble) and 2008 (Lehman Brothers and global financial crisis).

If the empirical conditional distribution function was used, the tail risk would have been

substantially underestimated. The McDonald approach seems to provide values that are

larger than those provided by the empirical approach and they seem to be much more

sensitive to daily updates in the rolling window.

Figure 4: McDonald model (GG) estimates of 95% tail value at risk for exchange rates between the US

dollar and the British pound from 1971 to 2014, in 250-days windows (dot points). Empirical estimates are

presented in dashed lines.

Table 3 presents some summary statistics of the empirical and the estimated McDon-

ald (GG, GB1 and GB2) 95% value at risk and tail value at risk in 250-days windows

from 1971 to 2014 of the exchange rate between the US dollar and the British pound.

As expected after inspection of Figures 3 and 4, the summary statistics of the value at

risk and the tail value at risk are higher when using the GG distribution than when using

the empirical CDF.

Figures 3 and 4 offer the comparative analysis for value at risk and tail value at risk

to see the parametric estimates versus the empirical. The inferior stability of parametric

estimates could indeed speak against the parametric method, but it could also show that

fitting a parametric distribution requires to look at the whole domain, making inference

about the tail more dependent on the location and shape than empirical risk measures.

Empirical estimates of the quantiles differ from estimates based on the parametric fit

because they only sort observations and choose the value (or an interpolation of two

values) that corresponds to the chosen confidence level, here 95%. If there is a large
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extreme suddenly appearing on the right tail, the quantile may not react to that phe-

nomenon. This is the main disadvantage of working with quantiles. When looking at

the empirical tail conditional expectation estimates (dashed line in Figure 2), there is

only a slight increase of the tail value at risk compared to the value at risk. In contrast,

parametric distributions are fitted with all the information in the data.

Table 3: Summary of the empirical and the estimated McDonald (GG, GB1 and GB2) 95% value at risk

and tail value at risk in 250-days windows from 1971 to 2014 of the exchange rate between the US dollar

and the British pound.

Daily exchange rate USD/GBP (N = 10,671)
McDonald models

Empirical GG GB1 GB2

Value at Risk

min 1.32 1.34 1.32 1.35

max 2.62 4.00 2.87 3.02

median 1.80 1.80 1.78 1.88

(IQR) (1.62, 1.99) (1.65, 2.03) (1.63, 1.99) (1.65, 2.08)

mean 1.87 1.89 1.86 1.92

(95% CI) (1.86, 1.87) (1.88, 1.90) (1.85, 1.86) (1.91, 1.92)

Tail Value at Risk

min 1.33 1.36 1.23 1.39

max 2.63 4.86 2.96 3.29

median 1.82 1.83 1.79 1.93

(IQR) (1.64, 2.00) (1.67, 2.07) (1.64, 2.01) (1.68, 2.16)

mean 1.88 1.92 1.87 1.98

(95% CI) (1.87, 1.88) (1.91, 1.93) (1.86, 1.87) (1.97, 1.98)

In our case study, daily observations correspond to a different random variable, for

which we only have exactly one observation. When we deploy a rolling window, our

hypothesis is that the distribution remains stable during that window period and that

observations are independent. Empirical risk estimates of value at risk and tail value

at risk have been extensively used in the literature, knowing that they are very robust.

But when analysing risk, and in our approach, we prefer a parametric approach that

considers the size of all the observations.

In order to take into consideration sample size issues, we have tried wide windows

observations of 500 and 750 daily data. The conclusions did not change. As noted

by one of the reviewers, time series characteristics may indeed be interfering in the

estimation. Standard errors may be affected by the existence of positive and significant

correlation between subsequent daily observations, but our application does not address

inference questions.
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6 Conclusions

We conclude that the McDonald model is a suitable framework to analyse tail risk and

we show that it can easily be implemented with moment estimates, it is fast and it does

not require considerable computational effort. The main importance of our proposed

approach is about the implementation.

Even if expressions for incomplete moments of income distributions had been anal-

ysed before, the focus there was on their link to inequality measures. Our added value

here is about the analysis of conditional moments and their relationship with risk mea-

sures such as the tail conditional expectation. These exact expressions had not been

implemented before. By finding the link between moments, incomplete moments of

income distributions and risk measures we facilitate the task of risk analysts.

Tail risk analysis can be done as fast as when the empirical distribution is assumed,

because parameter can be fitted using the first moments. Then, tail risk is computed

immediately from the expressions presented above.

Butler and McDonald (1989) mentioned that in many fields of applications the entire

shape of the distribution, not just its mean, is important and they gave an empirical ex-

ample where they calculated normalized incomplete moments or moment distributions

of the GB1, GB2 and GG in US income data for a series of years. They used maximum

likelihood estimation on grouped data. They concluded that these income distribution

moments characterize important properties of interest in an analysis of the distribution

of economic data (see also Butler and McDonald (1987)). Our practical contribution

concentrates on the tail. We provide a moment estimation procedure that is fast in prac-

tice, produces a quick answer (through the remark given by Theorem 1) and improves

the results of empirical measures.

The proposed methodology is useful in the analysis of financial time series, since it

has the capability to detect periods where the risk is high and the results are realistic

in the most of cases. However, isolated points can suggest non-stability on parameter

estimation.

We have not addressed the question of the relative merits of alternative estimation

techniques in this paper. McDonald and Ransom (1979) noted that the techniques of

maximum likelihood estimation and method of moments are not directly appropriate for

the case in which grouped data is used. As a practical tool, these authors suggest to

check the agreement between the implied, i.e. substituting the parameter estimates in

the expression for the mathematical expectation, and empirical estimates of the mean.

Their main concern is about the fact that they are using grouped rather than individual

data. Since we are working on individual observations we believe that both maximum

likelihood estimation and the method of moments estimation are suitable. However,

when fitting a GG distribution, Prentice (1974) and earlier authors note that maximiza-

tion of the likelihood function with Newton-Raphson method does not work well and

that the existence of solutions to the log-likelihood equations is sometimes in doubt. For

the GG distribution, the flexsurv R package (Jackson, 2016) could be used.
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Abstract

False discovery rate (FDR) control is important in multiple testing scenarios that are common

in neuroimaging experiments, and p-values from such experiments may often arise from some

discretely supported distribution or may be grouped in some way. Two situations that may lead to

discretely supported distributions are when the p-values arise from Monte Carlo or permutation

tests are used. Grouped p-values may occur when p-values are quantized for storage. In the

neuroimaging context, grouped p-values may occur when data are stored in an integer-encoded

form. We present a method for FDR control that is applicable in cases where only p-values

are available for inference, and when those p-values are discretely supported or grouped. We

assess our method via a comprehensive set of simulation scenarios and find that our method

can outperform commonly used FDR control schemes in various cases. An implementation to a

mouse imaging data set is used as an example to demonstrate the applicability of our approach.
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1 Introduction

Modern experiments in numerous fields of science now output the results of thousands to

millions of hypothesis tests simultaneously. Recent accounts of the theoretical aspects

of the phenomenon of simultaneous statistical inference with applications in the life

sciences can be found in Dickhaus (2014). Further treatment of the topic can be found

in Efron (2010).

We assume that we are operating in a scenario whereupon we (only) observe p-values

from n ∈N simultaneous tests of the hypotheses Hi (i ∈ [n]; [n] = {1, ...,n}), which may
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be either null or otherwise and may be related in some manner. Suppose that we are

conducting well-specified standard significance tests at significance level α ∈ (0,1). If

all of the hypotheses are null, then we can directly compute the expected number of tests

declared significant as nα. Taking n large (e.g. n≥ 106) and α at usual levels such as α∈
(0.001,0.1), the number of incorrectly declared hypotheses as not null can be greatly

inflated. When there is a potential for large numbers of incorrectly rejected hypotheses,

the outcome of using only standard significant tests can lead to spurious conclusions.

In recent years, the leading paradigm for the handling of large-scale simultaneous

hypothesis testing scenarios is via the control of the false discovery rate (FDR) of an ex-

periment. The control of FDR was first introduced by Benjamini and Hochberg (1995)

and has since been developed upon by numerous other authors. The FDR of an ex-

periment can be defined as FDR=E(N01/NR)P(NR > 0), where N01 and NR denote the

number of false positives and the number of rejected hypotheses (hypotheses declared

significantly alternative) from the experiment, respectively.

The FDR control method of Benjamini and Hochberg (1995) was first developed to

only take an input of n IID (identically and independently distributed) p-values. An

extension towards the control of FDR in samples of correlated p-values was derived in

Benjamini and Yekutieli (2001). Since these key publications, there have been numer-

ous articles written on the topic of FDR control in various settings and under various

conditions; see Benjamini (2010) and the comments therein for an account of the his-

tory and development of FDR control.

In most FDR control methods, there is an explicit assumption that the marginal dis-

tribution of the p-values of an experiment is uniform over the unit interval, if the hy-

pothesis under consideration is null. This assumption arises via the classical theory of

p-values of well-specified tests (cf. Dickhaus, 2014, Sect. 2). However, in practice,

there are numerous ways for which the distribution of p-values under the null can de-

viate from uniformity. In Efron (2010, Sect. 6.4), several causes of deviation from

uniformity are suggested. Broadly, these are: failed mathematical assumptions (e.g. in-

correct use of distribution for computing p-values), correlation between p-values, and

unaccounted covariates or misspecification of null hypotheses. A treatment on the ef-

fects of misspecification of the null hypotheses due to unaccounted covariates can be

found in Barreto and Howland (2006, Chap. 7 Appendix and Chap. 18).

There are some FDR methods that account for deviation from uniformity in the null

distribution. These include the methods of Yekutieli and Benjamini (1999), Korn et al.

(2004), Pollard and van der Laan (2004), van der Laan and Hubbard (2006), and Habiger

and Pena (2011). Unfortunately, the listed methods all require access to the original

data of the experiment in order to compute permutation-based test statistics and thus

permutation-based p-values. As mentioned previously, access to the original experi-

mental data lies outside of the scope of this article as we only assume knowledge of the

p-values. The empirical-Bayes (EB) paradigm provides a powerful framework under

which the deviation of the null away from uniformity can be addressed with only access

to the experimental p-values. The EB paradigm for FDR control was first introduced in
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Efron et al. (2001). A relatively complete account of the EB paradigm appears in Efron

(2010).

We largely follow the work of McLachlan, Bean and Ben-Tovim (2006) and Nguyen

et al. (2014). Our novelty and development of the available literature is to present a

methodology for addressing the problems that are introduced when p-values are dis-

tributed on a discrete support or when the p-values are grouped.

As in Nguyen et al. (2014), we particularly focus on the context of neuroimaging

applications. In voxel-based morphometric neuroimaging studies (see, e.g., Ashburner

and Friston, 2000), the number of simultaneously tested hypotheses often range in the

tens of thousands to the tens of millions. Due to such inflated numbers, the risk of mak-

ing false discoveries is often unacceptably high. Making inference without FDR control

in such situations may lead to an overabundance of absurd conclusions. This is well

demonstrated in the infamous results of Bennett et al. (2009), where neuronal activation

in the brain of a dead fish was observed in a functional magnetic resonance imaging

study, where the FDR was not controlled. Thus, FDR control is an important and ongo-

ing area of research in the neuroimaging literature. A classic treatment regarding FDR

control in neuroimaging can be found in Genovese, Lazar and Nichols (2002).

Grouped p-values may arise under incomplete observation; that is, under censoring,

grouping, or quantization observation of p-values; see Turnbull (1976) for working def-

initions of the censored and grouped data and Gersho and Gray (1992) for quantization.

We shall elaborate upon these definitions in the sequel.

Neuroimaging data such as MRI and functional MRI volumes are usually stored via

one of a number of common storage protocols. Incomplete data may arise when data

are compressed using one of these storage algorithms. Some common storage protocols

under which neuroimaging data may be compressed include ANALYZE (Robb et al.,

1989), DICOM Bidgood et al. (1997), MINC (Vincent et al., 2003), and NIFTI Cox et

al., 2004). A good summary of these protocols is presented in Larobina and Murino

(2014). In the pursuit of reduced storage sizes, it is not uncommon for neuroimaging

data volumes to be stored at the minimum precision specification of any of the afore-

mentioned formats. For example, DICOM volumes can only store data as integers, at a

precision level as low as 8-bits (i.e. 28 = 256 unique values). When p-values are stored

in such a format, the true values are grouped into bins that are centered on a discrete

number of possible values on the unit interval.

Discretely supported p-values may arise from Monte Carlo or permutation tests. In

such cases, the p-values for a fixed number of permutations or Monte Carlo replications

R, can only take on R+ 1 discrete value. Furthermore, Monte Carlo and permutation

tests are both random approximations of exact tests. Such tests can again only output

a discrete number of possible p-values that depend on the sample size of the data from

which they are computed (cf. Phipson and Smyth, 2010). Monte Carlo and permuta-

tion tests are frequently used in neuroimaging studies; see, for example, Winkler et al.

(2014).



240 False discovery rate control for grouped or discretely supported p-values...

It is known that grouped observations of real numbers can often lead to inaccura-

cies in statistical computations. Discussions of some aspects regarding the effects of

grouping on statistical computation are discussed in Moschitta, Schoukens and Carbone

(2015). The effects of quantization can particularly be ruinous when applying standard

EB-based FDR control approaches. The effects of incompleteness in the observation

of p-values qualifies as a failure in mathematical assumptions, under the taxonomy of

Efron (2010, Sect. 6.4).

In this article, we address the problem of EB-based FDR control using p-values that

are discretely supported or grouped, via the use of binned estimation. We demonstrate

the effect of grouped p-values on the estimation of the EB model. Making use of the EM

(expectation–maximization of Dempster, Laird and Rubin (1977) algorithm from the

mix function in the mixdist package (MacDonald and Du, 2012) in the R programming

language (R Core Team, 2016), we demonstrate that one can simply and rapidly maxi-

mum marginal likelihood (MML) estimation (cf. Varin, 2008) of the EB model. We fur-

ther prove the consistency of the MML estimator for the EB model. A second numerical

study is conducted to demonstrate the performance of our method under incomplete ob-

servation of p-values, where a comparison between our method is made against the com-

monly used methods of Benjamini and Hochberg (1995) and Benjamini and Yekutieli

(2001), and Storey (2002). An example application to a mouse brain imaging dataset is

then provided to demonstrate the usefulness of our approach in a real data scenario.

The article proceeds as follows. In Section 2, we introduce concepts relating to

grouped and discretely observed p-values, and the EB model for p-values. We then

demonstrate how the EB model can be used for FDR control. In Section 3, we present

a demonstration of the effect of grouped p-values on the naive estimation of the EB

model. In Section 4, a numerical study of the performance of our method is presented.

In Section 5, the methodology is applied to control the FDR of a mouse imaging data

set. Conclusions are drawn in Section 6. Further details regarding our methodology are

included in the Supplementary Materials.

2 Binned estimation of the empirical Bayes model for grouped

or discretely supported p-values

Let 0 = a0 < a1 < · · ·< am−1 < am = 1 be a set of m points along the line segment [0,1].

Suppose that we observe n p-values Pi ∈ [0,1], for i ∈ [n]. Grouping may occur when

P1, . . . ,Pn are subject to rounding (or quantization), such that each p-value to the nearest

point a j, for j ∈ [m]∪{0}, where various measurements of closeness may be used for

different applications. Observation of P1, . . . ,Pn may also be grouped when they are

censored. That is, when we only observe the fact that each p-value Pi ∈ (a j−1,a j), for

some j ∈ [n], and not its precise value. Under either quantization or censoring, the

p-values Pi are each mapped to a discrete set of values, either the m+ 1 quantization
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centers a j or the m intervals (a j−1,a j), enumerated by the index j. In the case where

P1, . . . ,Pn arise from a Monte Carlo or permutation tests, we may envisage that they are

quantized approximations of p-values that arise from an asymptotically large population

size and thus can be treated in the same manner as quantized p-values in practice.

2.1 The empirical Bayes model

For i ∈ [n], let Zi = Φ
−1 (1−Pi) be the probit transformation of Pi. We refer to Zi as

the z-scores. Here Φ is the cumulative distribution function of the standard normal

distribution. Under the EB paradigm, we assume that some proportion π0 ∈ [0,1] of the

n hypotheses are null and thus π1 = 1−π0 are otherwise. Since an alternative (not null)

hypothesis generates a p-value that is on average smaller than that of a null hypothesis,

we can also assume that the z-scores of null hypotheses arise from some distribution with

a mean µ0 ∈R, where µ0 < µ1 and µ1 ∈R is the mean of the alternative z-scores. Under

uniformity of the p-values, the z-scores have a standard normal distribution, we can

approximate the density of the null z-scores by f0 (z) = φ
(

z;µ0,σ
2
0

)

, where σ2
0 > 0 and

φ
(

·;µ,σ2
)

is the normal density function with mean µ and variance σ2. Likewise, we

can approximate the density of the alternative z-scores by f1 (z) = φ
(

z;µ1,σ
2
1

)

, where

σ2
1 > 0 (cf. Efron, 2004). The marginal density of any z-score, can be approximated by

the two-component mixture model

f (z;θθθ) = π0 f0 (z)+π1 f1 (z) , (1)

where θθθ⊤ =
(

π0,µ0,σ
2
0 ,µ1,σ

2
1

)

is the model parameter vector and (·)⊤ is the transpose

operator. We say that (1) is the EB model for p-values.

2.2 Statistical model for binned data

Let −∞ = b0 < b1 < b2 < ... < bm−1 < ∞ for some m ∈ N\{1}. We define m bins

B j, for j ∈ [m], where B j = (b j−1,b j] for j ∈ [m−1] and Bm = (bm−1,∞) . Suppose

that we observe n p-values Pi that are converted to z-scores Zi, which may be infinite

in value. Further, define I(A) as the indicator variable that takes value 1 if proposition

A is true and 0 otherwise, and define a new random variable X⊤
i = (Xi1, ...,Xim), where

Xi j = I(Zi ∈ B j), for each i and j ∈ [m].

Suppose that the n p-values generate z-scores that are potentially correlated and

marginally arise from a mixture model of form (1), with θθθ = θθθ0, for some valid θθθ0.

Using the bins and realizations x⊤i = (xi1, ...,xim) of each Xi (i ∈ [n]), we can write the

marginal likelihood and log-marginal likelihood functions under the mixture model ap-

proximation for the z-scores as

L(θθθ) =
n

∏
i=1

m

∏
j=1

[

∫

B j

f (z;θθθ)dz

]xi j
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and

l (θθθ) =
n

∑

i=1

m
∑

j=1

xi j log

∫

B j

f (z;θθθ)dz. (2)

Write the MML estimator for θθθ0 that is obtained from n z-scores as θ̂θθn. We can define

θ̂θθn as a suitable root of the score equation ∇l = 0, where ∇ is the gradient operator and

0 is the zero vector.

The marginal likelihood function is simply an approximation to the likelihood that

is constructed under an assumption of independence between the observations Xi (cf.

Varin, 2008). In light of not knowing what the true dependence structure between the

observations is, the marginal likelihood function can be seen as a quasi-likelihood con-

struction in sense of White (1982). The purpose of a quasi-likelihood construction is to

make use of an approximation that is close enough to the true data generative process so

that meaningful inference can be drawn. Here its use is to avoid the need to declare an

explicit model for potential correlation structures between the observations.

The EM algorithm for MML estimation is the context of this article is provided

in Supplementary Materials Section 1. The consistency of the MML estimator is also

established in the same section.

2.3 Empirical Bayes-based FDR control

Upon estimation of the parameter vector θθθ0
via the MML estimator θ̂θθn, we can follow the

approach of McLachlan et al. (2006) in order to implement EB-based FDR control of the

experiment. That is, consider the event {Hi is null |Zi = zi}, for each i ∈ [n]. Via Bayes’

rule and the MML estimator θ̂θθn, we can estimate the probability of the aforementioned

event via the expression

P̂(Hi is null |Zi = zi) =
π̂0φ

(

zi; µ̂0, σ̂
2
0

)

f

(

zi; θ̂θθn

) = τ
(

zi; θ̂θθ
)

. (3)

Using (3), we can then define the rejection rule

r

(

zi; θ̂θθn,c
)

=

{

1, if τ
(

zi; θ̂θθn

)

≤ c

0, otherwise,

where c ∈ [0,1]. Here r

(

zi; θ̂θθn,c
)

= 1 if the null hypothesis of Hi is rejected (i.e. Hi is

declared significant) and 0 otherwise.
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Let the marginal FDR be defined as mFDR=EN01/ENR. We can estimate the mFDR

of an experiment via the expression

m̂FDR =

∑n
i=1 τ

(

zi; θ̂θθn

)

I

(

r
(

zi; θ̂θθn,c
)

= 1
)

∑n
i=1 I

(

r

(

zi; θ̂θθn,c
)

= 1
) , (4)

which we can prove to converge to the mFDR in probability, under M-dependence (cf.

Nguyen et al., 2014, Thm. 1). Subsequently, we can also demonstrate that for large n,

the mFDR approaches the FDR (cf. Nguyen et al., 2014, Thm. 2).

Notice that mFDR = mFDR(c) is a function of the threshold c. Using the threshold-

ing value, we can approximately control the FDR at any desired level β by setting the

threshold c using the rule

c
β
= argmax

{

c ∈ [0,1] : m̂FDR(c)≤ β
}

. (5)

2.4 Choosing the binning scheme

Thus far in discussing the binned estimation of the z-score distribution f , we have as-

sumed that the bin cutoffs b1, ...,bm−1 are predetermined. When the p-values are cen-

sored into intervals (a j−1,a j), for j ∈ [m]∪ {0}, as describe at the beginning of the

section, we may take the values a j to inform our bin cutoffs b1, . . . ,bm−1. This can be

done by computing the probit transformation of each of the cutoffs. That is, we can set

b0 = −∞, b1 = Φ
−1 (1−am−1), b2 = Φ

−1 (1−am−2) , . . . ,bm−1 = Φ
−1 (1−a1). Thus

the bin cutoffs are implicitly given by the censoring and thus the problem does not re-

quire the user to make a choice regarding the binning scheme, similar to the situation

originally encountered in McLachlan and Jones (1988).

When the p-values are quantized or when they are discretely distributed, we must

make a non-trivial decision regarding the binning scheme to use. A simple approach

to the choice of binning scheme is to use the techniques underlying optimal histogram

smoothing on the finite z-scores. In R, there are several optimal histogram smoothing

techniques that are deployed in the default hist function. These include the fixed bin

width methods of Sturges (1926), Scott (1979), and Freedman and Diaconis (1981).

Under the methods of Sturges (1926), Scott (1979), and Freedman and Diaconis

(1981), the number of bins is taken to be m = ⌈log2 n⌉+1,

m = ⌈(Range/h)⌉ with h = 2× IQR/n1/3,

and

m = ⌈(Range/h)⌉ with h = 3.5× s/n1/3,
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respectively. Here, ⌈·⌉ is the ceiling operator, and Range, IQR, and s are the sample

range, interquartile range, and standard deviation, respectively. We compare the effec-

tiveness of each of the binning approaches in the next section.

The binning of data, or the approximation of density functions via histograms, is a

nontrivial problem that extends beyond the scope of this article. There is an abundance

of methods for data binning that are available within the statistical and machine learning

literature. Any of such methods can be used in place of the ones that we have sug-

gested. For example, see the papers of Wand (1997) and Birge and Rozenholc (2006)

regarding alternative fixed bin width methods. Examples of variable bin width methods

can be found in the works of Kontkanen and Myllymaki (2007) and Denby and Mallows

(2009). Further approaches can be found within the references of the cited articles.

3 An integer encoding example

To demonstrate the effects of grouping on p-values, we use the effects of integer encod-

ing of such values as an example. Table 1 of Larobina and Murino (2014) provides a

summary of the possible data compression schemes that can be applied when storing

data in the ANALYZE, DICOM, MINC, or NIFTI formats. The possible integer storage

schemes available for ANALYZE are 8-bits unsigned, or 16 and 32-bits signed. For

DICOM, the available schemes are 8, 16, and 32-bits signed or unsigned. For MINC, 8,

16, and 32-bits signed or unsigned, are available. Finally, NIFTI can store data as 8, 16,

32, or 64-bits signed or unsigned.

For reference, 8, 16, 32, and 64 binary bits unsigned can encode 256, 65536, 429496

7296, and 1.84E+19 (aEb = a× 10b) unique values, respectively. These numbers are

doubled when signed encodings are used. In this article, we only consider integer com-

pression in 8-bits or 16-bits signed and unsigned formats. This is because 32-bits and

64-bits can be used to encode single and double-precision floating points, respectively,

which largely mitigate against the reduced precision problems that we discuss in this

article.

3.1 Integer encoding of p-values

As noted earlier, we are largely concerned with large scale-hypothesis testing situations

that arise from voxel-based experiments (cf. Ashburner and Friston, 2000). In such

experiments, a hypothesis test is conducted at each voxel of an imaged volume. For

statistical analyses, resulting volumes of p-values are generated. It is these volumes that

are then stored, possibly in a reduced precision format, for dissemination or for storage.

Suppose that a γ-bits unsigned integer encoding is used, where γ ∈ N. Note that a

γ-bits signed integer encoding is effectively equivalent to a (γ+1) -bits unsigned, for all

intents and purposes. When the hypothesis testing data are stored as a p-value volume,

we suppose that the data are stored such that the smallest integer value encodes the
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number zero and the largest integer value encodes the number one. The remainder of

the integers are used to encode the unit interval at equally-spaced points. The encoding

process then rounds the original p-values towards the nearest of these equally-spaced

points. We refer to this approach as a γ-bits encoding. Under the storage protocols

that we assess, γ ∈ {8,9,16,17} generate valid encodings. We note that our considered

encoding scheme is only a simplified method of quantization. More complex encoding

schemes are possible, such as those considered in Perlmutter et al. (1998).

3.2 The effect of integer encoding on the null distribution

Let n = 106, and for each i ∈ [n], let Hi be a null hypothesis that is tested using a well-

specified test resulting in a p-value Pi arising from a uniform distribution over the unit

interval (cf. Dickhaus, 2014, Chap. 2). We simulate and encode the n p-values using

γ-bits encodings, for all valid values of γ. The respective z-scores from each encoding

scenario are computed, and the parameter elements of f0 (z) = φ
(

z;µ0,σ
2
0

)

are then

estimated via ML estimation.

Here, we naively omit infinite z-scores. The process is repeated 100 times for each

encoding rule. We also estimate the parameter elements of f0 (z) for n = 106 z-scores

that are obtained without encoding in order to provide a benchmark. All computations

are conducted in R.

Figure 1 visualizes the results from the numerical study that is set up above. In the

figure and elsewhere, we denote the estimate/estimator of any quantity θ as θ̂.
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(a) Mean and standard errors from 100 ML

estimates µ̂0 of µ0 = 0.
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Figure 1: Monte Carlo study regarding the estimation of µ0 = 0 and σ
2
0 = 1, in the presence of integer

encodings of p-values. Means are represented by points and standard errors are equal to half the length of

the error bars.

Theoretically, we would anticipate that there is no deviation away from a standard

normal distribution when no encoding is introduced. This is exactly what we observe

in Figure 1(a), where neither the average of the mean nor variance estimates are out-

side of a 95% confidence interval (i.e., approximately Mean± 2×SE, where SE is the
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standard error). In fact, only two encoding schemes (8 and 9-bits encodings) resulted in

significant differences of any kind, from the anticipated estimated values. Further notes

regarding the interpretation of Figure 1 appears in Section 2.1 of the Supplementary

Materials.

3.3 The effect on the z-score distribution

Now suppose that the hypotheses Hi are generated from two populations, a null one with

probability π0 = 0.8, and an alternative one with probability π1 = 0.2. Under the null

hypothesis, we generate test statistics Ti from a standard normal distribution, and under

the alternative, we generate test statistics from a normal distribution with mean µ1 = 2

and variance σ2
1 = 1, instead. The p-values Pi = 1−Φ(Ti), for testing the null that the

test statistics are standard normal, are also computed. Again, we let n = 106.

Encoding of the p-values is again conducted under the protocol that are described in

Section 3.1. We then compute z-scores and discard any infinite values. The parameter

vector θθθ is then estimated via ML estimation. The process is again repeated 100 times

for each encoding type. ML estimation is conducted via the usual EM algorithm for

finite mixtures of normal distributions via the normalmixEM2comp function from the

packagemixtools (Benaglia et al., 2009). The result of this numerical study is visualized

in Figure 1 of the Supplementary Materials.

The estimated parameter elements were uniformly significantly different from the

generative values for the model. As γ increases, we observe that the estimated values

appear to approach the nominal parameter values. However, this approach appears to be

slow and still leads to significantly incorrect estimates, even for the largest considered

γ. A quantification of this incorrectness appears in Section 2.2 of the Supplementary

Materials.

4 Assessment of the binned estimator

4.1 Accuracy of z-score distribution

We first repeat the experiment from Section 3.3, except instead of ML estimation via

the normalmixEM2comp function from the package mixtools, we conduct MML esti-

mation via the mix function from the package mixdist. The results from the experiment,

using binning schemes obtained via the histogram binning techniques of Sturges (1926),

Scott (1979), and Freedman and Diaconis (1981) are visualized in Figure 2 of the Sup-

plementary Materials. Interpretation of appears in Section 3.1 of the Supplementary

Materials.

We note that there is only one set of plots where we do not observe the uniform ac-

curacy of the MML estimator, across the binning schemes that are applied. Under 8-bits

encoding, we observe that only the Sturges-binned MML estimator yielded accurate es-
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timates of the generative parameter elements. Both the Freedman-Diaconis (FD) and

Scott-binned estimators resulted in significantly inaccurate estimates of the null propor-

tion and alternative mean and variance parameters. We note that the Sturges binning

leads to faster EM algorithm runtimes due to the fact that fewer numerical integrals are

required in the E-step, as described in Section 1.1 of the Supplementary Materials. Since

we do not observe any benefits from using FD or Scott-type binning in cases where all

three methods yielded accurate estimates, we shall henceforth only consider the use of

Sturges bins.

4.2 FDR control experiment

We perform a set of five numerical simulation scenarios, in order to assess the perfor-

mance of the EB-based FDR control rule that is described in Section 2.3. These studies

are denoted S1–S5, and will be described in the sequel.

In each of the scenarios, we generate n= 106 test statistics T1, . . . ,Tn, with proportion

π0 = 0.8 that Hi is null (i ∈ [n]). The generative distribution of Ti given Hi is null

or alternative differs by the simulation study. However, under each studied scenario,

the null hypothesis is assumed to be that Ti is standard normal, and thus p-values are

computed as Pi = 1−Φ(Ti).
The p-values P1, . . . ,Pn then undergo the various valid encodings that were previously

considered. The EB-based FDR control method is then used to decide which of the

hypotheses Hi are significant, at the FDR control level β ∈ {0.05,0.10}, based only

on the encoded p-values. We compute the false discovery proportion (FDP) and true

positive proportion (TPP) from the experiment as measures of performance of FDR

control and testing power. The measures FDP and TPP are defined as FDP=N01/NR and

TPP = N11/N1, where N11 is the number of false positives, NR is the number of rejected

hypotheses (declared significantly alternative), N11, is the number of true positives, and

N1 is the number of alternative hypotheses from the simulated experiment. For each

simulation scenario, the experiment is repeated Reps = 100 times and the performance

measurements are averaged over the repetitions.

For comparison, we also perform FDR control using the popular methods of Ben-

jamini and Hochberg (1995) and Benjamini and Yekutieli (2001), which we denote as

BH and BY, respectively. We also compare our EB-based FDR control to the EB-related

FDR control technique of Storey (2002), which is commonly referred to as q-values. We

implement the BH and BY methods via the base R p.adjust function. The q-values tech-

nique is implemented via the qvalue package (Storey et al., 2015). Scripts for conduct-

ing studies S1–S5 are available at https://github.com/hiendn/FDR_for_grouped_P_values .

4.3 Simulation scenarios

In Scenario S1, we independently generate Ti from a standard normal distribution, given

that Hi is null, and from a normal distribution with mean 2 and variance 1, otherwise.

https://github.com/hiendn/FDR_for_grouped_P_values
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This scenario is identical to that which is studied Section 3.3.

Table 1: Average FDP and TPP results (Reps = 100) for Scenario S5. The best outcome under each

encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest

to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does

not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 4.35E-02 6.15E-02 1.02E-01 1.85E-01

BH 6.10E-02 9.62E-02 1.82E-01 3.20E-01

BY 2.48E-02 2.80E-02 1.51E-02 3.09E-02

q-values 7.14E-02 1.16E-01 2.26E-01 3.85E-01

8-bits EB 1.03E-01 1.03E-01 3.46E-01 3.46E-01

BH 1.56E-01 2.45E-01 4.93E-01 6.58E-01

BY 1.03E-01 1.03E-01 3.46E-01 3.46E-01

q-values 3.65E-01 5.62E-01 8.00E-01 9.33E-01

9-bits EB 8.23E-02 8.23E-02 2.70E-01 2.70E-01

BH 1.66E-01 2.50E-01 5.15E-01 6.66E-01

BY 8.23E-02 8.23E-02 2.70E-01 2.70E-01

q-values 3.63E-01 5.59E-01 7.97E-01 9.32E-01

16-bits EB 3.97E-02 5.67E-02 8.55E-02 1.62E-01

BH 1.55E-01 2.43E-01 4.92E-01 6.56E-01

BY 4.45E-02 5.86E-02 1.06E-01 1.72E-01

q-values 3.61E-01 5.60E-01 7.97E-01 9.33E-01

17-bits EB 4.12E-02 5.73E-02 8.53E-02 1.63E-01

BH 1.54E-01 2.42E-01 4.90E-01 6.55E-01

BY 4.48E-02 5.88E-02 1.03E-01 1.70E-01

q-values 3.60E-01 5.58E-01 7.95E-01 9.32E-01

We consider hypothesis tests that generate dependent test statistics in Scenarios S2

and S3. In S2 two first-order autoregressive sequences of n observations are generated.

The null sequence is generated with mean coefficient 0, autoregressive coefficient 0.5,

and normal errors with variances scaled so that the overall variance of the sequence is

1. The second chain is the same, except that the mean coefficient is 2 instead of zero. If

Hi is null, then Ti is drawn from the first chain; otherwise Ti is drawn from the second

chain. See Amemiya (1985, Sect. 5.2) regarding autoregressive models. Scenario S3 is

exactly the same as Scenario S2, except that the autoregressive coefficient is set to −0.5
instead of 0.5.

In Scenario S4, we independently generate Ti from a normal distribution with mean

0.5 and variance 1, given that Hi is null, and from a normal distribution with mean 2.5

and variance 1, otherwise. This scenario is misspecified in the sense that the p-values Pi

are not computed under the correct null hypothesis. Thus, the distribution of the Pi will

not be uniform and thus the well-specified testing assumption of BH, BY, and q-values

is not met.
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Lastly, in Scenario S5, we independently generate Ti from a Student t-distribution

with mean 0.5 and variance 1 and degrees of freedom 25, given that Hi, and from a Stu-

dent t-distribution with mean 2.5 and variance 1 and degrees of freedom 25, otherwise.

Justifications regarding the choices for the five scenarios appear in Section 3.2 of the

Supplementary Materials.

4.4 Results

The results for Scenarios S1–S5 are reported in Tables 1–5 of the Supplementary Mate-

rials, respectively. We provide the results for S5 in the main text, as it can be viewed as

the scenario that is most difficult and is thus most interest.

From Table 1, we observe that q-values is anti-conservative uniformly over all encod-

ing types and FDR control levels in Scenario S5. Furthermore, BH was also uniformly

anti-conservative when used to control the FDR at β = 0.05. The BH method also

yielded anti-conservative control of the FDR at β = 0.10, when the data were encoded

using p-type encodings. Both EB and BY were equally anti-conservative for control of

FDR at β = 0.05, when the data were encoded using 8-bits or 9-bits encodings. How-

ever, the control at the β = 0.10 level from both methods for the two aforementioned

encoding schemes were both equal and approximately at the correct rate. For all other

encoding types, both EB and BY correctly controlled the FDR, for both levels of β. BY

appeared more powerful than EB although by only a small amount.

The results above demonstrate that EB along with BY were somewhat more robust

to misspecification and data compression via integer encoding than the two other tested

methods. Thus, as we had anticipated, there was an observable practical effect to FDR

mitigation via conventional methods when p-value data were observed on a discrete

support. However, our EB method, and to an extent, the BY method, were able to

mitigate against the negative effects of discretization induced by censoring, grouping,

and truncation, and thus should be preferred over the other assessed methods in such

settings.

For a discussion of results regarding Scenarios S1–S4, we direct the reader to Sec-

tion 4.4 of the Supplementary Materials. From the results of Scenarios S1–S5, we can

conclude that the EB method can correctly control the FDR when the tests were well-

specified, and are also somewhat robust to misspecification, otherwise.

5 Example application

5.1 Description of data

Correlations between the structural properties of brain regions, as measured over a sam-

ple of subjects, are being increasingly studied as a means of understanding neurological
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development (Li et al., 2013) and diseases (Seeley et al., 2009, Wheeler and Voineskos,

2014, Sharda et al., 2016). These correlation patterns, which are often referred to as

structural covariance in the neuroimaging literature, are widely studied in humans (Ale-

xander-Bloch, Giedd and Bullmore, 2013, Evans, 2013), as well as in animal models

such as mice (Pagani, Bifone and Gozzi, 2016).

For our example application, we study neurological magnetic resonance imaging

(MRI) data from a sample of 241 mice. The MRI sample of both female and male adult

mice were obtained by taking the control data from a phenotyping study (Ellegood et al.,

2015) in order to create a representative wildtype population with variability. All mice

were scanned ex-vivo after perfusion with a gadolinium-based contrast agent, and all

images were obtained at the same location (i.e. the Mouse Imaging Centre). Scanning

was performed on a Varian 7T small animal MR scanner that was adapted for multiple

mouse imaging.

The preparation and image acquisition followed a standard pipeline that is similar to

the one described in Lerch, Sled and Henkelman (2010). Specifically, a T2-weighted

fast-spin echo sequence was used to produce whole-brain images that have an isotropic

resolution of 56 micrometers. After images were acquired, the data were corrected for

distortions and then registered together by deformation towards a common nonlinear

average. The registration pipeline included corrections for nonuniformities that were

induced by radio frequency inhomogeneities or gradient-related eddy currents (Sled,

Zijdenbos and Evans, 1998). The registered images had a volume of x× y× z = 225×

320× 152 voxels, of which n = 2818191 voxels corresponded to neurological matter.

The exported data were stored in the MINC format.

As an output, the registration process produces a set of Jacobian determinants that

provide a measure of the extent in which a voxel from the average brain must expand

or contract in order to match each of the individual brains of the sample. The Jacobian

determinants field of each sample individual is thus a measure of local volume change.

For further processing, the Jacobian determinants are log-transformed in order to reduce

skewness.

5.2 Hypothesis testing

Upon attainment of the sample of 241 Jacobian determinant fields from the registered

mice brain MRIs, we can assess whether or not the local volume change at any particular

voxel is correlated with some region of interest. To do so, we select a “seed” voxel

within the region of interest and compute the voxelwise sample (Pearson) correlation

between the log-transformed Jacobian determinant of the seed voxel and those at every

other voxel in the sample of MRIs. This correlation measure can then be used as a

measure of structural covariance of the region of interest and the rest of the brain. In

the past, structural covariance methods have been used to draw inference regarding a

broad array of phenomena such as cortical thickness (Lerch et al., 2006), and cortical

maturation and development (Raznahan et al., 2011).
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Thus at each of the n= 2818191 voxels we computed a correlation coefficient. Using

the correlation coefficients, we conducted voxelwise tests of the null hypothesis that the

true correlation between the log-transformed Jacobian determinants of the seed voxel

and voxel i ∈ [n] is zero versus the two-sided alternative. The p-values of each test were

computed using the Fisher z-transformation and normal approximation (Fisher, 1921).

Using the seed voxel at spatial location (x,y,z) = (125,124,64) – within the bed

nucleus of the stria terminalis – we conducted the hypothesis tests, as described above.

Histograms of the p-values and log-squared correlation coefficients can be found in Fig-

ure 2. We note that the histogram of the log-squared correlation coefficients omits 35856

voxels that had zero correlation with the seed voxel. Further note that a correlation of

one yields a log-squared coefficient of ≈−0.69.
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(b) Histogram of log-squared correlation coefficients.

Figure 2: Histograms of p-values and log-squared correlation coefficients for the structural covariance

experiment with seed voxel (x,y,z) = (125,124,64) are presented in subplots (a) and (b), respectively.

An inspection of Figure 2 reveals that the p-value distribution from the experiment

deviates significantly from a uniform distribution. The magnitude of the deviation indi-

cates that there may be a potentially large number of voxels that are strongly correlated

with the seed voxel, and thus with the region of interest that the seed voxel represents.

Using FDR control, we can attempt to identify these correlated voxels in a manner that

limits the potential number of false discoveries that are made.

Using the unique function in R, we observed that there were only 66249 discrete and

unique numerical values that made up the sample of p-values. These discrete values in-

clude zero and one, making up 311575 and 6 voxels of the p-value sample, respectively.

Our observations indicate that the data were censored and grouped, at some stage in

processing pipeline. It is difficult to tell how such incompleteness were induced, since

there may have been multiple encodings of the data along the pipeline that has resulted

in the final reported outputs. As such, from our earlier discussions, it would be prudent

to apply our EB-based FDR control methodology, since it explicitly accounts for the

encoded nature of the data. Furthermore, due to the mathematical approximation via the
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use of the Fisher z-transformation as well as the omission of other variables that may

contribute to the analysis such as covariates describing the mice (e.g. gender and model

strain), the null hypothesis that the population correlation is equal to zero is likely to be

misspecified. From Section 4.3, we have observed that the EB-based method is effective

in such a setting.

5.3 FDR control

We firstly transform the p-values pi to the z-scores pi = Φ
−1 (1− pi), for each i ∈ [n]. A

histogram of the z-scores that is obtained is presented in Figure 3. We note that the z-

scores that are obtained from the 311581 with p-values equal to zero or one are omitted

in this plot. There is a clear truncation of the histogram at the z-score value of 4.169

which corresponds to the smallest non-zero p-value of 1.53E-05.

Using the methods from Section 2, we fit the EB mixture model and obtain the

parameter vector

θ̂θθ
⊤
=

(

π̂0, µ̂0, σ̂
2
0 , µ̂1, σ̂

2
1

)

=
(

0.5035,0.5141,1.2002,2.9568,1.7852
)

, (6)

which corresponds to the mixture model,

f
(

z; θ̂θθ
)

= 0.5035×φ
(

z;0.5141,1.2002
)

+0.4965×φ
(

z;2.9568,1.7852
)

. (7)
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Figure 3: The functions f
(

·; θ̂θθ
)

, π̂0 f̂0, and π̂1 f̂1 are plotted with solid, dashed, and dotted lines, respec-

tively.
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As in Sect. 4, we use the Sturges binning scheme that was previously described in

Section 2.4. Let f̂0 (z) = φ
(

z;0.5141,1.2002
)

and f̂1 (z) = φ
(

z;2.9568,1.7852
)

be the

estimates of f0 and f1, respectively. We visualize f

(

·; θ̂θθ
)

, π̂0 f̂0, and π̂1 f̂1 together in

Figure 3. A discussion regarding the goodness-of-fit of (7) is provided in Section 4.1 of

the Supplementary Materials.

Upon inspection of Figure 3, we observe that mixture model (7) provides a good

fit to the suggested curvature of the histogram. The estimated parameter vector from

(6) indicates that the null distribution is significantly shifted to the right. This may

be due to a combination of the effects of encoding and the effects of mathematical

misspecification of the test and omission of covariates. We further observe that there

is a large proportion (almost 50%) of potentially alternative hypotheses. Given such a

high number, there is potentially for numerous false positives if we were to reject the

null using the p-value (or z-score) alone. Thus, we require FDR control in order to make

more careful inference.

Using Eqs (4) and (5), we controlled the estimated mFDR at the β = 0.1 level by set-

ting the threshold c0.1 = 0.09986. This resulted in 608685 of the voxels being declared

significantly correlated with the seed, under FDR control, which equates to 21.60%.

For comparison, using BH, BY, and q-values to control the FDR at the same β =
0.1 level, we obtain 1314429, 727102, and 1718143 significant voxels, respectively.

Correspondingly, these numbers respectively translate to 46.64%, 25.80%, and 60.97%

of the total number of hypotheses tested. Given the similarity of this testing scenario

to simulation study S4, we can expect that the BH and q-values methods are grossly

anti-conservative in their control and are would therefore would yield a greater FDR

level than that which is desired. We observe, as in our simulations, that our method and

BY tend to result in similar numbers of rejections. Whether one method or the other is

overly conservative or anti-conservative in this case cannot be deduced without further

assessment of the true significance of the rejected hypotheses.

Figure 4 displays visualizations of the significant voxels using our EB method at the

perpendicular cross-sections intersecting the seed point (x,y,z) = (125,124,64). Upon

inspection of Figure 4 we observe that significant correlation with the seed vector ap-

pears to be exhibited across the brain. The displays A2 and A3 in Figure 4 further show

that the correlation appears to be symmetric between the two hemispheres. Furthermore,

the correlation patterns appear in contiguous and smooth regions.

The observations of whole-brain correlation with the bed nucleus of the stria termi-

nalis are well supported in the literature. For example, similar connectivity observations

were made by Dong et al. (2001) and Dong and Swanson (2006) in mouse studies, and

by McMenamin and Pessoa (2015) and Torrisi et al. (2015) in human studies.
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Figure 4: A1 and B1 display the anatomic background MRI intensities and p-values for the x = 125 slice,

respectively. Similarly A2 and B2 display the respective quantities for the y = 124 slice, and A3 and B3

display the respective quantities for the z = 64 slice. In A1–A3, red voxels indicate those that are significant

when controlled at the β = 0.1 FDR level.
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6 Conclusions

We have presented an EB-based FDR control method for the mitigation of false positive

results in multiple simultaneous hypothesis testing scenarios where only p-values are

available from the hypothesis tests, and when these p-values are distributed on a discrete

support. Due to the nature of the construction of our method, it is robust to situations

where the hypothesis tests are also misspecified or when there may be omitted covariates

that have not been included in the testing procedures for regression models.

In order to handle the discretization induced by censoring, grouping, or quantization

of p-value data, we utilized a finite mixture model that can be estimated from binned

data. We proved that the parameter vector of the mixture model can also be estimated

consistently, even when the testing data may be correlated. A simulation study was used

to demonstrate that our methodology was competitive with some popular methods in

well-specified testing scenarios, and outperformed these methods when the testing data

arise from misspecified tests.

Finally a brain imaging study of mice was conducted to demonstrate our methodol-

ogy in practice. The study constituted a whole-brain voxel-based study of connectivity

to the bed nucleus of the stria terminalis, consisting of n = 2818191 tests. The p-values

for the study were obtained from a complex pipeline that resulted in a set of quantized

values, which included zeros and ones. Furthermore, the p-values were correlated (due

to the spatial nature of imaging and subsequent processing) and the hypothesis tests

were conducted under mathematical assumptions that may have lead to misspecifica-

tion. As such, the use of our methodology was most suitable for the study. As a result

of the study, we found whole-brain correlation patterns that were consistent with those

found in the literature.

Conducting FDR control when p-values are distributed on a discrete support, such

as when the values are incompletely observed or when tests are conducted via Monte

Carlo or permutation schemes, is an interesting inferential problem and requires care-

ful attention. Our developed methodology provides a simple and robust solution when

performing inference with such p-value data.
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Abstract

Interval-grouped data appear when the observations are not obtained in continuous time, but

monitored in periodical time instants. In this framework, a nonparametric kernel distribution esti-

mator is proposed and studied. The asymptotic bias, variance and mean integrated squared error

of the new approach are derived. From the asymptotic mean integrated squared error, a plug-in

bandwidth is proposed. Additionally, a bootstrap selector to be used in this context is designed.

Through a comprehensive simulation study, the behaviour of the estimator and the bandwidth se-

lectors considering different scenarios of data grouping is shown. The performance of the different

approaches is also illustrated with a real grouped emergence data set of Avena sterilis (wild oat).
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1 Motivation

In the experimental sciences, data usually come from measurements of continuous varia-

bles such as temperature, mass, weight, time, length, etc. However, for several reasons,

measurements are always obtained in finite precision; i.e., all observed data are rounded

or grouped to some extent.

A typical situation in which grouped data clearly appear (and the degree of grouping

can be considerable) is when researchers observe variables not continuously, but perio-

dically, thus obtaining time to event data distributed along a set of consecutive intervals.

Situations like this appear very frequently in areas such as engineering, economics, so-

cial sciences, epidemiology, medicine, agriculture and more (Coit and Dey, 1999, Guo,

2005, Minoiu and Reddy, 2009, Pipper and Ritz, 2007, Rizzi et al., 2016). Especially

in these cases, data uncertainty should be taken into account to avoid serious mistakes

when making inferences.
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One of these situations that partially motivated this work was a real problem from

weed science, where weed emergence is coded as a set of non-equally spaced grouped

data. In this framework, a key variable to study seedling emergence is the cumulative

hydrothermal time (CHTT), which is a mix of time of exposure to certain temperature

and humidity conditions. CHTT is typically available in k inspections and the num-

ber of emerged seedlings at each one is registered. In more restrictive situations, only

the cumulative proportion of emerged seedlings recorded at every monitoring date are

reported. Most of the statistical methods used in this context tackle the problem of mod-

eling weed emergence (the so-called emergence curve) from a regression point of view.

Parametric models such as Gompertz and logistic have been widely used to define the

relationship between the CHTT and weed emergence. However, due to the limitations

of this approach, in Cao et al. (2013), this problem has been dealt with through non-

parametric estimation of the distribution function of the CHTT at emergence. In that

paper, a simple kernel distribution estimator adapted to deal with grouped data, based

on a modification of the standard kernel estimator of the distribution function, was pro-

posed and applied to analyse a weed emergence data set. This nonparametric approach

has recently been proven to outperform the classical regression methods in terms of

prediction error (González-Andújar et al., 2016). However, a deeper statistical analysis

of this new nonparametric distribution estimator is required. In the present paper, we

study the asymptotic properties of this estimator. Additionally, a plug-in and a boot-

strap bandwidth selector are proposed and compared in different scenarios through a

comprehensive simulation study.

The organization of this paper is as follows. In Section 2 the notation used through-

out the paper and the kernel distribution estimator for grouped data are presented. In

Section 3, under some assumptions, the asymptotic bias, variance, and mean integrated

squared error (MISE) of this estimator are obtained. In Section 4, using the asymptotic

MISE expression, a plug-in bandwidth selector is proposed. Additionally, closed forms

for the MISE and its bootstrap version, MISE∗, are presented and a bootstrap band-

width selector is derived. In Section 5, a simulation study with different sample sizes

is presented to show the consistency of the estimator under different grouping scenar-

ios. In Section 6, the nonparametric estimator and both bandwidth selection methods

are applied to a grouped emergence data of Avena sterilis (wild oat). Finally, Section 7

summarizes the main conclusions. Proofs are included in Appendix A. Supplementary

materials completing the simulation study and with an additional empirical study based

on real data are available online.

2 Kernel distribution estimator for interval-grouped data

Let us introduce the notation for grouped data. Suppose that X is the random variable

of interest, with density function f and distribution function F , and let (X1,X2, . . . ,Xn)

be a random sample of X . Consider a set of intervals [y j−1,y j), j = 1,2, . . . ,k, where
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the j-th interval length is l j = y j − y j−1, its midpoint is t j =
1
2
(y j−1 + y j), and denote

the number of observations within each interval by (n1,n2, . . . ,nk). Sometimes, only the

sample proportions (w1,w2, . . . ,wk) are available, where w j = Fn(y j−)−Fn(y j−1−) is

the actual observed random quantity, and Fn(y−) is the left-hand limit of the empirical

distribution function Fn.

For example, using this notation and focusing on the weed emergence problem that

motivated this research, X would be the random variable measuring the CHTT at emer-

gence of a particular weed. Moreover, denoting by n the number of seedlings that have

emerged at the end of the monitoring process, since the inspections carried out to count

the number of emerged seedlings are performed at a limited number of k instants, the

values X1,X2, . . . ,Xn, measuring the CHTT at emergence of every single seedling, can-

not be observed. In this case, what is observed is the CHTTs at inspections (the limits of

the intervals, previously denoted by yi, i = 0,1, . . . ,k) and the total number of seedlings

that have emerged in the intervals between consecutive inspection times, n1,n2, . . . ,nk,

(or the corresponding sample proportions, w1,w2, . . . ,wk, with wi = ni/n).

It is worth mentioning that there exists a parallelism between grouped data and the

so called interval-censored data (see the book by Klein and Moeschberger, 1997, for an

introduction about interval-censored data in survival analysis). The main similarity is

that the exact value of the interest random variable data Xi is not observed and one is

only able to know the interval in which every datum of the interest population belongs.

There are two main differences between grouped data and interval-censored data. The

first one is that the intervals [y j−1,y j) are typically fixed (not random) for grouped data,

while the interval endpoints are random variables for interval-censored data. As a con-

sequence, for interval-censored data there are, in principle, as many different intervals as

the sample size, n, while for grouped data the number of different intervals, k, is known

beforehand and is smaller than the sample size (k < n). General estimation methods

applicable for interval-censored data, as Turnbull’s estimator (Turnbull, 1976), can also

be used for grouped data. In our grouped data setup, Turnbull’s estimator of the cumu-

lative distribution function just gives the empirical cumulative distribution function for

grouped data.

First, let us consider the ideal continuous case, where (X1,X2, . . . ,Xn) are supposed to

be observed. From the well-known Parzen-Rosenblatt kernel density estimator (Parzen,

1962, Rosenblatt, 1956), defined as

f̂h (x) = n−1

n
∑

i=1

Kh (x− xi) , (1)

where Kh (u) = h−1K (u/h), with K a kernel function (typically an auxiliary density

function) and h the bandwidth parameter, it is straightforward to obtain a kernel estima-

tor of the cumulative distribution function (cdf) as
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F̂h(x) =
∫ x

−∞

f̂h (t)dt =
1

n

n
∑

i=1

K

(

x− xi

h

)

, (2)

where K(t) =
∫ x
−∞

K (t)dt. Some theoretical properties of (2) can be found in Hill

(1985), Nadaraya (1964) and Reiss (1981). Although the choice of the kernel func-

tion is of secondary importance, the bandwidth h plays a crucial role in the shape of

estimator (2). Differently to the case of kernel density estimation, there are not many

contributions addressing the bandwidth selection problem in kernel distribution esti-

mation. Different cross-validation methods were studied in Bowman, Hall, and Prvan

(1998) and Sarda (1993); and plug-in selectors were considered in Altman and Leger

(1995) and Polanski and Baker (2000). The interested reader can find more theoretical

details and an extended discussion on the previous cross-validation and plug-in selectors

in Quintela-del-Rı́o and Estévez-Pérez (2012). More recently, a bootstrap bandwidth se-

lector for the estimator (2) has been developed in Dutta (2015).

When working with grouped data, the issue of density estimation has been widely

addressed employing different approaches. Using nonparametric methods, in Reyes,

Francisco-Fernandez, and Cao (2016) a simple modification of the estimator (1) was

proposed and studied, while in Reyes, Francisco-Fernández, and Cao (2017) two dif-

ferent bandwidth selectors for this estimator were analysed. Also in a nonparametric

context, Wang and Wertelecki (2013) proposed a bootstrap type kernel density estima-

tor for binned data, and Blower and Kelsall (2002) proposed a nonlinear binned kernel

estimator. In this setting, Rizzi et al. (2016) compared the performance of different non-

parametric density estimators for grouped data via a simulation study and also using

some empirical cancer data. Other approaches in this framework consist in converting

the density estimation problem to a regression problem using the root-unroot algorithm

(Brown et al., 2010) or using parametric methods (Wang and Wang, 2016). Parametric

methods can be useful for heavy grouping if the assumed model is correct, but if this is

not true, the results obtained can be wrong.

Studies on estimation methods for the distribution function for grouped data are

much scarcer and they are mainly based on the empirical distribution function (Turnbull,

1976). Although the distribution function is closely connected with the density function,

in some situations, the data are collected in an accumulated way, making the distribution

function the element of interest. This is the case, for example, in the weed emergence

problem previously described. Therefore, it is of special concern to develop and study

specific distribution function estimators for grouped observations.

Starting with the related density estimation problem, in Scott and Sheather (1985)

and Titterington (1983), the kernel density estimator (1) was redefined to be used with

binned data, assuming a constant binwidth, as

f̃h(x) = n−1

k
∑

i=1

niKh (x− ti) . (3)
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In Reyes et al. (2016), a modified version of (3) considering the general case of dif-

ferent interval lengths, given by

f̂
g
h (x) =

1

h

k
∑

i=1

wiK

(

x− ti

h

)

, (4)

was studied. Its asymptotic properties were obtained, and a plug-in bandwidth selector

was proposed and analysed.

From (4), it is straightforward to obtain a kernel distribution estimator for binned or

grouped data as

F̂
g

h (x) =
∫ x

−∞

f̂
g
h (u)du =

k
∑

i=1

wiK

(

x− ti

h

)

, (5)

where K(x) =
∫ x
−∞

K (z)dz. Note that (5) is a simple modification of (2) for the context

of interval-grouped data.

3 Theoretical results

In this section, a closed form for the MISE of the kernel distribution estimator for

grouped data (5) is obtained, and its asymptotic properties are derived. Using stan-

dard calculations and assuming that F(yk) = 1 and F(y0) = 0, it is easy to prove that the

expectation and the variance of F̂
g

h (x) are, respectively,

E
[

F̂
g
h (x)

]

=
k

∑

i=1

K

(

x− ti

h

)

pi (6)

and

V
[

F̂
g

h (x)
]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi)−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j, (7)

where pi = F (yi)−F (yi−1).
From (6) and (7), it is straightforward to obtain a closed expression for the MISE of

the estimator defined in (5):

MISE
(

F̂
g
h

)

= E

{

∫

[

F̂
g
h (x)−F (x)

]2
dx

}

= B+V, (8)

where,

B =

∫

{

E
[

F̂
g
h (x)

]

−F (x)
}2

dx (9)
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denotes the integrated squared bias and

V =
∫

V
[

F̂
g

h (x)
]

dx (10)

is the integrated variance.

The asymptotic bias and variance of (5) are stated in Theorem 3.1, whose proof is

included in Appendix A. The following assumptions are needed.

Assumption 3.1 The kernel K is a symmetric probability density function with support

in [−1,1], at least 3-times differentiable and such that K(3) is bounded.

Assumption 3.2 The distribution F has compact support [L ,U ], it is 4-times differen-

tiable and F (4) is continuous.

Assumption 3.3 The bandwidth h = hn is a non random sequence of positive numbers

such that limn→∞ h = 0 and limn→∞ nh = ∞.

Assumption 3.4 Given a set of k = kn intervals [y j−1,y j), j = 1,2, . . . ,k, y0 6 L and

yk > U , the average interval length is l̄ = l̄n =
1
k

∑k
i=1 li, where li is the abbreviated

notation for the i-th interval length li,n. It is assumed that limn→∞ l̄ = 0, limn→∞ nl̄ = ∞,

l̄ = o
(

h5/3
)

, and maxi

∣

∣li − l̄
∣

∣= max16i6k

∣

∣li − l̄
∣

∣= o
(

l̄
)

.

Assumptions 3.1 and 3.2 are just smoothness and differentiability conditions about

the kernel K and the distribution function F . Assumption 3.3 is the typical one used

in kernel estimation concerning the sample size n and the bandwidth h. However, As-

sumption 3.4 is of special importance and deserves some comments.

Condition limn→∞ l̄ = 0 simply states that, as the sample size increases, the average

interval length shrinks. This means that, taking into account the condition maxi

∣

∣li − l̄
∣

∣=

o
(

l̄
)

, all intervals are shrinking as well. However, limn→∞ nl̄ = ∞ states that n should

increase faster than l̄ decreases. This is an important condition from a theoretical point

of view, as if the intervals shrink faster than n increases, at some point there would be

more intervals than data points, and some of the intervals would be empty or there would

not be enough data points in each interval.

Condition l̄ = o
(

h5/3
)

states an intuitive idea: as the sample size n increases, the

average length l̄ must vanish faster than, at least, h (concretely, faster than h5/3). This

condition has a practical basis. Since the average distance between points is l̄, the band-

width must be greater than l̄ at all times to gather information from the surroundings. In

other words, as n increases, h must vanish, but always behind l̄.

Regarding the condition about maxi

∣

∣li − l̄
∣

∣, at first, this is necessary from the strictly

mathematical viewpoint, but in practice it is a way for controlling the variability of the

intervals. This assumption means that the lengths of the intervals are not very different.

In other words, in our assumptions we unquestionably accept different interval lengths
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in order to generalize the binned estimator, but within certain limits, and these limits of

maximum variability are controlled by l̄ via maxi

∣

∣li − l̄
∣

∣= o
(

l̄
)

.

Theorem 3.1 Under Assumptions 3.1 to 3.4,

MSE
[

F̂
g

h (x)
]

=
h4

4
µ2 (K)2

F ′′ (x)2 +
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0 +o

(

h

n

)

+o
(

h4
)

and

MISE
(

F̂
g
h

)

= AMISE
(

F̂
g

h

)

+o

(

h

n

)

+o
(

h4
)

,

where

AMISE
(

F̂
g

h

)

=
h4

4
µ2 (K)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0 (11)

with A( f ′) =
∫

f ′(x)2dx, and

C0 = 2

∫

zK (z)K(z)dz> 0.

Remark 3.1 Since the distribution function F has compact support (Assumption 3.2)

then the integral
∫

F(x)(1−F(x))dx is finite. This needs not be the case for a general

cdf F.

Remark 3.2 Taking care of higher order terms in the asymptotic expansions for the

MSE and the MISE, the resulting approximations show the impact of the average inter-

val length, l̄, in these error criteria:

MSE
[

F̂
g

h (x)
]

=

(

h2

2
µ2 (K)+

l̄2

12

)2

F ′′ (x)2 +
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0

+
l̄2

24n
F ′′ (x)+o

(

h

n

)

+o
(

h4
)

+o
(

l̄4
)

+o
(

h2l̄2
)

+o

(

l̄2

n

)

MISE
(

F̂
g

h

)

=

(

h2

2
µ2 (K)+

l̄2

12

)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0

+ o

(

h

n

)

+o
(

h4
)

+o
(

l̄4
)

+o
(

h2l̄2
)

+o

(

l̄2

n

)

.

Under Assumptions 3.1 - 3.4, these two expressions reduce to the asymptotic expressions

given in Theorem 3.1.
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4 Bandwidth selectors

As pointed out in Section 1, the kernel distribution estimator (2) heavily depends on the

bandwidth h. Obviously, the same occurs for the estimator adapted for grouped data (5),

since too small bandwidths give estimates that are too close to the empirical cdf, and

too large selections tend to provide oversmoothed estimators. In this sense, it is very

important to have an automatic bandwidth selection method producing reliable estimates

for a real data set. In this section, two bandwidth selectors (plug-in and bootstrap) are

proposed for (5) in the context of interval-grouped data.

4.1 Plug-in bandwidth selector

From Eq. (11), it is immediate to get an asymptotically optimal global bandwidth. Ta-

king the first derivative of (11), equating to zero and solving for h, it follows that

hAMISE =

[

C0

nµ2 (K)2
A( f ′)

]
1
3

. (12)

Note that Eq. (12) is the same as that for continuous data (see, e.g., Azzalini, 1981,

Hill, 1985, Mack, 1984). However, it is important to keep in mind that (12) holds as an

asymptotic optimal bandwidth for grouped data only as long as Assumptions 3.1 to 3.4

hold. Otherwise, some other important terms of the asymptotic expansion of MISE
(

F̂
g
h

)

remain non-negligible, thus making (11) fall short as a MISE
(

F̂
g

h

)

approximation.

In Eq. (12), an estimate of A( f ′) is required to have a practical bandwidth. To

estimate A( f ′), we used the proposal of Polansky and Baker (2000) adapted for grouped

data. Other approaches could be used here, but we preferred the Polansky and Baker

method for computational reasons and because it gave stable results when using grouped

data. In the continuous data case, Polansky and Baker (2000) proposed to estimate A( f ′)
by −ψ̂η,2, where

ψ̂η,2 =
1

n2η3

n
∑

i=1

n
∑

j=1

L′′

(

Xi −X j

η

)

, (13)

L being a kernel function (possibly different from K) and η > 0 an auxiliary smooth-

ing parameter. The bandwidth η can be selected using a plug-in procedure. For this,

it would be necessary to obtain the asymptotic MSE of ψ̂η,2, that depends on ψ4 =
∫

f (4)(x) f (x)dx, and then estimate ψ4. Clearly, the problem still remains, since esti-

mating ψ4 will depend on an initial bandwidth, which in turn will depend on ψ6 =
∫

f (6)(x) f (x)dx, and so on. A common strategy is to estimate ψu with some quick and

simple rule, like the normal scale rule (Wand and Jones, 1995). Once ψ̂η,u is obtained, it

is possible to select a bandwidth for estimating ψu−2. Then, having estimated ψ̂η,u−2, a

bandwidth for estimating ψu−4 can be selected, and so forth. Polansky and Baker (2000)

suggest using the same iterative method.
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In the context of grouped data, we propose to estimate A( f ′) with ÂPBg = −ψ̂g
η,2,

where ψ̂g
η,2 is an appropriate version of (13), given by:

ψ̂g
η,2 =

1

η3

k
∑

i=1

k
∑

j=1

L′′

(

ti − t j

η

)

wiw j. (14)

Similar steps to those described previously for continuous data can be followed now to

select the bandwidth η. It should be noted that in this case, to obtain a plug-in band-

width for η it is necessary to derive the asymptotic MSE of ψ̂g
η,2 using grouped data. In

Reyes et al. (2017), both the asymptotic variance and bias of ψ̂g
η,u were derived for u> 0.

Based on those, a way of selecting the plug-in bandwidth for ψ̂g
η,u was proposed. Us-

ing that approximation with u = 2 and plugging ÂPBg into (12) gives a practical plug-in

bandwidth selector for F̂
g

h (x),

ĥPBg =

[

C0

nµ2 (K)2
ÂPBg

]
1
3

. (15)

Note that using similar arguments to those employed in Theorem 2 of Reyes et al.

(2017), the relative rate of convergence for the plug-in bandwidth ĥPBg can be derived.

4.2 Bootstrap bandwidth selector

The bootstrap method can be used to produce an estimator of the MISE. In the grouped

data setup, this has been already proposed by Reyes et al. (2017) for density estimation.

These authors have proved that there exists a closed expression for the bootstrap version

of the MISE in that context. This implies that Monte Carlo is not needed to obtain a

bootstrap approximation of the MISE in density estimation for grouped data. This will

be also the case for cdf estimation for grouped data.

To build a bootstrap version of the MISE, we consider a pilot bandwidth, ζ , and

construct the grouped-data smooth estimator of F as defined in (5), but replacing h by ζ .

The idea is to draw resamples from F̂
g

ζ
, to group the data and to compute the estimator

F̂
g
h with those bootstrap samples. The bootstrap resampling plan proceeds as follows.

1. Fix some pilot bandwidth, ζ , and consider the grouped-data smooth cdf estimator,

F̂
g

ζ
.

2. Draw (n∗1, . . . ,n
∗
k) from a multinomial distribution Mk(n; p̃

ζ

1, . . . , p̃
ζ

k ), with p̃
ζ

i =

F̂
g

ζ
(yi)− F̂

g

ζ
(yi−1), i = 1, . . . ,k, and define w∗

i = n∗i /n.
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3. Compute the grouped-data smooth cdf estimator based on this bootstrap resample:

F̂
g∗
h (x) =

k
∑

i=1

w∗
i K

(

x− ti

h

)

.

4. Define the bootstrap version of MISE:

MISE∗
(

F̂
g∗

h

)

= E
∗

{

∫

[

F̂
g∗

h (x)− F̂
g

ζ
(x)

]2

dx

}

,

where, E∗ denotes the bootstrap expectation (with respect to F̂
g

ζ
).

Remark 4.1 Since, under Assumption 3.1, the support of F̂
g

ζ
is [t1 − ζ, tk + ζ], it may

happen that this interval is not contained in [y0,yk]. This only happens if ζ≤ 1
2

min{l1, lk}.

So, in order to resample from a distribution with support contained in [y0,yk], we con-

sider the conditional distribution corresponding to F̂
g

ζ
restricted to the interval [y0,yk].

The previous remark implies that it may happen that
∑k

i=1 p̃
ζ

i < 1. If this is the case,

we define

p̂
ζ

i =
p̃
ζ

i
∑k

j=1 p̃
ζ

j

, i = 1,2, . . . ,k, (16)

and we draw the bootstrap resamples in Step 2 from a multinomial distribution with

probabilities p̂
ζ

i .

Substituting pi by p̂
ζ

i in (6) and (7), the bootstrap version of the mean integrated

squared error admits the following closed expression:

MISE∗
(

F̂
g∗
h

)

= E
∗

{

∫

[

F̂
g∗
h (x)− F̂

g

ζ
(x)

]2

dx

}

= B∗+V ∗,

where

B∗ =
∫

{

E
∗
[

F̂
g∗
h (x)

]

− F̂
g

ζ
(x)

}2

dx

and

V ∗ =

∫

V
∗
[

F̂
g∗
h (x)

]

dx,

with

E
∗
[

F̂
g∗
h (x)

]

=
k

∑

i=1

K

(

x− ti

h

)

p̂
ζ

i

and

V
∗
[

F̂
g∗
h (x)

]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

p̂
ζ

i

(

1− p̂
ζ

i

)

−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

p̂
ζ

i p̂
ζ

j .
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This approach is computationally efficient since there is no need to use Monte Carlo

to approximate the bootstrap resampling distribution. Finally, the bootstrap bandwidth

is defined as the minimizer of MISE∗
(

F̂
g∗

h

)

, in the smoothing parameter, h:

h∗MISE = arg min
h>0

MISE∗
(

F̂
g∗

h

)

. (17)

An important step in this bootstrap procedure is that of selecting the pilot bandwidth

ζ . After performing some empirical experiments, we have used a method inspired by

the idea of smoothing splines, based on selecting the pilot parameter that minimizes the

squared distance between the nonparametric cdf estimator and the empirical distribu-

tion function, plus a penalty term to avoid obtaining very small bandwidths. The idea

consists in finding the parameter, denoted by ζλemp, such that,

ζλemp = arg min
h>0

k
∑

i=0

[

Fn(yi)− F̂
g
h (yi)

]2
+λ

∫

f̂
g′
h (x)2

dx,

where λ ≥ 0 determines the penalty degree over the global slope of the nonparame-

tric density estimator, defined in (4). To select an “optimal” penalty degree, λopt , we

have used the rule of finding the penalty allowing to obtain a pilot bandwidth that best

approximates the overall slope of the population density, that is,

λopt = arg min
λ≥0

∣

∣

∣
A

(

f̂
g′

ζ
λ

emp

)

−A( f ′)
∣

∣

∣
.

In practice, λopt can be estimated by

λ̂opt = arg min
λ≥0

∣

∣

∣
A

(

f̂
g′

ζ
λ

emp

)

−A( f̂ ′
θ
)
∣

∣

∣
,

where f̂ ′
θ

represents a parametric estimator of the first derivative of the density function,

fitted with the grouped data sample and flexible enough to capture, at least partially, the

global slope of f . It was checked that fitting normal mixture models with a maximum

number of r = 5 components provided, in general, very good results. In practice, the Ex-

pectation Maximization (EM) method (Mclachlan and Peel, 2000) was used to estimate

the parameters of these models, using the BIC criterion to select the best fit.

Other simpler alternatives to select the pilot bandwidth, ζ , were also explored, pro-

ducing in general worse results than those obtained with the algorithm previously des-

cribed. For that reason (and for reason of space), only the results obtained when using

the previous approach to select the pilot bandwidth are shown in the paper. In the Sup-

plementary Materials, some simulations experiments comparing the performance of the

bootstrap bandwidth (17) when using as a pilot bandwidth ζλemp and when this auxiliary

parameter is derived using the plug-in technique, ĥPBg , are presented. A better per-
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formance of the bootstrap selector is clearly observed when using the pilot bandwidth

obtained by the method described above.

5 Simulations

To have an idea of the effectiveness of the estimator (5) when using (15) and (17) as

bandwidth selectors, some simulation studies were performed under different grouping

scenarios. For this, the free statistical software R and packages nor1mix and binnednp

were used (Barreiro et al., 2019, Mächler, 2017, R Core Team, 2019).

As the population density, we used a normal mixture f (x) =
∑4

i=1αiφµi,σi
, with

φµ,σ a N
(

µ,σ2
)

density, α = (0.70,0.22,0.06,0.02), µ= (207,237,277,427) and σ =

(25,20,35,50), where α, µ and σ are the mixture weights, means and standard devia-

tions, respectively. This normal mixture was used in weed science to model the relation-

ship between weed emergence of Bromus diandrus and hydrothermal time (Cao et al.,

2011). A total number of 1000 trials were considered throughout all simulations.

Trying to mimic the asymptotic conditions on l̄ in Assumption 3.4, in a first simula-

tion experiment, the behaviour of the MISE for grouped data, denoted by MISEg, was

studied depending on the bandwidth h, for sample sizes 60, 240, and 960. Two different

scenarios were considered based mainly on Assumption 3.4.

S1. n
5
9 l̄ → 0

S2. n
5
9 l̄ → ∞

In Scenario S1, condition l̄ = o
(

h5/3
)

is confirmed for h ∼ n−
1
3 (classical optimal

rate in the case of distribution estimation without grouping), for example, hAMISE or

ĥPBg; while in Scenario S2 occurs the opposite. It is important to note that in both

scenarios l̄ tends to zero as n increases.

Note that MISEg can be approximated by numerical integration in an interval [a,b]

using (8), (9) and (10), jointly with the expressions of the expectation and the variance

of F̂
g
h in (6) and (7). In practice, we considered a = 0, b = 509.25. With these values for

a and b, the area under the reference normal mixture in [a,b] is 0.999.

To simulate the set of intervals as n increases, the next steps were followed:

1. Consider l̄ = En−α and an = Fn−β , where E , α, F and β are positive constants.

2. Take initial interval lengths {li} for i = 1,2, . . . ,5: l1 = l̄ − 4an, l2 = l̄ + 0.5an,

l3 = l̄−1.5an, l4 = l̄ +3an, l5 = l̄ +2an.

3. For i > 5, li = l[(i−1) mod 5]+1, where [m mod ℓ] stands for m modulo ℓ. Then, the

initial set of intervals is repeated one after another, as many times as necessary.

Constants E and F are just selected considering the distribution support. To choose

the positive constants α and β, note that according to the initial set of intervals in Step

2, it follows that maxi

∣

∣li − l̄
∣

∣= 4an = 4Fn−β.
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Assumption 3.4 and Step 1 impose that 4Fn−β = o
(

l̄
)

= o(En−α) , which basically

is

n−β = o
(

n−α
)

. (18)

So, for (18) to hold, nα−β → 0, which only occurs when α−β < 0, i.e., when β > α.

Now, recall that in Scenario S1, l̄ = o
(

h5/3
)

= o
(

n−5/9
)

must hold. Thus, according

to Step 1, l̄ = En−α = o
(

n−
5
9

)

, which basically is

n−α = o
(

n−
5
9

)

. (19)

This only occurs when 5
9
−α< 0; i.e., when α> 5/9.

In brief, to simulate Scenario S1, (18) and (19) must hold, i.e., β > α> 5/9 must be

true. On the other hand, to simulate S2, (18) must hold but (19) must not. It is required

that n
5
9 l̄ → ∞, so both β > α and α< 5/9 must be true. Specifically, in our simulations,

we chose (E,α,F,β) = (800,4/5,150,1) for S1, and (E,α,F,β) = (37.1,1/20,150,1)
for S2.
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Figure 1: ln
(

MISEg

)

curves by scenario and sample size. Solid lines are for n = 60, dashed lines for

n = 240 and dotted lines for n = 960. Thick lines represent curves in S1, while thin lines represent curves

in S2 (note that curves for n = 60 are practically the same in both scenarios).

Firstly, for each sample size and each scenario, MISEg was approximated over a

grid of values of h. Figure 1 shows the MISEg curves, as a function of h, for the three
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different sample sizes in both scenarios. Note that a logarithmic scale was used in the

vertical axis in order to better appreciate minimal values. This is because very small

differences were found in the MISEg curves for small values of h, particularly for the

largest sample size. This suggests that even in the case of grouped data, small deviations

from the optimal bandwidth may still give quite good distribution estimates, making the

distribution estimation relatively resistant to grouping effects. On the other hand, it is

important to note in Figure 1 that MISEg decreases as the sample size increases, which

seems to confirm consistency of the estimator defined in (5). It is also clear that optimal

bandwidths for S2 are larger than for S1.

Next, a second simulation experiment was performed to analyse the behaviour of

the plug-in bandwidth (15) and the bootstrap selector (17). We compared the sampling

distribution of ĥPBg and h∗MISE with respect to the target values of the bandwidths min-

imizing MISEg, denoted by hMISEg , for each sample size and scenario. The process

performed was the following:

1. Simulate an n-size sample from the normal mixture reference density f .

2. Divide the data range into intervals [yi−1,yi) of length li (according to the previous

guidelines).

3. Considering the interval midpoints, estimate A( f ′) by means of ÂPBg and calculate

ĥPBg using (15).

4. Select ζ as described in Section 4.2 and approximate h∗MISE .

5. Compute ĥPBg/hMISEg and h∗MISE/hMISEg .

6. Repeat Steps 1 to 5 B = 1000 times.

Figure 2 shows the results as box-plots. Regarding ĥPBg (yellow left box-plots for

each sample size), it can be observed that starting from the same grouping conditions

and sample size, the sampling distribution gets more precise as the sample size increases

under both scenarios, S1 and S2. However, in both situations ĥPBg is far from the target

value. In S1, when the sample size increases, although the sampling distribution gets

more accurate, the plug-in bandwidths seem to be in general excessively large. In S2,

we observe the same pattern, but now the bandwidths become too small for large sample

sizes. This biased performance of ĥPBg may be due, mainly, to two factors. On the one

hand, the remaining terms of the bias of (5), depending on l̄, do not vanish as fast as

required for (15) to be a good bandwidth selector. On the other hand, the method used

here (see Reyes et al., 2017) to select the pilot bandwidth, η, requires estimating A( f ′).
This is done by canceling the sum of the two main bias terms of ψ̂g

η,2. This could be

not able to produce good pilot smoothing parameters because, opposite to the complete

data case, some second order terms depending on l̄ could have a significant impact on

the MSE of ψ̂g
η,2.
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Figure 2: Box-plots for ĥPBg
/hMISEg

(yellow left box-plots for each sample size) and box-plots for

h∗MISE/hMISEg
(green right box-plots for each sample size) for both scenarios. Red dotted lines are plotted

at values 0.9 and 1.1 for reference.

Regarding Figure 2, it can be observed that h∗MISE (green right box-plots for each

sample size) outperforms ĥPBg in approaching hMISEg . The bootstrap selector shows

more stability under any sample size and scenario. This means that it is preferable in

both cases of light or heavy grouping and for any sample size.

Figure 3 shows the effect on the distribution estimator (5) of the bandwidth selec-

tors (15) and (17), respectively, in both scenarios. Clearly, when using ĥPBg (yellow

left box-plots for each sample size), while in S1 the quality of F̂
g

h (x) gets better as the

sample size increases, in S2, poor distribution estimates for large n are obtained. The

impact of poor bandwidth selection is evident in the quality of the distribution estimator,

whose error increases by up to three times. However, it should be noted that it does not

impact so negatively in the corresponding estimates as in the case of density estima-

tion for grouped data (see Reyes et al., 2017). In opposition, when using the bootstrap

bandwidth (green right box-plots for each sample size), the quality of the distribution

estimates improves as the sample size increases in both scenarios, clearly outperforming

the plug-in bandwidth selector.

It is of interest to study situations in which it is ideally observed the sample size in-

creasing and the average length decreasing at different rates, but in practice that seldom

really occurs. For that reason, we also performed some simulations (not shown here

for reasons of space, but included in the Supplementary Materials) dealing with a more

factual situation in which there is a given sample size and a given set of fixed intervals.

In that simulation, a sample size of n = 240, a fixed set of average lengths, l̄, and a grid

of values for h were considered. Those experiments show that the bootstrap smoothing

parameter, h∗MISE , seems to be very stable, always centred somewhere around hMISEg
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and with decreasing variability when the average length l̄ increases. On the other hand,

the plug-in selectors are larger than the target value for small or moderate values of l̄,

and smaller than the optimal bandwidth for large values of l̄. However, as pointed out

previously, it was also observed that bandwidth selection is not so critical in distribu-

tion as in density estimation, since slightly different bandwidths produced very similar

distribution estimates.
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Figure 3: Box-plots for ln
[

MISEg

(

ĥPBg

)/

MISEg

(

hMISEg

)]

(yellow left box-plots for each sample size)

and ln
[

MISEg

(

h∗MISE

)/

MISEg

(

hMISEg

)]

(green right box-plots for each sample size) for both scenarios.

6 An empirical study from real data

In this section, a real data set of wild oat (Avena sterilis L.) emergence is considered to

illustrate the performance of the kernel distribution estimator for grouped data (5), when

using the plug-in (15) and bootstrap (17) bandwidth selectors. To do this, the binnednp

R package (Barreiro et al., 2019) is employed. This package, developed by the authors

of the present paper, jointly with a weed scientist and two computer engineers, contains

some functions implementing most of the nonparametric methods for grouped data (and

related problems), studied by the authors in this and in previous papers.

The data of Avena sterilis were taken from an experiment performed during Winter-

Spring 2006-2007 in Gibraleon (37o 22’N, 6o 54’W; altitude 26 m), located in the

province of Huelva (Andalucia, South of Spain). Four polyvinylchloride cylinders (250

mm diameter 50 mm height) placed 1 m apart were considered and, for each one of

them, 200 seeds of A. sterilis were mixed thoroughly with the soil and distributed over

the 0-100 mm depth. Numbers of emerged weed seedlings were recorded once or twice



Miguel Reyes, Mario Francisco-Fernández, Ricardo Cao and Daniel Barreiro-Ures 275

a week and then removed by cutting seedling stems at ground level with minimum dis-

turbance of the substrate. All the data for the cumulative numbers of seedling emergence

from the field were converted to a square meter basis. The CHTT at emergence in the

different inspection days, at three depths (10, 20 and 50 mm), were calculated, using the

same methodology as that described in Cao et al. (2011).

The observed emergence data are shown in Table 1. As it can be seen, the cumulative

hydrothermal time at emergence can not be observed for every individual seed, but just

in an aggregated way.

Table 1: Seedling emergence data of A. sterilis.

CHTT No Seedlings

Depth Cylinder

Date 10 mm 20 mm 50 mm 1 2 3 4 Pooled

27 November 2006 100 92 67 0 0 0 0 0

4 December 2006 160 146 105 0 0 0 0 0

12 December 2006 218 199 143 2 6 8 3 19

14 December 2006 218 217 155 1 0 0 1 2

19 December 2006 218 217 185 2 1 1 3 7

22 December 2006 218 217 199 2 1 1 0 4

26 December 2006 218 217 204 1 1 0 0 2

28 December 2006 218 217 204 0 0 0 0 0

2 January 2007 218 217 204 0 0 0 0 0

5 January 2007 218 217 204 0 2 0 0 2

9 January 2007 218 217 204 2 2 9 2 15

12 January 2007 218 217 204 3 7 18 11 39

18 January 2007 218 217 204 12 7 19 22 60

25 January 2007 218 217 204 6 5 8 13 32

1 February 2007 265 261 232 2 5 7 7 21

9 February 2007 352 340 287 13 12 5 8 38

15 February 2007 405 421 343 7 12 13 4 36

23 February 2007 459 505 421 0 0 1 0 1

5 March 2007 509 571 538 0 0 0 0 0

19 March 2007 509 571 538 0 0 0 0 0

No Emerged seedlings 53 61 90 74 n = 278

Before computing the kernel distribution estimator (5) to obtain approximations of

the corresponding weed emergence curves, some preliminary analyses were performed.

Firstly, the function anv.binned included in the binnednp package was employed to

test whether the “cylinder factor” does not have a significant effect on the emergence

curve. If so, we could considered the pooled sample of the four cylinders. In the func-

tion anv.binned, a bootstrap approach using a Cramér-von Mises type distance is im-

plemented to carry out this type of hypothesis testing. The experimentation conditions

seem to support the idea of having a “non-significant cylinder effect” and, after applying
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the function anv.binned, this hypothesis was corroborated for the three depths. Sec-

ondly, an interesting issue for the weed researchers is to find out what the best soil depth

is among the three possibilities available in this case, 10, 20 and 50 mm, to measure

the CHTT in order to have more prediction power. To address this problem, moment-

based indices and probability density-based indices were proposed in Cao et al. (2011).

Estimates of these indices are implemented in the function emergence.indices of the

binnednp package. After applying this function to the pooled sample of Avena sterilis,

it is concluded that the best soil depth to measure the CHTT is 10 mm. Therefore, in

what follows, only the CHTT measured at 10 mm and the pooled sample are considered

for the subsequent analyses.

After these previous analyses, the emergence curve of Avena sterilis, using the CHTT

measured at 10 mm and the pooled sample, is estimated computing the kernel distribu-

tion estimator (5). To do this, we used the functions bw.dist.binned and bw.dist.

binned.boot of the binnednp package, returning the plug-in (15) and bootstrap (17)

bandwidths, respectively. Arguments in these functions allow to control, among other

things, the pilot bandwidths needed in both selectors. For example, in the case of the

plug-in bandwidth, ĥPBg , in bw.dist.binned, different types of models can be used

in the last step of the iterative method explained in Section 4.1: assuming a normal

distribution, using a complete nonparametric approach or considering a normal mix-

ture model. In the case of the bootstrap bandwidth, h∗MISE , in bw.dist.binned.boot,

the user can employ as a pilot bandwidth that selected using the method inspired by

the idea of smoothing splines, described in Section 4.2, or the one derived using the

plug-in technique, ĥPBg . The default pilot bandwidths in these functions are those de-

scribed in Sections 4.1 and 4.2, respectively. Other parameters of bw.dist.binned and

bw.dist.binned.boot allow to plot the corresponding nonparametric distribution esti-

mators and to compute bootstrap confidence bands for the distribution function. It is im-

portant to highlight that the functions of this library have been efficiently programmed,

using integration of C++ in the R code, and applying parallel computing methods to

speed up the running time of the algorithms. This is especially important in those meth-

ods making use of bootstrapping to obtain numerical results in a very short time.

Using the default pilot bandwidths, the plug-in and bootstrap smoothing parameters

obtained are, respectively, 9.83 and 13.74. The corresponding kernel distribution esti-

mates of the emergence curves computed using (5) are shown in the left panel of Figure

4 (in green when using the plug-in bandwidth and in red when using the bootstrap band-

width). The empirical distribution of the grouped sample (black line) is also shown in

this plot. As indicated in the previous section, it can be seen that the effect of the band-

width on the estimator’s behaviour is not substantial, since slightly different bandwidths

produce very similar distribution estimates.

As pointed out in Section 1, parametric regression models have been widely used to

model the relationship between the CHTT and weed emergence. For the sake of com-

parison, the function bw.dist.binned also allows to fit Weibull and logistic parametric

regression functions to describe seedling emergence, with parameters estimated by ma-
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ximum likelihood. The corresponding fits using the Avena sterilis data set are shown

in the right panel of Figure 4, using a green line for the Weibull and a blue line for the

logistic estimators. The nonparametric distribution estimator (5) with bootstrap band-

width (red line) and the empirical distribution of the grouped sample data (black line)

are also included in this plot. It can be observed that none of both classical parametric

(distribution) models fits the data well, possibly leading to wrong emergence estima-

tions. On the other hand, the nonparametric approach does not assume any particular

distribution for the variable under consideration. As a consequence, it provides more

flexible estimators capable of capturing complex features in the HTT distribution and

producing more reliable results.
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Figure 4: Left panel: Kernel distribution estimates considering plug-in (green line) and bootstrap (red

line) bandwidths. Right panel: parametric regression fits, Weibull (green line) and logistic (blue line),

and nonparametric kernel distribution estimate using the bootstrap bandwidth (red line). The empirical

distribution of the grouped sample (black lines) is also shown.

7 Conclusions

In short, it has been shown that under realistic assumptions, the kernel distribution esti-

mator is an effective tool for modeling grouped data due to the good performance of the

bootstrap smoothing parameter selector proposed in this paper. This bandwidth selec-

tor, using an appropriate criterion to select the corresponding pilot bandwidth, presents

a stable and unbiased sampling distribution under any scenario or sample size in the

simulation studies performed. Regarding the Polansky and Baker plug-in bandwidth,

although theoretically it is a consistent estimator of the optimal bandwidth, in practice,

it only has an appropriate behaviour when there is a fixed sample size and a given set
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of intervals for certain degree of grouping. This can be due to the fact that this plug-in

bandwidth is focused on minimizing the AMISE and some neglected terms of less order,

depending on l̄, can have a substantial influence under certain grouping conditions (see

Remark 3.2). Something similar could occur in the process of selecting the pilot band-

width needed to estimate A( f ′). On the other hand, h∗MISE targets directly the MISE,

producing much better results.

In any case, the different simulations performed show that the kernel distribution

estimator is a somewhat robust procedure, in the sense that bandwidth selections slightly

different from the optimal bandwidth do not seem to heavily influence the distribution

estimation. From another viewpoint, it was shown that really high values of the ratio

between the average length l̄ and the data range have to be considered in order to actually

notice a severe impact of the grouping effect.

These findings leave some insights about kernel distribution estimation for grouped

data as well as some possible future work. Since distribution estimation seems to be

resistant to grouping effect, a possible future topic of research could be the design of a

plug-in bandwidth selector that could work well in different grouping scenarios. This

would imply to find out the real influence of second-order terms in the MISE of F̂
g

h (x)

and somehow incorporate these effects in the plug-in bandwidth expression. Moreover,

a deeper study about the pilot bandwidth selection problem to estimate A( f ′) would

also be necessary. These two issues would transform the usual simple plug-in band-

width selection method in a much more complicated problem. Fortunately, the bootstrap

bandwidth approach proposed in this paper provides a selector that covers any case of

grouping, thus controlling or reducing the increase of the error of the estimates. More-

over, it is important to note that this bootstrap procedure does not need Monte Carlo

and, therefore, it is also an efficient computing time approach. Facing applications, this

implies a substantial improvement in the estimation of data structure, allowing smart

inferences even when data are heavily grouped.

Appendix A. Proof of Theorem 3.1

Proof Applying the expectation operator to (5), it is easy to prove that

E
[

F̂
g

h (x)
]

=
k

∑

i=1

K

(

x− ti

h

)

E [wi] =
k

∑

i=1

K

(

x− ti

h

)

pi (A.1)

where pi = F (yi)−F (yi−1).

Using a Taylor expansion of pi around ti and substituting into (A.1), and the fact that

α ji =

(

li

2

) j

−

(

−
li

2

) j

=

{

0 for j even

2
(

li
2

) j

else
, (A.2)
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gives

E
[

F̂
g

h (x)
]

=
k

∑

i=1

liH1 (ti)+
1

24

k
∑

i=1

l3
i H2 (ti)+

1

4!

k
∑

i=1

K

(

x− ti

h

)

δ, (A.3)

where δ=F (4) (ξi)
(

li
2

)4

−F(4) (ξi−1)
(

− li
2

)4

, with ξi ∈ [ti,yi] and ξi−1 ∈ [yi−1, ti], H1 (t)=

F ′ (t)K
(

x−t
h

)

and H2 (t) = F ′′′ (t)K
(

x−t
h

)

. As long as F(4) is Lipschitz, δ can be easily

bounded leading to

∣

∣

∣

∑k
i=1K

(

x−ti
h

)

δ
∣

∣

∣
= O

(

l̄4
)

, so that (A.3) becomes

E
[

F̂
g

h (x)
]

=
k

∑

i=1

liH1 (ti)+
1

24

k
∑

i=1

l3
i H2 (ti)+O

(

l̄4
)

. (A.4)

Considering the first term on the right hand side of (A.4), taking the integral over the

i-th interval, using a Taylor expansion with s = t − ti, by (A.2) and summing over all k

intervals gives

k
∑

i=1

liH1 (ti) =
∫

H1 (t)dt −
1

24

k
∑

i=1

l3
i H ′′

1 (ti)−
1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
1 (ξi)(t − ti)

4
dt. (A.5)

Bounding the third term on the right hand side of (A.5) gives

∣

∣

∣

∣

∣

1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄4

h4

)

. (A.6)

Now, working on the second term on the right hand side of (A.5), it can be expressed

as
k

∑

i=1

l3
i H ′′

1 (ti) =
k

∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti)+ l2

k
∑

i=1

liH
′′
1 (ti) . (A.7)

The second term on the right hand side of (A.7) can be expressed as

l2

k
∑

i=1

liH
′′
1 (ti) =

l2

∫

H ′′
1 (t)dt −

l2

24

k
∑

i=1

l3
i H

(4)
1 (ti)−

l2

4!

k
∑

i=1

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt. (A.8)

Bounding the third and second terms on the right hand side of (A.8) gives

∣

∣

∣

∣

∣

l2

4!

k
∑

i=1

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄6

h6

)
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and

∣

∣

∣

∑k
i=1 l3

i H
(4)
1 (ti)

∣

∣

∣
6 O

(

l̄4

h4

)

. In turn, bounding l2
∫

H ′′
1 (t)dt results in

∣

∣

∣

∣

l2

∫

H ′′
1 (t)dt

∣

∣

∣

∣

6 O
(

l̄2
)

∫

∣

∣H ′′
1 (t)

∣

∣dt. (A.9)

By Assumption 3.1, it is easy to check that H ′′
1 (t) =0 when x−t

h
<−1, and H ′′

1 (t) =
F ′′′ (t) when x−t

h
<−1. As a consequence,

∫

∞

−∞

∣

∣H ′′
1 (t)

∣

∣dt =
∫ x−h

−∞

∣

∣F ′′′ (t)
∣

∣dt +
∫ x+h

x−h

∣

∣

∣

∣

K

(

x− t

h

)

F ′′′ (t)

−
1

h
2F ′′ (t)K

(

x− t

h

)

+
1

h2
F ′ (t)K′

(

x− t

h

)
∣

∣

∣

∣

dt. (A.10)

Hence, solving and bounding the right hand side of (A.10) gives

∫

∞

−∞

∣

∣H ′′
1 (t)

∣

∣dt = O

(

1

h

)

,

which implies that
∣

∣

∣

∣

l2

∫

H ′′
1 (t)dt

∣

∣

∣

∣

= O

(

l̄2

h

)

.

Updating (A.7), gives

k
∑

i=1

l3
i H ′′

1 (ti) =
k

∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti)+O

(

l̄2

h

)

. (A.11)

For bounding the first term on the right hand side of (A.11), realize that by previous

elaborations,

k
∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti) =

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt−

1

4!

k
∑

i=1

(

l2
i − l2

)

l3
i H

(4)
1 (ti)−

1

4!

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt. (A.12)

Under Assumption 3.4, the last two terms can be bounded as

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

l3
i H

(4)
1 (ti)

∣

∣

∣

∣

∣

6 max
i

∣

∣

∣
l2
i − l2

∣

∣

∣
kl3

max

∥

∥

∥
H

(4)
1

∥

∥

∥

∞

= o

(

l̄4

h4

)

(A.13)
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and
∣

∣

∣

∣

∣

1

4!

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

6

1

4!80
max

i

∣

∣

∣
l2
i − l2

∣

∣

∣
kl5

max

∥

∥

∥
H

(6)
1

∥

∥

∥

∞

= o

(

l̄6

h6

)

, (A.14)

and
∑k

i=1

(

l2
i − l2

)

∫ yi
yi−1

H ′′
1 (t)dt as

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

∣

6 max
i

∣

∣

∣
l2
i − l2

∣

∣

∣

k
∑

i=1

∣

∣

∣

∣

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

6 o
(

l̄2
)

∫

∣

∣H ′′
1 (t)

∣

∣dt. (A.15)

Using the same arguments as above,

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

∣

= o

(

l̄2

h

)

. (A.16)

Considering (A.12), (A.13), (A.14), (A.15) and (A.16),

k
∑

i=1

l3
i H ′′

1 (t) = O

(

l̄2

h

)

, (A.17)

thus leading to
k

∑

i=1

liH1 (ti) =

∫

H1 (t)dt +O

(

l̄2

h

)

. (A.18)

Integrating by parts, a change of variable, using a Taylor expansion on F and by

kernel properties, lead to

k
∑

i=1

liH1 (ti) = F (x)+
h2

2
F ′′ (x)µ2 (K)+O

(

h4
)

+O

(

l̄2

h

)

. (A.19)

Regarding the second term on the right hand side of (A.4),

k
∑

i=1

l3
i H2 (ti) =

k
∑

i=1

(

l2
i − l2

)

liH2 (ti)+ l2

k
∑

i=1

liH2 (ti) . (A.20)
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Proceeding as above,

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

liH2 (ti)

∣

∣

∣

∣

∣

= o
(

l̄2
)

. (A.21)

As to the second term, note that by Ostrowski’s inequality (Anastasiou, Kechriniotis,

and Kotsos, 2006; Ostrowski, 1938)

∣

∣

∣

∣

liH2 (ti)−

∫ yi

yi−1

H2 (t)dt

∣

∣

∣

∣

6
1

4
LH2

l2
i ,

where LH2
is the H2 Lipschitz constant. Summing up over all k intervals and considering

Assumption (3.4) lead to

k
∑

i=1

∣

∣

∣

∣

liH2 (ti)−
∫ yi

yi−1

H2 (t)dt

∣

∣

∣

∣

= O

(

l̄

h

)

which in turn implies that

l2

k
∑

i=1

liH2 (ti) = l̄2

∫

H2 (t)dt +o
(

l̄2
)

.

Integrating by parts, a change of variable, by a Taylor expansion on F ′′ and simpli-

fying due to the kernel K properties lead to

∫

H2 (t)dt = F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

,

so that

l2

k
∑

i=1

liH2 (ti) = l̄2

[

F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

]

+o
(

l̄2
)

. (A.22)

Using (A.22) and (A.21), Eq. (A.20) becomes

k
∑

i=1

l3
i H2 (ti) = l̄2

[

F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

]

+o
(

l̄2
)

. (A.23)

So, joining (A.23) and (A.19) into (A.3), and by Assumption 3.4,

E
[

F̂
g

h (x)
]

= F (x)+
h2

2
F ′′ (x)µ2 (K)+o

(

h2
)

,
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from which, the bias is

B
[

F̂
g

h (x)
]

=
1

2
h2F ′′ (x)µ2 (K)+o

(

h2
)

. (A.24)

Regarding the variance, considering that (n1,n2, . . . ,nk) is a multinomial random

vector and wi = ni/n, applying this operator to (5), it gives

V
[

F̂
g

h (x)
]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi)−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j.

(A.25)

Since pi = F (yi)−F (yi−1), using Taylor expansions around ti and by (A.2), the first

term on the right hand side of (A.25) (except a factor 1/n) can be written as

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) =

k
∑

i=1

liH3 (ti)+O
(

l̄
)

, (A.26)

where H3 (t) = K
2
(

x−t
h

)

F ′ (t). Integrating H3 over the i-th interval, by a Taylor ex-

pansion, using s = t − ti, by parity conditions (A.2), summing over all k intervals and

reordering gives

k
∑

i=1

liH3 (ti) =
∫

H3 (t)dt −
1

24

k
∑

i=1

l3
i H ′′

3 (ti)−
1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
3 (ξi)(t − ti)

4
dt. (A.27)

As done for (A.5), it is easy to check that

∣

∣

∣

∣

∣

1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
3 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄4

h4

)

(A.28)

and
k

∑

i=1

l3
i H ′′

3 (ti) = O

(

l̄2

h

)

. (A.29)

Considering (A.29), (A.28) and (A.27), Eq. (A.26) transforms into

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) =
∫

H3 (t)dt +O
(

l̄
)

. (A.30)

As above, using integration by parts, the change of variable u = (x− t)/h and a

Taylor expansion give

∫

H3 (t)dt = F (x)−hF ′ (x)C0 +O
(

h2
)

,
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where C0 = 2
∫

K(u)K (u)udu. Substituting the last expression into (A.30) and by As-

sumption 3.4 it gives

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) = F (x)−hF ′ (x)C0 +O
(

h2
)

. (A.31)

Let us turn back to eq. (A.25). Because pi = F (yi)−F (yi−1), using Taylor expan-

sions around ti, by (A.2), the second term on the right hand side of (A.25) (except a

factor −2/n) can be written as

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j =
∑

i< j

H4 (ti, t j) lil j +O
(

l̄2
)

, (A.32)

where H4 (z1,z2) =K
(

x−z1
h

)

K
(

x−z2
h

)

F ′ (z1)F ′ (z2).
Considering the second order Taylor expansion around (ti, t j) and by parity condi-

tions (A.2),

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 = H4 (ti, t j) lil j +
T0

2
, (A.33)

where

T0 =

∫ yi

yi−1

∫ y j

y j−1

[

∂
2H4

∂ z2
1

(ξ1,ξ2)(z1 − ti)
2 +2

∂
2H4

∂ z1∂ z2

(ξ1,ξ2)(z1 − ti)(z2 − t j)

+
∂

2H4

∂ z2
2

(ξ1,ξ2)(z2 − t j)
2

]

dz2dz1.

Summing over all k (k−1)/2 terms of the form (A.33) and reordering,

∑

i< j

lil jH4 (ti, t j) =
∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 −
1

2

∑

i< j

T0. (A.34)

The second term on the right hand side of (A.34) can be easily bounded by Assump-

tion 3.4, since

∣

∣

∣

1
2

∑

i< j T0

∣

∣

∣
= O

(

l̄2

h2

)

.

As a consequence,

∑

i< j

lil jH4 (ti, t j) =
∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 +O

(

l̄2

h2

)

. (A.35)

On the other hand, it is straightforward to prove that

∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 =
1

2

∫ ∫

H4 (z1,z2)dz2dz1 +O
(

l̄
)

. (A.36)
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Now, using (A.36) and (A.35),

∑

i< j

lil jH4 (ti, t j) =
1

2

∫ ∫

H4 (z1,z2)dz2dz1 +O
(

l̄
)

+O

(

l̄2

h2

)

. (A.37)

Integration by parts, two changes of variable [u1 = (x− z1)/h, u2 = (x− z2)/h] and

a Taylor expansion around x give

1

2

∫ ∫

H4 (z1,z2)dz2dz1 =
1

2

[

F2 (x)+O
(

h2
)]

(A.38)

so that, considering (A.38), (A.37) and Assumption 3.4, Eq. (A.32) becomes

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j =
1

2
F2 (x)+O

(

h2
)

. (A.39)

Now, putting back (A.39) and (A.31) in (A.25) and simplifying,

V
[

F̂
g
h (x)

]

=
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0 +O

(

h2

n

)

. (A.40)

Collecting (A.40) and (A.24), one obtains

MSE
[

F̂
g
h (x)

]

=
1

4
h4F ′′ (x)2µ2 (K)2 +

1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0

+O

(

h2

n

)

+o
(

h4
)

. (A.41)

Finally, dealing with the integrated versions of the terms coming up in the proof of

(A.41), one can obtain the following asymptotic expression for AMISE,

AMISE
[

F̂
g

h

]

=
1

4
h4µ2 (K)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0,

which corresponds with just integrating the leading terms in (A.41).
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González-Andújar, J. L., Francisco-Fernández, M., Cao, R., Reyes, M., Urbano, J. M., Forcella, F. and

Bastida, F. (2016). A comparative study between nonlinear regression and nonparametric approaches

for modeling Phalaris paradoxa seedling emergence. Weed Research, 56, 367–376.

Guo, S. (2005). Analysing grouped data with hierarchical linear modeling. Children and Youth Services

Review, 27, 637–652.

Hill, P. (1985). Kernel estimation of a distribution function. Communications in Statistics, Theory and

Methods, 14, 605–620.

Klein, J. P. and Moeschberger, M. (1997). Survival Analysis. New York: Springer Verlag.
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Detecting outliers in multivariate volatility models:

A wavelet procedure∗

Aurea Grané1, Belén Martı́n-Bagarrán2 and Helena Veiga3

Abstract

It is well known that outliers can affect both the estimation of parameters and volatilities when

fitting a univariate GARCH-type model. Similar biases and impacts are expected to be found on

correlation dynamics in the context of multivariate time series. We study the impact of outliers

on the estimation of correlations when fitting multivariate GARCH models and propose a general

detection algorithm based on wavelets, that can be applied to a large class of multivariate volatility

models. Its effectiveness is evaluated through a Monte Carlo study before it is applied to real data.

The method is both effective and reliable, since it detects very few false outliers.
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1 Introduction

The correlation structure of security returns is the keystone of both portfolio alloca-

tion and risk management decisions. In the literature, there are several models to es-

timate correlations, the multivariate GARCH being the most popular class of models.

Oil and financial series of returns often exhibit excess of kurtosis that can be caused by

large unexpected observations. In the univariate context, some authors tried to capture

this excess of kurtosis by estimating volatility models with fat tail distributed errors.

However, it was observed that the estimated residuals of these models still registered

excess kurtosis (see Baillie and Bollerslev, 1989, Teräsvirta, 1996). Furthermore, it is

well known that these observations can affect the estimation of the GARCH parameters
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(Fox, 1972, Van Dijk, Franses and Lucas, 1999, Verhoeven and McAleer, 2000, Bali

and Guirguis, 2007, Charles and Darné, 2014), the tests of conditional homoscedas-

ticity (Carnero, Peña and Ruiz, 2007, Grossi and Laurini, 2009), the out-of-sample

volatility forecasts (Ledolter, 1989, Chen and Liu, 1993, Franses and Ghijsels, 1999,

Grané and Veiga, 2010, Boudt, Danı́elsson and Laurent, 2013), the volatility estimates

(Carnero, Peña and Ruiz, 2012, Behmiri and Manera, 2015) and the risk measures

(Grané and Veiga, 2014). For a recent survey on the effects of the outliers on the spec-

ification, on the parameter estimation, on the volatility estimation and prediction see

Hotta and Trucı́os (2018). Analogously, when volatilities and correlations are estimated

using multivariate GARCH models similar effects might be expected (see, for instance,

Boudt and Croux, 2010).

Portfolios are often composed of commodities that can exhibit negative correla-

tions with stock price returns as, for example, oil returns. Oil is a strategic com-

modity used as an input in all economic activities, therefore, turmoils in the oil mar-

ket can propagate to stock markets and affect correlations making them quite negative

(see Ramos, Martı́n-Barragán and Veiga, 2015). Therefore, the first objective of this

paper is to study the effect of outliers, in particular, isolated level outliers, patches

of level outliers and volatility outliers, on the estimated correlations of multivariate

GARCH models (see Hotta and Tsay, 2012, Galeano and Peña, 2013, for a resume on

the different types of outliers). We focus on the diagonal Baba-Engle-Kraft-Kroner (D-

BEKK) by Engle and Kroner (1995), the conditional constant correlation (CCC) model

by Bollerslev (1990) and the dynamic conditional correlation (DCC) model by Engle

(2002). We have chosen these models because they are often used in empirical works

(see Bauwens, Laurent and Rombout, 2006, Silvennoinen and Teräsvirta, 2009, for ex-

celent surveys on these models). Moreover, as a multivariate GARCH model, the D-

BEKK is easier to estimate than the full BEKK because it involves less parameters. Yet,

the conclusions and the procedures of this work can be extended to other more sophis-

ticated multivariate volatility models. The second aim is to propose a procedure able

to detect outliers in multivariate volatility models that is based on the residuals. The

detection of outliers may warn the researcher to use more sophisticate models, filter for

outliers or to use robust methods as those proposed, for instance, in Muler and Yohai

(2008) for univariate GARCH models and Boudt and Croux (2010) for multivariate

GARCH models. Robust estimators work well in the case of additive outliers but lose

their efficiency when there is an autoregressive high order dependence. Furthermore

and regarding the M-estimators, their asymptotic theory is often based on the hypothe-

sis that the errors are homoscedastic, which is not the case when dealing, for instance,

with the DCC model. On the other hand, there are M-estimators that do not depend on

homoscedastic errors but they are not so efficient. Therefore, our recommendation is to

start by applying a detection procedure and in case outliers are detected, the researcher

can either filter them, go for a robust estimation method or use a more sophisticated

model that can accommodate outliers.
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The Monte Carlo study leads us to conclude that outliers affect the estimated corre-

lations and the effect is stronger for the conditional correlation models (CCC and DCC).

Second, our detection procedure is very reliable, not only because the percentage of

correct detections is quite high, but also because it detects very few false outliers. This

property ensures that when one observation is detected as a possible outlier, it is indeed

an outlier.

The advantages of our method are several: first, it can be applied to any multivari-

ate volatility model given that the errors follow a known distribution, second it is well

suited for detecting several types of outliers, such as isolated single/multiple outliers and

patches of outliers; third, the method is easy and quick to apply, which makes it an at-

tractive tool for academic communities and/or practitioners; fourth, it can be applied to

a high number of series, and finally, it is reliable since it detects very few false outliers.

The organization of this paper is as follows. In Section 2 we present the volatility

models used in the paper and review two particular types of additive outliers. In Section

3 we study the effect of outliers on the estimated correlations via several simulation

studies. In Section 4 we present and evaluate the performance of the detection algorithm

and we apply it to several daily series of returns in Section 5. Finally, we conclude in

Section 6. Additional Monte Carlo experiments are reported in the Appendix.

2 Outliers in multivariate volatility models

Multivariate financial time series of returns exhibit similar patterns to those of uni-

variate series, such as persistent time-varying volatilities. Additionally, they display

time-varying correlations that are often modeled by multivariate GARCH models. One

advantage of these models is that they are flexible enough to represent the dynamics of

the volatilities and correlations. We start this section describing the models we are going

to evaluate. Next we present the type of outliers we are going to consider.

2.1 Models under evaluation

The models that we consider have been pioneer in the financial econometrics literature

and are often applied empirically to many fields such as volatility spillover transmission,

contagion, portfolio management, asset allocation, etc. However, the methodology de-

veloped in this paper is not restricted to them.

In particular, the models under evaluation are the diagonal Baba-Engle-Kraft-Kroner

(D-BEKK) model defined in Engle and Kroner (1995), the constant conditional correla-

tion (CCC) model by Bollerslev (1990), and the dynamic conditional correlation (DCC)

model by Engle (2002).

Let {yt} be a vector stochastic process with dimension N × 1 such that E(yt) = 0

and Ft−1 is the information set till time t −1. We consider that yt = εεεt and εεεt = H
1/2
t ηηηt ,
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where Ht is the conditional covariance matrix of yt and ηηηt is an iid vector error process

such that E(ηηηtηηη
′
t) = I, the identity matrix of order N. We assume that there is no linear

dependence in yt .

Alternative approaches in the literature propose different models for the dependence

of Ht on past information Ft−1. In the D-BEKK, the dependence of Ht on past informa-

tion is modeled directly. In contrast, in the CCC and DCC models, first the conditional

variances are modeled using univariate specifications and then Ht is obtained by using

these conditional standard deviations together with some specifications of the correla-

tions (constant for CCC and time-varying for DCC).

We now proceed to a more detailed description of these three models.

DIAGONAL BEKK MODEL The D-BEKK of first order is a restricted version of the

model defined in Engle and Kroner (1995), where the dependence of Ht on past infor-

mation is modeled as follows:

Ht = CC
T+A

Tεεεt−1εεε
T

t−1A+B
T
Ht−1B, (1)

where A and B are N ×N diagonal matrices and C is a N ×N lower triangular matrix.

The D-BEKK is covariance stationary if and only if a2
ii+b2

ii < 1 for all i, where aii and bii

are, respectively, the diagonal elements of A and B. The conditional covariance matrix

is positive definite by construction.

CONDITIONAL CORRELATION MODELS The CCC model is given by

Ht = DtRDt =
(

ρi j

√

hii,t h j j,t

)

i j,t
,

where Dt = diag(h
1/2

11,t , ...h
1/2
NN,t). Here hii,t is defined in a univariate GARCH–type con-

text such as hii,t = α0i +α1iε
2
i,t−1 +β1ihii,t−1 and R = (ρi j)1≤i, j≤N is a correlation ma-

trix, that is symmetric and positive definite, with ρii = 1, −1 ≤ ρi j ≤ 1, ρi j = ρ ji for

i, j = 1, . . . ,N. If the N conditional variances are positive, since R is a positive defi-

nite matrix, then Ht is positive definite. The number of parameters to be estimated are

N(N+5)/2. Furthermore, univariate GARCH models require that α0i > 0, α1i ≥ 0 and

β1i ≥ 0 to guarantee positive conditional variances and α1i+β1i < 1 to enforce stationary

(see Duan et al., 2006).

On the other hand, the dynamic conditional correlation model, DCC, by Engle (2002)

is defined as

Ht = DtRtDt , (2)

with Dt defined as before and Rt =
(

qi j,t/
√

qii,t q j j,t

)

i j,t
, where Qt = (qi j,t) is a N ×N

symmetric positive definite matrix given by:

Qt = (1−α−β)Q̄+αut−1u
T

t−1 +βQt−1, (3)
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where ut = (u1,t , . . . ,uN,t)
T with ui,t = εi,t/

√

hii,t , Q̄ is the unconditional variance ma-

trix of ut and α and β are non-negative scalar parameters that satisfy α+ β < 1 (see

Bauwens et al., 2006).

We now proceed to define the type of outliers we are going to study. Following

Hotta and Tsay (2012), we distinguish two type of additive outliers, level and volatility,

and propose a simple extension to the multivariate case.

2.2 Additive level outliers

Additive level outliers (ALOs) can be caused by institutional changes or market cor-

rections that do not affect volatility. In this case, the conditional mean equation of the

multivariate volatility model becomes:

yt = ωωω · IT (t)+εεεt

εεεt = H
1/2
t ηηηt ,

(4)

where ηηηt is as before, that is, an iid vector error process such that E(ηηηtηηη
T

t) = I, ωωω =
(ω1, . . . ,ωN)

T is a vector containing the ALOs’ sizes and IT (t) = 1 for t ∈ T and 0 oth-

erwise, representing the presence of ALOs at a given set of times T . ALOs can occur

simultaneously at the same instant t or not and their sizes can coincide or not.

Note that the conditional covariance matrix Ht+1 depends only on the past infor-

mation through εεεt and Ht . Since the effect of the outlier is only in yt , the conditional

covariance matrix will not be affected by this type of outliers. Indeed ALOs only affect

the level of the series. This is true for all multivariate GARCH models.

2.3 Additive volatility outliers

Additive volatility outliers (AVOs) affect both the level of the returns and their volatil-

ities (see Carnero et al., 2007, Grané and Veiga, 2010, Hotta and Tsay, 2012, Hotta

and Trucı́os, 2018). In this context, the conditional mean equation of the multivariate

GARCH model becomes:

yt = εεεt

εεεt = ωωω · IT (t)+H
1/2
t ηηηt ,

(5)

where ηηηt , ωωω and IT (t) = 1 are defined as in section 2.2.

In contrast to ALOs, the effect of AVOs in yt is through the term εεεt which indeed

affects the conditional covariance matrix Ht+1. This means that the values of the returns

following the outlier occurrence will also be affected, since the conditional covariance

matrix has been modified by the outlier. In order to highlight this behavior we are going

to focus in the D-BEKK model.
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Let {yt} be a vector stochastic process following the D-BEKK model described by

equation (1) and {y∗t } a vector stochastic process following the D-BEKK model con-

taminated with an AVO at time s. Let H∗
t and εεε∗t denote the conditional covariance

matrix and the vector of errors for the contaminated process {y∗t }, respectively. Using

this notation, equation (1) for the process {y∗t } is:

H∗
t = CC

T+A
Tεεε∗t−1εεε

∗,T
t−1A+B

T
H∗

t−1B.

At time s, when the outlier occurs, εεε∗s = ωωω+εεεs. Hence, at time s+ 1, the conditional

covariance matrix of the process {y∗t } will get contaminated. That is:

H∗
s+1 = Hs+1 +A

T(ωωωωωωT+ωωωεεεT

s +εεεsωωω
T)A.

Note that, after time s+ 1, the conditional covariance matrix of the process {y∗t } is

different than that of the non–contaminated process {yt}, since it is affected by both the

second and the third terms of equation (1). It is easy to see that the third term is affected

by the outlier since it ultimately depends on H∗
t−1. The second term depends on εεε∗t ,

whose covariance is actually H∗
t , which is hence different from the non-contaminated

vector of errors εεεt .

Regarding, the CCC and DCC models the conditional covariance matrix Ht is also

affected by the AVO, since it depends on the conditional variances obtained with the

univariate GARCH models, that are as well affected by the AVO (see Carnero et al.,

2007, Grané and Veiga, 2010, Carnero et al., 2012).

3 Effects of outliers on the correlations: Simulation studies

In the univariate literature it is well known that outliers can affect the estimation of pa-

rameters and volatility in the context of GARCH models. However, there are still few

studies devoted to analyse the effects of these observations on the estimated correla-

tions using multivariate GARCH models. In this section we contribute in this line by

implementing simulation studies for Gaussian and Student-t7 distributed errors.

EXPERIMENTAL CONDITIONS All simulation studies involve single, multiple and

patches of additive level outliers and additive volatility outliers included in the mod-

els described in section 2.3.

The frequency of the simulations is daily and the number of simulated series is N = 2.

Outliers are placed randomly across the simulated series, but in the same position for

each pair of series. We consider that the outlier affects each pair of series at the same

instant of time. Each scenario involves 1000 replications and series are simulated from

CCC, DCC and D-BEKK(1,1,1) models with either normal or Student-t7 distributed er-

rors (see the Appendix). The number of replications is selected to provide robust results.
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Given a model, we analysed 24 scenarios, that are defined from the type and number

of outliers (one isolated ALO, multiple ALOs, patches of three ALOs, one isolated

AVO), the size of the outlier (ωωω = 5σσσy,10σσσy for ALOs and ωωω = 25σσσy,50σσσy for AVOs)

and the sample size of the simulated series (n = 1000,3000,5000).

GAUSSIAN ERRORS Parameter values were chosen by fitting the models to real time

series of financial returns including commodities such as oil. In particular, for the D-

BEKK model: {vec(C)= (0.053,0.042,0,0.020)T,diag(A)= (0.161,0.164)T,diag(B)=

(0.983,0.981)T}; for the CCC: {ααα0 = (0.010,0.013),ααα1 = (0.049,0.067),βββ1 =
(0.940,0.926),ρ12 = −0.606)}; and for the DCC model: {ααα0 = (0.010,0.013),ααα1 =

(0.049,0.067),βββ1 = (0.940,0.926),α= 0.015,β = 0.981}. Symbols ααα0, ααα1, βββ1 stand

for vectors of parameters of the univariate GARCH(1,1) models (see Grané and Veiga,

2010, for the details).

Simulation results are robust to the choice of parameter values and N. Therefore, we

use N = 2 since it allows presenting results graphically without losing generality.

The results of this simulation study are reported in Table 1 (16 top rows) and Fig-

ures 1–3.1

Table 1: Relative bias in the estimated correlations obtained from a CCC model from 1000 simulated series

of size n that include outliers of different magnitudes.

CCC Model with Gaussian errors

Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.5987 -0.013 3 ALOSs 1000 -0.5892 -0.028

ωωω = 5σσσy 3000 -0.6042 -0.004 ωωω = 5σσσy 3000 -0.6007 -0.010

5000 -0.6051 -0.002 5000 -0.6017 -0.008

1 ALO 1000 -0.5872 -0.032 3 ALOs 1000 -0.5545 -0.086

ωωω = 10σσσy 3000 -0.5970 -0.016 ωωω = 10σσσy 3000 -0.5810 -0.042

5000 -0.6012 -0.009 5000 -0.5902 -0.027

Patch of 1000 -0.5972 -0.015 1 AVO 1000 -0.5614 -0.074

3 ALOs 3000 -0.6031 -0.006 ωωω = 25σσσy 3000 -0.5805 -0.043

ωωω = 5σσσy 5000 -0.6041 -0.004 5000 -0.5847 -0.036

Patch of 1000 -0.5839 -0.037 1 AVO 1000 -0.5318 -0.123

3 ALOs 3000 -0.5959 -0.017 ωωω = 50σσσy 3000 -0.5627 -0.072

ωωω = 10σσσy 5000 -0.5999 -0.011 5000 -0.5642 -0.070

No outliers 1000 -0.6064

3000 -0.6065

5000 -0.6064

1. Preliminary results concerning isolated ALOs were presented in an invited conference in the 7th International
Workshop on Statistical Simulation (Rimini, 2012) and published in the Proceedings of the workshop (see Grané, Veiga
and Martı́n-Barragán, 2014).
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Figure 1: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include ALOs of

different magnitudes.
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Figure 2: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include patches

of different magnitudes.



Aurea Grané, Belén Martı́n-Bagarrán and Helena Veiga 297

0 200 400 600 800 1000
−0.8

−0.795

−0.79

−0.785

−0.78

−0.775

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 500 1000 1500 2000 2500 3000
−0.8

−0.795

−0.79

−0.785

−0.78

−0.775

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 1000 2000 3000 4000 5000
−0.8

−0.795

−0.79

−0.785

−0.78

−0.775

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

(a1) DCC, n = 1000 (a2) DCC, n = 3000 (a3) DCC, n = 5000

0 200 400 600 800 1000
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

R
e

la
ti
v
e

 E
rr

o
r 

in
 C

o
rr

e
la

ti
o

n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 500 1000 1500 2000 2500 3000
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
R

e
la

ti
v
e

 E
rr

o
r 

in
 C

o
rr

e
la

ti
o

n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 1000 2000 3000 4000 5000
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

R
e

la
ti
v
e

 E
rr

o
r 

in
 C

o
rr

e
la

ti
o

n
s

Number of Observations

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

(b1) D-BEKK, n = 1000 (b2) D-BEKK, n = 3000 (b3) D-BEKK, n = 5000

Figure 3: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include 1 AVO of

different magnitudes.

Table 1 shows the estimated correlations (each reported value is the sample mean

computed on 1000 values) for the CCC model and the relative biases (or relative errors)

with respect to the estimated correlations in the absence of outliers. Lines 13-15 corre-

spond to the estimated correlations in the absence of outliers. Figures 1–3 contain the

relative errors of DCC and D-BEKK models for different sample sizes. In particular,

in Figure 1 we plot the relative bias obtained in the estimation of the correlations using

DCC and D-BEKK models for the case of isolated ALOs, whereas Figures 2–3 cor-

respond, respectively, to patches of ALOs and 1 isolated AVO. For each time t (going

from 1 to n), the plotted value is the sample mean computed from 1000 replications.

From Table 1 and Figures 1–3 we can observe that the estimated correlations are

affected by the presence of outliers and the relative errors are higher the higher is the

magnitude of the outlier, the larger the number of outliers included in the simulated

series and the smaller the sample sizes of the simulated time series. Moreover, the bi-

ases in the correlations are higher for the DCC model in comparison to the CCC and

D-BEKK models. In particular, the latter seems to be more robust to the presence of

outliers since the correlations present small relative errors over the sample size. Fi-

nally, another conclusion is that additive outliers (level or volatility) bias the estimated

correlations towards zero for the three considered models when the errors are Gaussian.

STUDENT-t ERRORS Next we perform simulations assuming that the errors follow a

Student-t distribution (see Appendix A.1). From the results of Table A we can conclude
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that, for the CCC model and N = 2, the biases are of less magnitude (in absolute value)

when considering a Student-t distribution. This was expected since the Student-t distri-

bution is more robust to outliers. With respect to DCC and D-BEKK, we also observe

that the biases are slightly smaller in absolute value when considering level outliers,

isolated or patches. However, when we consider volatility outliers we observe that the

impact on the correlations is larger in absolute value.

MORE SERIES Finally, we conduct a third simulation study considering N = 4 series

(see Appendix A.2). The main conclusions are: Firstly, the impact of the outliers on the

correlations tend to decrease for all level outliers; And secondly, regarding the volatility

outliers, passing from two to four series leads to a decrease of the impact of outliers for

the D-BEKK model, whereas for the DCC model the impact of volatility outliers on the

correlations remains almost the same.

4 Wavelet-based detection procedure

Grané and Veiga (2010) proposed a general outlier detection method based on wavelets

for the univariate case. This procedure was evaluated through an intensive Monte Carlo

study and compared to other existing competitors. The method was proven to be very ef-

fective in detecting isolated level outliers, patches of level outliers and volatility outliers

in large univariate financial time series. Additionally, the results showed the reliabil-

ity of the method (in front of other competitors), since it detected a significantly small

number of false outliers. More recently, Kamranfar, Chinipardaz and Mansouri (2017)

has extended the procedure of Franses and Ghijsels (1999) to allow for level change and

temporary change outliers.

The purpose of this work is to extend the method by Grané and Veiga (2010) to a

multivariate setting, preserving as much as possible the good properties already proven

in the univariate case, in particular, effectiveness and reliability, and also a feasible im-

plementation in large data sets. This will be achieved by applying the random projection

method (Cuesta-Albertos, Fraiman and Ransford, 2006, Cuesta-Albertos et al., 2007),

that allows to translate a multivariate problem into a univariate context. These authors

intuitively describe the random projection method in the following way. Imagine we

have to deal with a problem related to d-dimensional objects. The random projection

method consists of choosing, at random, a subspace of dimension k (where k is low

compared to d), solve the problem in the k-dimensional subspace and translate the so-

lution to the original (d-dimensional) space. In practice, k = 1,2, which is exactly con-

trary to the Projection Pursuit paradigm, avoiding implementation problems due to high-

dimensionality. Random projections have been successfully applied as a simple method

for dimensionality reduction in high-dimensional problems, in fields such as computer

science, data mining, image processing, etc. (see, for instance, Bingham and Mannila,

2001, Vempala, 2004).
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Our procedure is to be applied to the residuals of multivariate GARCH models or

other multivariate volatility models such as the stochastic volatility models, although in

this paper we focus our attention on the former class. To our knowledge, our procedure

is the first to detect outliers in multivariate volatility models.

Next in Section 4.1 we describe the proposed method to detect outliers and evaluate

its performance in Section 4.2.

4.1 The procedure

The method we propose is an extension of the procedure by Grané and Veiga (2010),

that was based on the detail wavelet coefficients resulting from the discrete wavelet

transform (DWT) of a univariate series of (standardized) residuals.

The method requires a preliminary step that consists in fitting a multivariate GARCH

model and obtaining the series of multivariate residuals. Note that our proposal is

model-dependent, but general enough to cope with a wide variety of models.

In the first step, the multivariate series of residuals is transformed into a univariate

series to which DWT will be applied. At this point two possibilities are considered

whether the conditional covariance matrix of the fitted model fulfills the decomposition

property. In case this property is satisfied, it is enough to consider only the univariate

marginals. This will be the case for conditional correlation models, such as CCC and

DCC. On the other hand, if the decomposition property is not fulfilled, like happens

in the D-BEKK model, in addition to the marginals, we consider one randomly chosen

projection (see Cuesta-Albertos et al., 2006). Therefore, we end the first step with a

vector containing the univariate marginals or either the univariate marginals plus an

extra series containing the result of the random projection. Note that only one projection

is needed regardless the number of series considered. In Section 4.3 we show that for

N = 10 series the procedure is still effective and no advantage is achieved by increasing

the number of projections.

In the second step we apply the DWT to each of the univariate series under consid-

eration and in further steps the procedure proceeds by identifying outliers as those ob-

servations in the original series whose detail coefficients are greater (in absolute value)

than a certain threshold (see more details below). This threshold is a percentile of the

distribution of a certain test statistic. The underlying idea for the threshold relies in the

fact that in the context of financial return time series it is common to assume an under-

lying model for the data. Therefore, if the fitted model has captured the structure of the

data, the residuals are supposed to be independent and identically distributed random

variables following a specified distribution. In particular, the threshold is associated to

the following test statistic: the maximum of the detail wavelet coefficients (in absolute

value) resulting from the DTW of a univariate series of (standardized) residuals. When

the univariate series under consideration is a marginal of the multivariate one, the thresh-

olds given in Grané and Veiga (2010) for the univariate case are still valid. In case the
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univariate series is the result of a random projection, the distribution of the test statistic

is obtained via Monte Carlo and the threshold is derived analogously.

Table 2: Threshold values: Percentiles of the distribution of the test statistics (with Bonferroni correction).

Gaussian distributed errors Student’s t distributed errors

marginals and marginals and

only marginals random projection only marginals random projection

n 1st level 2nd level 1st level 2nd level 1st level 2nd level 1st level 2nd level

α= 0.05 1000 4.0595 3.8827 4.1386 3.9731 5.2583 4.6062 5.2390 4.6399

3000 4.2995 4.1437 4.3885 4.2383 5.7469 5.0101 5.7214 5.0092

5000 4.4062 4.2664 4.5027 4.3503 6.0131 5.1269 5.9162 5.1953

α= 0.10 1000 3.7216 3.5280 3.9944 3.8207 4.9470 4.3384 4.9215 4.4039

3000 3.8965 3.7114 4.2319 4.0873 5.4087 4.7086 5.3850 4.7845

5000 4.2620 4.0992 4.3607 4.2012 5.6332 4.9015 5.6013 4.9383

In practice, we find that in order to detect isolated ALOs it suffices to work with the

first level detail wavelet coefficients. However, if there are patches of ALOs or isolated

AVOs, it is necessary to use both first level and second level detail wavelet coefficients.

From the simulation study (see section 4.2) we believe that a reasonable threshold to use

in the detection of isolated ALOs is the 95-th percentile, whereas for the detection of

patches of ALOs and isolated AVOs the 90-th percentile is more useful. An analogous

situation occurred in the univariate case.

Since in the multivariate case we are considering more than one series, the thresholds

proposed in Grané and Veiga (2010) for the univariate case are not directly applicable

and the union-intersection principle (Roy, 1953) with Bonferroni correction is applied.

As a reference, Table 2 contains the values of the thresholds after applying the Bon-

ferroni correction for bivariate series. The third, fourth, seventh and eighth columns

correspond to the thresholds for the case in which only the marginals are considered and

the fifth, sixth, ninth and tenth columns, to the case in which both the marginals and a

random projection are considered. The thresholds are shown for two different signifi-

cance levels α = 0.05 and 0.10, three different sample sizes n = 1000,3000, and 5000

and two different error distributions.

A brief description of the algorithm

Next we give a brief description of the procedure for detecting ALOs. Let X=(X1, . . . ,XN)

be the multivariate series of residuals of size n obtained after fitting a CCC, DCC or a

D-BEKK(1,1,1) model with normal distributed errors.

Step 1 In case the fitted model is D-BEKK(1,1,1) (or any other model in which the

decomposition property does not apply) consider a random vector h= (h1, . . . ,hN)
T

such that ‖h‖ = 1 and obtain the random projection of the multivariate series of

residuals on that direction, that is, XN+1 = h ·X. Let X∗ = (X1, . . . ,XN ,XN+1).
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Step 2 Apply the DWT to each marginal of X (or alternatively X∗) to obtain the first

level wavelet detail coefficients D j = (di, j), i = 1, . . . ,n/2, j = 1, . . . ,N (or alter-

natively j = 1, . . . ,N +1).

Step 3 Set the threshold kα equal to some percentile of the distribution of the maximum

of the first level wavelet detail coefficients (in absolute value) resulting from the

DWT of n iid random variables following a standard normal distribution, consider-

ing the Bonferroni correction. See Table 2 for some examples and other probability

distributions.

Step 4 Find S j = {i : |di, j|> kα}, for j = 1, . . . ,N (or alternatively j = 1, . . . ,N+1) and

consider S = ∪ j≥1S j the set formed by the union of all the elements in the S j’s.

Step 5 Use S to locate the exact positions of the ALOs in any of the X j’s. Let s be a

generic element in S. Let xn−2 be the sample mean of X j without observations at

locations 2s and 2s− 1. Then, set the position of the ALO equal to 2s if |X2s, j −

xn−2|> |X2s−1, j − xn−2|, or equal to 2s−1, otherwise.

The algorithms that respectively search for patches of ALOs and for AVOs differ

from the previous one in the sense that two level wavelet coefficients are computed, and

consequently there are two thresholds, one for each set of detail wavelet coefficients

D(1) = ∪ j≥1D
(1)
j and D(2) = ∪ j≥1D

(2)
j , for j = 1, . . .N (or alternatively j = 1, . . .N +1).

However, the main idea remains unchanged. These algorithms have been implemented

in Matlab and are available from the authors upon request.

4.2 Performance of the procedure

In this section we present the results of an intensive simulation study to assess the per-

formance of our detection proposal. In this study, we simulate the contaminated and

no–contaminated multivariate series following the experimental conditions described in

Section 3. We also consider D-BEKK, CCC and DCC models with Student-t distributed

errors.2

We apply the detection method described in Section 4.1 where the assumed model

is the true model used to generate the series. The results are shown in Table 3.3 The

measures used in the performance study are the percentage of times that the localization

of the outliers is correctly detected and the percentage of false outliers. The threshold

values used in the study are contained in Table 2.

The detection rate is larger for models with Gaussian errors. From Table 3 we can

see that when the magnitude of the outlier is ωωω = 10σσσy, the procedure detects more than

2. Parameter values used for models with Student-t7 distributed errors:
{vec(C) = (0.106,0.110,0,0.0371)′ ,diag(A) = (0.0571,0.050)′ ,diag(B) = (0.983,0.985)′} for the D-BEKK model,
{ααα0 = (0.010,0.013),ααα1 = (0.049,0.067),βββ1 = (0.740,0.759),ρ12 = 0.506} for the CCC model and {ααα0 =
(0.106,0.110,0.0371),ααα1 = (0.0571,0.050),βββ1 = (0.740,0.759),α = 0.015,β = 0.781} for the DCC model.

3. The Matlab codes are available from the authors upon request.
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96% of the isolated outliers, reaching the 100% in two cases. When the magnitude of the

outlier is relatively small, ωωω = 5σσσy, the detection rate goes from 36% to 43% for the D-

BEKK model and from 68% and 77% for the CCC and DCC models. Regarding patches

and volatility outliers, the detection rate also increases with the size of the outlier and

it ranges from 24.1% (AVO and D-BEKK) to 99.8% (AVO and DCC). Finally, the per-

centage of false positives is at most 0.001% in 80% of the cases and under 0.007% in the

rest (the only exception is the DCC model forωωω = 10σσσy,n = 1000). Concerning models

with Student-t distributed errors, we observe that, for example, when the magnitude of

the outlier is ωωω = 10σσσy, the procedure detects from 70.9% to 99.2% of isolated ALOs.

As expected, the detection rate is low when ωωω = 5σσσy, since it is difficult to distinguish

small size outliers from the thick tail of Student-t distribution. The percentage of false

positives is still very small, being at most 0.006% in more than 77% of the cases. These

results lead us to conclude that the method is very reliable.

Table 3: Percentage of correct detection of outliers and percentage of false outliers in 1000 replications of

size n for multivariate GARCH models with either normal or Student-t7 distributed errors.

Gaussian errors Student-t7 distributed errors

% of correct detections % of false outliers % of correct detections % of false outliers

n D-BEKK CCC DCC D-BEKK CCC DCC D-BEKK CCC DCC D-BEKK CCC DCC

1 ALO 1000 43.8 77.1 77.2 0.004 0.005 0.005 12.5 7.7 7.8 0.0130 0.0082 0.0083

ωωω = 5σσσy 3000 38.7 76.2 75.3 0.001 0.001 0.001 11.5 3.2 3.2 0.0082 0.0055 0.0056

5000 36.1 69.8 70.8 0.001 0.001 0.001 11.2 2.1 2.1 0.0067 0.0050 0.0049

1 ALO 1000 99.1 100.0 100.0 0.004 0.004 0.048 92.2 98.8 99.0 0.0127 0.1080 0.0067

ωωω = 10σσσy 3000 99.3 99.9 99.9 0.001 0.001 0.001 81.7 98.4 98.4 0.0081 0.0050 0.0050

5000 99.3 99.9 99.8 0.001 0.001 0.001 73.3 99.2 99.1 0.0068 0.0047 0.0047

3 ALOs 1000 36.7 69.6 68.9 0.003 0.004 0.004 12.3 5.6 5.6 0.0113 0.0568 0.0566

ωωω = 5σσσy 3000 36.5 71.2 71.1 0.001 0.001 0.001 10.3 2.5 2.5 0.0077 0.0050 0.0050

5000 36.1 71.5 71.4 0.001 0.001 0.001 11.4 2.2 2.2 0.0066 0.0047 0.0048

3 ALOs 1000 96.5 97.8 97.8 0.002 0.005 0.005 88.2 93.0 93.3 0.0103 0.0062 0.0059

ωωω = 10σσσy 3000 97.8 98.9 98.8 0.001 0.001 0.001 78.8 97.9 97.8 0.0075 0.0542 0.0042

5000 97.8 99.1 98.9 0.001 0.001 0.001 70.9 98.1 98.2 0.0065 0.0043 0.0043

Patch of 1000 26.4 20.5 20.4 0.0001 0 0 24.0 1.7 1.9 0 0 0.0001

3 ALOs 3000 30.5 18.8 18.8 0 0 0 26.9 0.7 0.7 0.0001 0 0

ωωω = 5σσσy 5000 33.1 17.7 18.9 0.00002 0 0 26.6 0.1 0.1 0.0001 0.00004 0.00002

Patch of 1000 73.2 89.2 88.5 0 0 0 52.3 77.8 77.8 0 0 0

3 ALOs 3000 70.4 88.1 87.6 0 0 0 44.1 71.1 71.1 0.0001 0 0

ωωω = 10σσσy 5000 70.5 86.0 85.3 0.00002 0 0 41.1 63.2 63.3 0.0001 0.00002 0.00002

1 AVO 1000 24.2 66.4 95.6 0.001 0.0001 0 3.2 46.3 70.1 0.0001 0 0

ωωω = 25σσσy 3000 24.1 66.8 94.8 0.0003 0 0 3.3 47.1 66.6 0.0001 0.0001 0

5000 24.4 66.5 95.6 0.0002 0 0 2.8 44.4 66.3 0.0002 0 0

1 AVO 1000 52.2 87.0 99.6 0.004 0 0 15.0 75.1 94.5 0.0002 0 0

ωωω = 50σσσy 3000 55.6 88.0 99.3 0.002 0 0 17.7 75.5 94.0 0.0002 0 0

5000 53.9 88.8 99.8 0.001 0 0 17.3 75.0 94.2 0.0002 0 0

No 1000 0.004 0.006 0.005 0.0142 0.0092 0.0094

outliers 3000 0.001 0.001 0.001 0.0082 0.0057 0.0058

5000 0.001 0.001 0.001 0.0068 0.0050 0.0050
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In general, the percentage of correctly detected outliers is smaller for the D-BEKK

model than for CCC and DCC and this is confirmed by the results presented in Section

3, where we observed that the effect of outliers in the estimation of the correlations was

lower for D-BEKK model than for the CCC or DCC models.

These results show the reliability of the detection method for bivariate series. A

natural question arises for higher-dimensional cases: is one random projection enough

for detecting outliers or should the number of random projections be increased with

N? As shown in what follows, our results suggest that there is no need to increase the

number of random projections considered in the algorithm.

4.3 One or more random projections?

We focus now on analysing the performance of our procedure for N = 10 series and the

D-BEKK model.4 In particular, we are interested in studying whether increasing the

number of random projections may increase the percentage of correctly detected out-

liers. In this case, threshold values are computed as suggested by Benjamini and Yekutieli

(2001), instead of Bonferroni correction, which is too conservative. Results are con-

tained in Table 4. As before, the measures used are the percentage of times that the

localization of the outliers is correctly detected and the percentage of false outliers. The

number of random projections is shown in the first column. We analyse here the case of

1 ALO of sizes ωωω = 5σσσy,10σσσy. For ωωω = 10σσσy the proportion of correct detections stays

constant when the number of random projections is increased, whereas for ωωω = 5σσσy the

increase is very low (0.2 percentage points). In contrast, the percentage of false outliers

and the computational burden increase with a raise of the number of random projections,

suggesting that it is not worth to use more than one random projection for large values

of N; Similar conclusions where found by Cuesta-Albertos et al. (2006).

Table 4: Percentage of correct detection of outliers and percentage of false outliers in 1000 replications of

size n = 1000 for a D-BEKK model with Gaussian distributed errors. Series contaminated with one ALO

of two different sizes.

1 ALO ωωω = 5σσσy 1 ALO ωωω = 10σσσy

num. of random % of correct % of false % of correct % of false

projections detections outliers detections outliers

1 21.4 0.0065 97.7 0.0241

2 21.4 0.0064 97.7 0.0178

5 21.4 0.0079 97.7 0.0212

10 21.6 0.0085 97.7 0.0280

20 21.6 0.0115 97.7 0.0377

50 21.6 0.0182 97.7 0.0672

4. Regarding the computational burden of this simulation study, we want to remark that estimating 1000 times the
D-BEKK model for 10 series took approximately one week in an ordinary computer.
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5 Empirical application

In this section, we analyse nine time series of returns to illustrate the performance of our

method on real data. The data set is composed of the most important indices of the U.S.

stock market, such as Nasdaq and S&P500 and company stocks such as Marathon Oil

Corporation (MRO), International Business Machines Corporation (IBM), Coca-Cola

Corporation (Cola), Colgate-Palmolive Corporation (Colgate), British Petroleum (BP),

Microsoft Corporation (Micro) and American Express Company (AE). The data was

collected from Yahoo Finance website (http://finance.yahoo.com) and spans the period

from January 2, 1990 to January 30, 2015.

Figure 4 depicts the nine return series, yt = (log pt − log pt−1) · 100, where pt is the

value at time t of the corresponding index and Table 5 reports some summary statistics

and the results of the Kiefer and Salmon test for normality in the context of conditional

heteroscedastic series.
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Figure 4: Returns in percentage for the nine time series considered.
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Table 5: Descriptive statistics for daily returns.

Summary statistics of daily returns

Returns Nasdaq S&P 500 MRO IBM Cola Colgate BP Micro AE

Mean 0.0366 0.0271 0.0296 0.0360 0.0418 0.0531 0.0297 0.0715 0.0419

Variance 2.2333 1.3031 4.4819 3.1945 2.1428 2.2649 2.8337 4.3696 5.1985

Skewness -0.0858 -0.2392 -0.2547 -0.0210 0.0353 -0.0230 -0.3780 -0.0101 0.0294

Kurtosis 9.1796 11.7389 10.9489 10.3444 8.6336 13.1178 12.3986 8.5061 10.5041

Results of the Kiefer and Salmon test

KSS -2.7843∗ -7.7615∗ -8.2652∗ -0.6809 1.1449 -0.7462 -12.2656∗ -0.3285 0.9542

KSK 100.2478∗ 141.7666∗ 128.9508∗ 119.1434∗ 91.3907∗ 164.1346∗ 152.4680∗ 89.3229∗ 121.7340∗

∗ Means that we reject at 1%, 5% and 10% the nulls of skewness and kurtosis similar to those of a variable that
follows a normal distribution.

From Table 5, we observe that the nine return series are in majority negatively

skewed (except Cola and AE returns) and have significant kurtosis, ranging from 8.5061

for Micro to 13.1178 for Colgate, which suggests the existence of some outliers. It is

known that this type of observations in time series leads to fat tail distributions, and

some outlier detection methods, specially in the multivariate context, are based on this

information (see for example Peña and Prieto, 2001, Galeano, Peña and Tsay, 2006).

Table 5 also contains the results of the Kiefer and Salmon (1983) test (KS), which is a

formal test of normality in the context of conditional heteroscedastic series.5 The results

of the test confirm the non Gaussianity of the nine return series.

Next, we estimate the three multivariate GARCH models considered in this work:

the D-BEKK, the CCC and the DCC with Gaussian and Student-t distributed errors, and

we proceed by applying our method to detect outliers. The degrees of freedom of the

Student-t distributions are considered endogenous (they are included in the likelihood)

and therefore estimated. Results are shown in Table 6.

Some dates are often detected as outliers or belong to a patch of outliers. Note that,

the dates identified as outliers in the conditional correlation models are also identified as

outliers in the D-BEKK model. Most of the outliers can be related to specific events. In

particular, 19-Mar-91, 20/21-Oct-99, 21-Sep-04, 27/28-Apr-06, 19-Apr-13 and 18-Jul-

13. On March 19, 1991 IBM announced that its returns were expected to decreased by

half which led to an immediate plunge of its shares. On October 21, 1999 IBM stocks

tumbled pulling the rest of the market with it. On April 28, 2006 Microsoft announces

lower-than-expected earnings due to research expenses that would hurt future results.

On September 21, 2004 CNN announced that the optimism about technologic stocks

lifted the U.S. stock market at the open on this day. On April 19, 2013 it was announced

that IBM shares posted their biggest one-day percentage drop in eight years. Finally, on

5. The Kiefer and Salmon (1983) test is given by KSN = (KSS)
2 + (KSK )

2 (test of normality), where KSS =
√

T
6

[

1
T

∑T
t=1 y∗3

t − 3
T

∑T
t=1 y∗t

]

(test of skewness),KSK =
√

T
24

[

1
T

∑T
t=1 y∗4

t − 6
T

∑T
t=1 y∗2

t +3
]

(test of kurtosis) and

y∗t are the standardized returns. If the distribution of y∗t is conditional N(0,1), then KSS and KSK are asymptotically
N(0,1) and KSN is asymptotically χ

2(2).
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Figure 5: Graphical output of the wavelet-based procedure for the returns of nine time series estimated

with a D-BEKK model with Gaussian errors.

July 18, 2013 news about the European Union plans to limit fees for using credit and

debit cards pushed down the American Express company’s shares. Furthermore, other

dates like 15-Nov-91, 15-Dec-92, 22-Jul-94 and 29-Jul-08 can be related to oil shocks;

In 1990 Irak invades Kuwait and Kuwait cut crude exports until 1994; Oil prices dropped

from historic highs of $144.29 in July 2008, to $33.87 five months later.

Figure 5 shows a graphical output of the Matlab program, which corresponds to

the analysis of the multivariate residuals obtained after fitting a D-BEKK model with

Gaussian errors to nine series of returns.

All these observations correspond to important financial crashes or oil shocks that

our procedure detected successfully.
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6 Conclusion

The main contribution of this paper is the proposal of a general detection algorithm

based on wavelets that can be applied to a large class of multivariate volatility models.

The effectiveness of our method is evaluated both with simulated and real data. The sim-

ulations report evidence that our proposal is both effective and reliable since it detects

very few false outlier.

We also study the impact of outliers (isolated level outliers, patches of level outliers

and volatility outliers) on the estimation of correlations when fitting well known multi-

variate GARCH models via several simulation studies. The results of the Monte Carlo

experiments show that correlations are considerably affected by the presence of outliers.

The impact on the correlations is stronger the higher is the magnitude of the outlier, the

larger the number of outliers included in the simulated series and the smaller the sample

sizes of the simulated time series. In the simulation, we consider scenarios that try to

mimic portfolios that include asset returns and commodity returns such as oil, where

the correlation is negative and quite negative when turmoils in the oil market propagate

to stock markets. Therefore, the implications of these results are important for invest-

ments in oil commodities, as we identify several sources of impacts that are useful for

controlling international risks of investments.

Appendix

A.1 Student-t distributed errors

The simulations are conducted following the experimental conditions explained in the

beginning of section 3. In this case, the parameter values used are: for the D-BEKK

model, {vec(C) = (0.053,0.042,0,0.020)T,diag(A) = (0.161,0.164)T,diag(B) =
(0.983,0.981)T}; {ααα0 = (0.010,0.013),ααα1 = (0.019,0.027),βββ1 = (0.940,0.826),ρ12 =

−0.306)} for the CCC model and {ααα0 = (0.010,0.013),ααα1 = (0.019,0.027),βββ1 =
(0.940,0.826),α= 0.015,β = 0.981} for the DCC model.

The idea is similar to the experiments showed in Section 3. We simulate with

Student-t7 errors and estimate the CCC, DCC and D-BEKK considering the degree of

freedom of the Student-t distribution endogenous. Table A and Figures A–C contain the

results of this second simulation study.
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Figure A: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include ALOs of different

magnitudes.

Table A: Relative bias in the estimated correlations obtained from a CCC model from 1000 simulated

series of size n that include outliers of different magnitudes.

CCC Model with Student-t7 distributed errors
Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.3073 0.0062 3 ALOSs 1000 -0.3106 0.0170
ωωω = 5σσσy 3000 -0.3071 0.0029 ωωω = 5σσσy 3000 -0.3086 0.0078

5000 -0.3070 0.0020 5000 -0.3079 0.0049

1 ALO 1000 -0.3093 0.0128 3 ALOs 1000 -0.3141 0.0285
ωωω = 10σσσy 3000 -0.3100 0.0124 ωωω = 10σσσy 3000 -0.3145 0.0271

5000 -0.3089 0.0082 5000 -0.3128 0.0209

Patch of 1000 -0.3075 0.0069 1 AVO 1000 -0.2918 -0.0445
3 ALOs 3000 -0.3072 0.0033 ωωω = 25σσσy 3000 -0.3006 -0.0183
ωωω = 5σσσy 5000 -0.3072 0.0026 5000 -0.3025 -0.0127

Patch of 1000 -0.3137 0.0272 1 AVO 1000 -0.2745 -0.1012
3 ALOs 3000 -0.3099 0.0121 ωωω = 50σσσy 3000 -0.2906 -0.0509
ωωω = 10σσσy 5000 -0.3089 0.0082 5000 -0.2955 -0.0356

No outliers 1000 -0.3054
3000 -0.3062
5000 -0.3064
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Figure B: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include patches of different

magnitudes.
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Figure C: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include 1 AVO of different

magnitudes.
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A.2 N = 4N = 4N = 4 and Student-t7 distributed errors

The simulations are conducted following the experimental conditions explained in sec-

tion 3, with N = 4. For better comparison with results of Appendix A.1, we choose the

same parameter values for the first two series.

Once again, the outliers are placed randomly across the simulated series, but in the

same position for each pair of series. We consider that the outlier affects each pair of

series at the same instant. Each scenario involves 1000 replications and series are simu-

lated from CCC, DCC and D-BEKK(1,1,1) models with Student-t7 errors. The number

of replications is selected to provide robust results. Given a model, we analysed 24 sce-

narios, that are defined from the type and number of outliers (one isolated ALO, multiple

ALOs, patches of three ALOs, one isolated AVO), the size of the outlier (ωωω = 5σσσy,10σσσy

for ALOs and ωωω = 25σσσy,50σσσy for AVOs) and the sample size of the simulated series

(n = 1000,3000,5000). Table B and Figures D–F contain the results of this simulation

study. In order to simplify the presentation, we only report the results for the correlation

between the first two simulated series.

Table B: Relative bias in the estimated correlations (first and second series) obtained from a CCC model

with errors following Student-t7 distributions from 1000 simulated series of size n that include outliers of

different magnitudes.

Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.3076 0.0052 3 ALOSs 1000 -0.3105 0.0147

ωωω = 5σσσy 3000 -0.3069 0.0029 ωωω = 5σσσy 3000 -0.3082 0.0072

5000 -0.3061 0.0013 5000 -0.3069 0.0039

1 ALO 1000 -0.3093 0.0108 3 ALOs 1000 -0.3123 0.0206

ωωω = 10σσσy 3000 -0.3066 0.0020 ωωω = 10σσσy 3000 -0.3153 0.0304

5000 -0.3078 0.0069 5000 -0.3121 0.0210

Patch of 1000 -0.3078 0.0058 1 AVO 1000 -0.2934 -0.0411

3 ALOs 3000 -0.3065 0.0018 ωωω = 25σσσy 3000 -0.3003 -0.0186

ωωω = 5σσσy 5000 -0.3061 0.0012 5000 -0.3013 -0.0144

Patch of 1000 -0.3156 0.0314 1 AVO 1000 -0.2713 -0.1134

3 ALOs 3000 -0.3096 0.0117 ωωω = 50σσσy 3000 -0.2922 -0.0451

ωωω = 10σσσy 5000 -0.3079 0.0071 5000 -0.2962 -0.0311

No outliers 1000 -0.3060

3000 -0.3060

5000 -0.3057
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Figure D: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include ALOs

of different magnitudes.
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Figure E: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include

patches of different magnitudes.
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Figure F: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include 1 AVO

of different magnitudes.
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A class of goodness-of-fit tests for circular

distributions based on trigonometric moments
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Abstract

We propose a class of goodness–of–fit test procedures for arbitrary parametric families of circular

distributions with unknown parameters. The tests make use of the specific form of the character-

istic function of the family being tested, and are shown to be consistent. We derive the asymptotic

null distribution and suggest that the new method be implemented using a bootstrap resampling

technique that approximates this distribution consistently. As an illustration, we then specialize

this method to testing whether a given data set is from the von Mises distribution, a model that

is commonly used and for which considerable theory has been developed. An extensive Monte

Carlo study is carried out to compare the new tests with other existing omnibus tests for this model.

An application involving five real data sets is provided in order to illustrate the new procedure.

MSC: 62H15, 62G20.

Keywords: Goodness-of-fit, Circular data, Empirical characteristic function, Maximum likelihood

estimation, von Mises distribution.

1 Introduction

Let Θ be an arbitrary circular random variable with cumulative distribution function

(CDF) F . Then on the basis of independent and identically distributed (i.i.d.) copies

ϑ1, . . . ,ϑn of Θ we are interested in testing goodness–of–fit (GOF) of the composite null

hypothesis,

H0 : F ∈ F
βββ

(1)

against general alternatives, where F
βββ
= {F(·;βββ), βββ ∈ B} denotes a parametric family

of CDFs indexed by the parameter βββ ∈ B ⊂ R
p.
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A well-known class of GOF tests that have been discussed in the literature, is ob-

tained by comparing a nonparametric estimator of the CDF of Θ with the corresponding

parametric estimator of the same quantity reflecting the null hypothesis. To this end,

denote by ̂βββ a consistent estimator of the parameter βββ, and write F(·;̂βββ) for the CDF

corresponding to (1) with estimated parameter. Also let

Fn(x) =
#{ j : ϑ′

js ≤ x}

n
,

be the empirical CDF. Then, based on a distance function ∆, the CDF–based test statis-

tics may be formulated as

∆n := ∆(Fn(·),F(·;̂βββ)), (2)

and rejects the null hypothesis H0 stated in (1) for large values of ∆n. The specific type

of distance ∆n adopted in (2) leads to different GOF methods, chief among these are the

Kuiper (1960) and the Watson (1961) tests, which are a variation of the Kolmogorov–

Smirnov and the Cramér–von Mises tests, respectively. Note that both tests are appro-

priately adapted from the case of testing a distribution on the real line to the case of

testing for circular distributions; see e.g. Jammalamadaka and SenGupta (2001) §7.2.1.

In this paper we suggest a new class of GOF tests which is based on the charac-

teristic function (CF) of circular distributions. Such CF-based GOF tests for distribu-

tions on the real-line have proved to be more convenient, and compete well with cor-

responding methods based on the CDF; see for instance the normality test proposed

by Epps and Pulley (1983), the test for the Cauchy distribution of Gürtler and Henze

(2000), and the tests for the stable distribution suggested by Matsui and Takemura (2008),

and Meintanis (2005).

The remainder of the paper is organized as follows. In Section 2 we introduce the

new GOF procedure for circular distributions and prove consistency of the correspond-

ing test criteria. In Section 3 we derive the limit distribution of the test statistic under the

null hypothesis. Given the highly non–trivial structure of this distribution, we investi-

gate in Section 4 the consistency of an appropriate resampling version of our method. In

Section 5 the particular case of testing for the von Mises distribution is studied in detail.

The finite–sample properties of the test are illustrated by means of a Monte Carlo study

in Section 6, while Section 7 provides an application. Section 8 includes a brief sum-

mary and discussion. The paper contains a Supplement that includes the necessary R

scripts for the benefit of potential users. Technical assumptions and proofs are deferred

to the Appendix.

2 Tests based on the characteristic function

In a somewhat similar spirit with the Kuiper and Watson tests that use a distance between

CDFs, we propose to use a distance between CFs instead of the CDFs. To this end, write



S. Rao Jammalamadaka, M. Dolores Jiménez-Gamero and Simos G. Meintanis 319

ϕ(r) = E(eirΘ), r ∈ R, for the CF of Θ and define the empirical CF corresponding to

ϑ1, . . . ,ϑn, as

ϕn(r) =
1

n

n
∑

j=1

eirϑ j , (i =
√
−1). (3)

Also write ϕ(·;βββ) := ℜϕ(r;βββ)+ iℑϕ(r;βββ) for the CF under the null hypothesis, where

ℜ(z) (resp. ℑ(z)) denotes the real (resp. imaginary) part of a complex number. In this

paper we consider CF–based test statistics in the form ∆ (ϕn(·), ϕ(·;̂βββ)). As before,

rejection is for large values of the test statistic.

Specifically we consider a Cramér–von Mises type distance. However, since for cir-

cular distributions the CF needs to be evaluated only at integer values (Jammalamadaka

and SenGupta, 2001, §2.2), and taking into account further the symmetry property of

the CF and the empirical CF, our test statistic can be formulated as

Cn,p = n

∞
∑

r=0

∣

∣

∣
ϕn(r)−ϕ(r;̂βββ)

∣

∣

∣

2

p(r), (4)

where p(·) denotes a probability function over the non–negative integers.

By straightforward algebra we have from (4)

Cn,p = n

∞
∑

r=0

{

Rn(r;̂βββ)+ In(r;̂βββ)
}

p(r),

with

Rn(r;̂βββ) =







1

n

n
∑

j=1

cos(rϑ j)−ℜϕ(r;̂βββ)







2

and

In(r;̂βββ) =







1

n

n
∑

j=1

sin(rϑ j)−ℑϕ(r;̂βββ)







2

.

Because of the one–to–one correspondence between CFs and CDFs, it readily follows

that the test based on Cn,p is consistent against any fixed alternative to H0 provided that

p(r)> 0, ∀ r ≥ 0. (5)

To see this, assume that the estimator ̂βββ of βββ has a strong probability limit, say βββ0,

even under alternatives, and that ϕ(r;βββ) is continuous as a function of βββ. Then since
∣

∣

∣
ϕn(r)−ϕ(r;̂βββ)

∣

∣

∣

2

≤ 4, we have from (4),
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Cn,p

n
−→

∞
∑

r=0

∣

∣

∣
ϕ(r)−ϕ(r;βββ0)

∣

∣

∣

2

p(r) a.s. as n → ∞, (6)

due to the strong consistency of the empirical CF (see Csörgő, 1981 and Marcus, 1981),

and by invoking Lebesgue’s dominated convergence theorem. In view of the uniqueness

of the CF, the right–hand side of (6) is positive, unless F(·) = F(·;βββ0), which shows the

strong consistency of the test that rejects the null hypothesis H0 for large values of Cn,p

since, from Theorem 1 in next Section, Cn,p is bounded in probability.

In the next section we investigate the large–sample behavior of Cn,p under the null

hypothesis. From now on, it will be assumed that (5) holds.

3 The limit null distribution of the CF test statistic

Let ℓ2
p denote the (separable) Hilbert space of all infinite sequences z = (z0,z1, . . .) of

complex numbers such that
∑

r≥0 |zr|
2 p(r)< ∞, with the inner product defined as

〈z,w〉ℓ2
p
=
∑

r≥0

zrw̄r p(r),

for z = (z0,z1, . . .), w = (w0,w1, . . .) ∈ ℓ2
p, where for any complex number x = a+ ib,

x̄ = a− ib stands for its complex conjugate. Let also ‖ · ‖ℓ2
p

denote the norm in this

space. With this notation our test statistic may be written as,

Cn,p = ‖Zn‖
2
ℓ2

p
, (7)

where Zn(r) =
√

n{ϕn(r)−ϕ(r;̂βββ)}.

Also let βββ = (β1, . . . ,βp)
⊤ and write

∇ℜϕ(r;βββ) =

(

∂

∂β1

ℜϕ(r;βββ), . . . ,
∂

∂βp

ℜϕ(r;βββ)

)⊤

,

∇ℑϕ(r;βββ) =

(

∂

∂β1

ℑϕ(r;βββ), . . . ,
∂

∂βp

ℑϕ(r;βββ)

)⊤

.

Next theorem shows convergence in distribution of Zn(·) under Assumptions A, B and

C stated in the Appendix.

Theorem 1 Assume that ϑ1, . . . ,ϑn, are i.i.d. copies of Θ and that Assumptions A, B

and C are fulfilled. Then, under the null hypothesis H0, there is a centred Gaussian

random element Z(·) of ℓ2
p having covariance kernel

K(r,s) = E{ϒ(r,Θ;βββ)ϒ(s,Θ;βββ)},
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such that

Zn
L
−→ Z, as n → ∞,

where

ϒ(r,Θ;βββ) = cos(rΘ)−ℜϕ(r;βββ)−∇ℜϕ(r;βββ)⊤L(Θ;βββ)

+ i
{

sin(rΘ)−ℑϕ(r;βββ)−∇ℑϕ(r;βββ)⊤L(Θ;βββ)
}

,

with L(Θ;βββ) defined in Assumption A.

In view of (7), the asymptotic null distribution of Cn,p stated in next corollary is an

immediate consequence of Theorem 1 and the Continuous Mapping Theorem.

Corollary 1 Suppose that assumptions in Theorem 1 hold, then

Cn,p
L
−→ ‖Z‖2

ℓ2
p
,

where Z(·) is the Gaussian random element appearing in Theorem 1.

Remark 1 The distribution of ‖Z‖2
ℓ2

p
is the same as that of

∑

∞

j=1λ jN
2
j , where λ1,λ2, . . .

are the positive eigenvalues of the integral operator f 7→ A f on ℓ2
p associated with the

kernel K(·, ·) given in Theorem 1, i.e., (A f )(r)=
∑

s≥0K(r,s) f (s)p(s), and N1,N2, . . .

are i.i.d. standard normal random variables. In general, the calculation of those eigen-

values is a very difficult task.

Remark 2 Assumptions A, B and C in Theorem 1 are quite standard in the context of

GOF testing. Specifically Assumption A refers to an asymptotic (Bahadur) representa-

tion of a given estimator of the parameter βββ and is satisfied by common estimators such

as maximum likelihood and moment estimators. Assumptions B and C imply smoothness

of the CF as a function of βββ.

Since our assumptions are relatively weak, our CF approach is quite general and may

be applied for testing GOF for a wide spectrum of circular distributions. In Section 5

we will specialize to a CF–based GOF test for the von–Mises distribution, which is as

popular for circular data as the Gaussian distribution is for linear data.

4 The parametric bootstrap

As pointed out in Remark 1, the asymptotic null distribution of the test statistic Cn,p is

complicated and depends on several unknown quantities in a highly complicated man-

ner. There exists no feasible approximation of the distribution in Theorem 1 which will

allow us to actually carry out the test. We study here a resampling method labelled
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“parametric bootstrap”, which is a computer–assisted automatic procedure for perform-

ing this task. The parametric bootstrap estimates the null distribution of the test statistic

Cn,p by means of its conditional distribution, given the data, when the data come from

F(·;̂βββ). Although the exact bootstrap estimator is still difficult to derive, it can be ap-

proximated as outlined below within the (fairly general) setting considered in Section

3. Specifically, write for simplicity Co
n,p :=Cn,p(ϑ1, . . . ,ϑn;̂βββ) for the test statistic based

on the original observations. Then parametric bootstrap critical points are calculated in

practice as follows:

(i) Generate i.i.d. observations, {ϑ∗
j ,1 ≤ j ≤ n} from F(·;̂βββ).

(ii) Using the bootstrap observations {ϑ∗
j ,1 ≤ j ≤ n}, obtain the bootstrap estimate ̂βββ

∗

of βββ.

(iii) Calculate the bootstrap test statistic, say C∗
n,p :=Cn,p(ϑ

∗
1, . . . ,ϑ

∗
n;̂βββ

∗
).

(iv) Repeat steps (i) to (iii) a number of times, say B, and obtain {C∗b
n,p}

B
b=1.

(v) Calculate the critical point of a test of size α as the order (1−α) empirical quantile

C1−α of {C∗b
n,p}

B
b=1.

In next theorem we show that, under Assumptions A∗, B∗ and C stated in the Ap-

pendix, this procedure provides a consistent estimator of the null distribution of the test

statistic. With this aim, as in Section 2, we will assume that the estimator of ̂βββ has a

strong probability limit, say βββ0, even under alternatives. Let P
β

denote the probability

by assuming that the data come from F(·;βββ) and let P⋆ denote the bootstrap probability.

Theorem 2 Assume that ϑ1, . . . ,ϑn, are i.i.d. copies of Θ and that Assumptions A∗, B∗

and C are fulfilled. Then,

sup
x

∣

∣

∣
P∗(C

∗
n,p ≤ x)−P

βββ
0(Cn,p ≤ x)

∣

∣

∣
→ 0 a.s., as n → ∞.

Theorem 2 holds whether the null hypothesis is true or not. In particular, if H0 is

true, then it states that the bootstrap distribution and the null distribution of Cn,p are

close. Thus the test Ψ
∗, which rejects the null when Co

n,p > C1−α, is asymptotically

correct in the sense that limn→∞ P(Ψ∗ = 1) = α, when the null hypothesis is true. Also

an immediate consequence of (6) and Theorem 2 is that the test Ψ
∗ is consistent, that is

P(Ψ∗ = 1)→ 1, as n → ∞, whenever F /∈ F
βββ

.
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5 Tests for the von Mises distribution

5.1 Goodness-of-fit tests

For data distributed over the unit circle, the von Mises distribution (vMD), also called

the Circular Normal distribution, is the pre-eminent model in circular data analysis when

one has reason to believe the data might be symmetric and unimodal, much as the Nor-

mal distribution is on the real line. Sampling theory and inferential methods have been

developed for this model, and as such it is a natural choice for our consideration. The

density of the vMD with parameter vector βββ := (µ,κ) is given by

f (ϑ;µ,κ) =
1

2πI0(κ)
eκcos(ϑ−µ), 0 ≤ ϑ< 2π, (8)

where Ir(·) denotes the modified Bessel function of the first kind of order r, and 0 ≤

µ< 2π and κ≥ 0 are location and concentration parameters, respectively.

Our CF–based test utilizes the CF corresponding to (8) which is given by

ϕ(r;µ,κ) = eirµAr(κ), r ∈ Z, (9)

where Ar(κ) = Ir(κ)/I0(κ).

Specifically the test statistic figuring in (4) may readily be written as

Cn,p = n

∞
∑

r=0

|ϕ̂n(r)−ϕ(r;0, κ̂)|2 p(r) = S1 +S2 −2S3, (10)

with ϕ̂n(r) the empirical CF of ̂ϑ1, . . . , ̂ϑn,

S1 =
1

n

n
∑

j,k=1

E1(̂ϑ j − ̂ϑk), (11)

S2 = nE2(κ̂), (12)

and

S3 =
n
∑

j=1

E3(̂ϑ j; κ̂), (13)

where (µ̂, κ̂) is a consistent estimator of the parameter (µ,κ), and ̂ϑ j = ϑ j − µ̂, j =

1, . . . ,n. The series appearing in (11)-(13) are defined as

E1(θ) =
∞
∑

r=0

cos(θr)p(r),
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E2(κ) =
∞
∑

r=0

A2
r (κ)p(r),

and

E3(θ;κ) =
∞
∑

r=0

cos(θr)Ar(κ)p(r).

To proceed further note that all three series above may be viewed as expectations of

corresponding quantities taken with respect to the law p(r), and while these expectations

are generally hard to obtain, they may be approximated by Monte Carlo by means of

simulating i.i.d. variates from the law p(r). In fact certain choices of p(r) lead to closed

form expressions, at least for the expectation in (11). Specifically if we let p(r) be the

Poisson law with parameter λ, we have

E1(θ) = cos(λsinθ)eλ(cosθ−1).

As for the calculation of S2 and S3 and since the corresponding series appearing in (12)-

(13) converge rapidly, instead of Monte Carlo, we decided to approximate them by direct

numerical computation of only a few terms. We have observed through simulations that

summing up to r = 100 gives very accurate results. Strictly speaking this cut–off test is

not universally consistent, but the practical effect on the power is negligible.

5.2 Estimation of parameters and a limit statistic

As for estimating parameters, we suggest the use of the maximum likelihood estimator

(MLE) ̂βββ := (µ̂, κ̂) which is given by the following equations:

1

n

n
∑

j=1

sin(ϑ j − µ̂) = 0,
1

n

n
∑

j=1

cos(ϑ j − µ̂) = A1(κ̂). (14)

It is well known that the MLE µ̂ of µ satisfies µ̂(ϑ1+a, . . . ,ϑn +a) = µ̂(ϑ1, . . . ,ϑn)+a,

while the MLE κ̂ of κ satisfies κ̂(ϑ1 +a, . . . ,ϑn +a) = κ̂(ϑ1, . . . ,ϑn), for each a, where

the operations of addition in these equations are to be treated mod(2π) for circular data.

Thus if one uses, instead of the original data ϑ1, . . . ,ϑn, the centered data ̂ϑ j = ϑ j −

µ̂, j = 1, . . . ,n, then the distribution of any test statistic that depends on µ̂ via ̂ϑ j, j =
1, . . . ,n, will not depend on the specific parameter–value of µ, and hence without loss of

generality we can set µ= 0. On the other hand, since the concentration parameter κ is

a shape parameter, it cannot be standardized out. Consequently the distribution of such

a test always depends on the value of this parameter. One way out is to use the limit

null distribution for fixed κ along with a look–up table with a sufficiently dense grid on

κ. This approach is suggested in Lockhart and Stephens (1985), and is fairly accurate

for most of the parameter space if based on the MLE of κ, but as already mentioned in
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Section 4 we will instead use the parametric bootstrap which consistently estimates the

limit null distribution of any given test uniformly over κ.

We close this section with an interesting limit statistic resulting from Cn,p appearing

in (10). To this end notice that since ϕn(0) = ϕ(0) = 1, the first term in Cn,p vanishes

regardless of the distribution being tested, while the second term also vanishes on ac-

count of (14) since we employ the MLEs as estimators of µ and κ. Now write Cn,λ for

the criterion in (10) with p(r) being the Poisson probability function, with parameter λ.

Then we have

Cn,λ = e−λ

(

|ϕ̂n(2)−A2(κ̂)|
2 λ

2

2
+o(λ2)

)

, λ→ 0,

so that

lim
λ→0

2Cn,λ

λ2
= |ϕ̂n(2)−A2(κ̂)|

2
:=Cn,0. (15)

Notice that the limit statistic Cn,0 only uses information on the CF of the underlying law

as this is information is reflected on the corresponding empirical trigonometric moment

of order r = 2.

On the other hand the test statistic Cn,λ (and more generally Cn,p) uses an infinite

weighted sum in which the empirical trigonometric moments of all integer orders r ≥ 0

are accounted for. Thus the probability function p(r) plays the role of a weight function

that typically downweights the higher order terms which are known to be more prone to

the periodic behavior intrinsically present in the empirical CF. A natural related question

is whether there is some optimal choice for the probability function p(·). As asserted by

Bugni et al. (2009) in a related context, the weight function cannot be selected empiri-

cally as this would require knowing how the true data-generation process differs from

the parametric model. In this connection, and using the analogy with the choice of ker-

nel in density estimation, prior experience has shown that the specific functional form of

p(·) is not all that important. Carrying this analogy further, one suspects that the value

of λ might have some sway over the results. Proper choice of λ however translates to

a highly non–trivial analytic problem for which there are only a few results available in

the literature; see Tenreiro (2009) and Meynaoui et al. (2019). This option is empirically

investigated in the next section.

6 Finite-sample comparisons and simulations

This section summarizes the results of a simulation study, designed to evaluate the pro-

posed GOF test for the vMD, and compare its performance with other existing tests. As

competitors we include the Kuiper test and the Watson test for which there exist com-

putationally convenient formulae; see for instance Section 7.2.1 of Jammalamadaka and

SenGupta (2001). Specifically let U j = F(ϑ j; µ̂, κ̂) and write U( j), j = 1, . . . ,n, for the
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corresponding order statistics. Then we have

K = max
1≤ j≤n

{

U( j)−
j−1

n

}

+ max
1≤ j≤n

{

j

n
−U( j)

}

.

W =
1

12n
+

n
∑

j=1

((

U( j)−
2 j−1

2n

)

−

(

U −
1

2

))2

,

where U = n−1
∑n

j=1U j.

We also include a test statistic based on the characterization of maximum entropy

of the vMD suggested by Lund and Jammalamadaka (2000), denoted by E. These three

criteria will be included in our Monte Carlo study. For our test statistic we took as p(r)

the probability function of a Poisson law with mean λ. This test is indexed by λ, and will

be denoted by C
λ
. We note that there exist alternative tests such as the conditional tests

suggested by Lockhart (2012) (Lockhart, O’Reilly and Stephens, 2007, 2009), which

we do not consider in our simulation study.

The simulated distributions are (i) the vMD, vM(0,κ), (ii) mixtures of vMDs, (1−
ǫ)vM(µ1,κ1)+ ǫ vM(µ2,κ2), ǫ ∈ (0,1), (iii) the generalized vMD, GvM(µ1,µ2,κ1,κ2),

with probability density function given by

f (θ;µ1,µ2,κ1,κ2) =
1

2πG0(µ1 −µ2,κ1,κ2)
exp{κ1 cos(θ−µ1)+κ2 cos(θ−µ2)},

where G0(δ,κ1,κ2)= (1/2π)
∫ 2π

0 exp{κ1 cos(θ)+κ2 cos(θ+δ)}dθ, (see Gatto and Jam-

malamadaka, 2007) and (iv) the wrapped normal distribution, wn(µ,ρ), with probability

density function given by

f (θ;µ,ρ) =
1

2π

(

1+2

∞
∑

m=−∞

ρp2
cos{p(θ−µ)}

)

,

(Jammalamadaka and SenGupta, 2001, Ch. 2). Table 1 displays the specific alterna-

tives (ii) and (iii), while the densities of such alternatives jointly with the density of

the closer vMD (in the sense that the parameters are chosen so that they minimize the

Kullback-Leibler distance), are depicted in Figure 1. These alternatives exhibit either

bimodality and/or asymmetry and/or heavier tails than the vMD. We also considered

several instances of the family of wrapped normal distributions, which are known to

possess densities that are quite close to those of the vMD. This fact can be graphically

appreciated by looking at Figure 2, which displays the probability density function of

a wn(0,ρ) law for ρ = 0.1(0.1)0.9, together with the density of the closer vMD distri-

bution (in the sense explained before). Looking at this figure it becomes evident that it

is rather hard to discriminate between these distributions and the vMD, particularly for

small and large values of ρ.
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Table 1: Alternatives (ii) and (iii).

Alternative 1 0.9vM(π,5)+0.1vM(π/2,5)

Alternative 2 0.8vM(π,5)+0.2vM(π/2,5)

Alternative 3 0.65vM(π,5)+0.35vM(π/2,5)

Alternative 4 0.5vM(π,5)+0.5vM(π/2,5)

Alternative 5 (2/3)vM(π,3)+(1/3)vM(0.62π,3)

Alternative 6 (1/3)vM(π,8)+(2/3)vM(π,0.1)

Alternative 7 GvM(0,0.5,1,0.6)

Alternative 8 GvM(0,0.5,1,0.2)
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Figure 1: Probability density function of alternatives in Table 1 (solid) and the probability density function

of the closer vMD (dashed).

All computations were performed using programs written in the R language. Specif-

ically, we used the package CircStats for generating data from a vMD, and from mix-

tures of vMDs, and in order to calculate the MLEs of the parameters. Data from the

generalized vMD were generated by the acceptance-rejection algorithm of von Neu-

mann suggested in Gatto (2008). In all cases the p–values were approximated by using

the parametric bootstrap algorithm given in Section 4 with B = 1000. For the benefit of

potential users, we include the R codes necessary for calculating the new test statistics,

in a Supplement.

We tried a wide range of values for λ and observed that the power of the proposed test

depends on the value of λ. Tables 2 and 3 report the results for those values of λ giving

the greater, or closer to the greater power, in all tried alternatives. Table 2 displays the

observed proportion of rejections in 1,000 Monte Carlo samples of size n = 25 under

the null hypothesis and for the set of alternatives in Table 1. We also tried n = 50 and

n = 100 yielding a quite similar picture (in the sense of comparison between tests, but
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Figure 2: Probability density function of a wn(0,ρ) law for ρ = 0.1(0.1)0.9 (solid), and the probability

density function of the closer vMD (dashed).

Table 2: Observed proportion of rejection in 1,000 Monte Carlo samples of size n = 25.

Law α E K W C0.3 C0.5 C0.7 C0.9 C1

vM(0,1) 0.05 0.053 0.047 0.044 0.062 0.059 0.059 0.061 0.059

0.10 0.105 0.093 0.089 0.115 0.117 0.117 0.122 0.122

vM(0,5) 0.05 0.054 0.048 0.047 0.033 0.032 0.036 0.040 0.043

0.10 0.106 0.099 0.095 0.086 0.090 0.092 0.091 0.092

vM(0,10) 0.05 0.051 0.046 0.046 0.039 0.042 0.042 0.042 0.043

0.10 0.103 0.090 0.092 0.093 0.096 0.095 0.095 0.098

Alt. 1 0.05 0.171 0.150 0.166 0.311 0.310 0.304 0.309 0.307

0.10 0.267 0.235 0.272 0.450 0.451 0.445 0.443 0.437

Alt. 2 0.05 0.114 0.255 0.337 0.459 0.478 0.482 0.487 0.487

0.10 0.197 0.422 0.470 0.631 0.634 0.645 0.635 0.627

Alt. 3 0.05 0.048 0.411 0.477 0.550 0.570 0.589 0.596 0.600

0.10 0.097 0.547 0.620 0.720 0.737 0.747 0.749 0.742

Alt. 4 0.05 0.036 0.500 0.541 0.559 0.583 0.604 0.617 0.623

0.10 0.059 0.627 0.688 0.719 0.739 0.741 0.750 0.751

Alt. 5 0.05 0.019 0.092 0.090 0.079 0.084 0.090 0.094 0.097

0.10 0.056 0.151 0.163 0.176 0.184 0.195 0.209 0.211

Alt. 6 0.05 0.139 0.244 0.259 0.249 0.252 0.262 0.274 0.279

0.10 0.243 0.358 0.397 0.379 0.390 0.397 0.410 0.409

Alt. 7 0.05 0.059 0.253 0.318 0.646 0.631 0.608 0.594 0.581

0.10 0.102 0.381 0.465 0.774 0.757 0.737 0.721 0.713

Alt. 8 0.05 0.003 0.131 0.154 0.130 0.153 0.176 0.192 0.198

0.10 0.007 0.212 0.244 0.267 0.305 0.320 0.329 0.337
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Table 3: Observed proportion of rejection in 1,000 Monte Carlo samples of size n from a wn(0,ρ) law.

n ρ α E K W C0.3 C0.5 C0.7 C0.9 C1

50 0.3 0.05 0.060 0.052 0.059 0.081 0.081 0.078 0.072 0.072

0.10 0.116 0.116 0.113 0.131 0.131 0.131 0.129 0.132

0.4 0.05 0.053 0.053 0.053 0.072 0.072 0.073 0.070 0.069

0.10 0.096 0.103 0.103 0.140 0.139 0.136 0.133 0.131

0.5 0.05 0.041 0.072 0.072 0.099 0.096 0.096 0.097 0.095

0.10 0.084 0.139 0.130 0.182 0.179 0.174 0.174 0.172

0.6 0.05 0.035 0.069 0.072 0.089 0.091 0.087 0.090 0.088

0.10 0.062 0.142 0.149 0.184 0.182 0.182 0.184 0.183

0.7 0.05 0.019 0.079 0.092 0.098 0.098 0.098 0.103 0.103

0.10 0.046 0.139 0.157 0.182 0.187 0.192 0.195 0.191

100 0.3 0.05 0.048 0.057 0.055 0.074 0.072 0.071 0.070 0.067

0.10 0.092 0.114 0.109 0.144 0.143 0.140 0.138 0.139

0.4 0.05 0.052 0.097 0.092 0.125 0.123 0.123 0.123 0.123

0.10 0.102 0.149 0.175 0.212 0.210 0.211 0.208 0.203

0.5 0.05 0.031 0.095 0.107 0.171 0.168 0.162 0.159 0.158

0.10 0.067 0.162 0.194 0.272 0.269 0.264 0.262 0.261

0.6 0.05 0.030 0.106 0.122 0.203 0.196 0.185 0.176 0.173

0.10 0.049 0.185 0.195 0.316 0.310 0.302 0.283 0.279

0.7 0.05 0.021 0.117 0.108 0.162 0.159 0.157 0.153 0.153

0.10 0.040 0.190 0.193 0.285 0.284 0.275 0.262 0.254

with greater powers as the sample size increases), and therefore we omit those results.

By contrast, and since the power for n = 25 is quite low we opted to present results

for larger sample size for wrapped normal alternatives. Specifically Table 3 presents

the results for wrapped normal alternatives for sample size n = 50 and n = 100, and

ρ= 0.3(0.1)0.7.

Regarding level, we conclude that the observed empirical rejection rates are reason-

ably close to the nominal values. In fact, for larger sample sizes (not displayed), we

observed greater closeness. As for power, we observe that the power of the proposed

test is comparable and most often greater than that of the tests based on the empirical

CDF. On the other hand, the test based on the characterization of maximum entropy

presents the poorest performance under the considered alternatives.

A natural question is which value of λ should be used in practical applications. Al-

though the powers exhibited in the tables are quite close for the values of λ selected,

it seems that C0.5 has an intermediate behaviour in all tried cases, so we recommend

λ= 0.5 as a compromise choice.
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Another possibility is to choose λ by using some data-dependent method (see Cu-

parić, Milosević and Obradović, 2019, for a related approach). In this sense, Tenreiro

(2019) has proposed a method for choosing the tuning parameter λ so that the power

is maximized. It works as follows. Let Cn,λ(α) denote the upper α percentile of the

null distribution of Cn,λ =Cn,λ(ϑ1, . . . ,ϑn). Assume that λ ∈ Λ, with Λ having a finite

number of points. Then, reject H0 if

max
λ∈Λ

{Cn,λ−Cn,λ(u)}> 0,

where u is chosen so that the test has level α. The key point is the way to determine u.

In the context discussed in Tenreiro (2019), it is assumed that the exact null distribution

of the test statistic can be calculated (or at least it can be approximated by simulation).

Since this is not our case, we have adapted his procedure to calculate u to our setting as

follows:

1. First, we must approximate the critical points Cn,λ(u), u ∈ (0,1), λ ∈ Λ. With

this aim, we generate B1 bootstrap samples and estimate Cn,λ(u) by means of

their bootstrap analogues, C∗
1,n,λ(u), for u ∈ {1/B1,2/B1, . . . ,(B1−1)/B1} :=UB1

,

λ ∈ Λ.

2. Then, we must calibrate u so that the test has level α. For this purpose, we gen-

erate B2 bootstrap samples, independently of those generated in the first step, and

determine u∗ ∈UB2
such that

P∗

(

max
λ∈Λ

{C∗
n,λ−C∗

1,n,λ(u
∗)}> 0,

)

≤ α.

3. Finally,

reject H0 if max
λ∈Λ

{Cn,λ−C∗
1,n,λ(u

∗)}> 0. (16)

In addition to the determination of u, another delicate issue is the choice of the set Λ,

which has a strong effect on the power of the resulting test. In order to study the practical

behaviour of test (16), we repeated the experiment in Table 2 for Λ = Λ1 and Λ = Λ2,

with Λ1 = {0.1,0.3,0.5,0.7,0.9,1,2,3,4,5,7,10} and Λ2 = {0.3,0.5,0.7,0.9,1,2}, and

B1 = B2 = 1000. Table 4 display the results obtained. Comparing the powers in that

table with those in Table 2 we conclude that as Λ increases, the power of the test (16)

decreases. This fact was also observed in the simulations in Tenreiro (2019). The power

for Λ = Λ2 is in most cases smaller than that obtained for λ= 0.5.

Table 4: Observed proportion of rejection in 1,000 Monte Carlo samples of size n = 25, for α= 0.05.

Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8

Λ1 0.200 0.327 0.426 0.442 0.050 0.213 0.458 0.103

Λ2 0.280 0.439 0.549 0.563 0.077 0.280 0.562 0.156
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Figure 3: Rose diagrams for the five real data sets.

7 Real-data application

This section illustrates the proposed test on five real data sets. They come from a study

by Taylor and Burns (2016) on the radial orientation of 2 species of mistletoes and 3

species of epiphytes, which the ecologists believe orient towards the direction of the

availability of light and humidity. Specifically, Data Set 1 consists of n = 67 obser-

vations on Peraxilla colensoi, Data Set 2 consists of n = 70 observations on Peraxilla

tetrapetala, Data Set 3 consists of n= 65 observations on Asplenium flaccidum, Data Set

4 consists of n = 182 observations on Hymenophyllum multifidum, and Data Set 5 con-

sists of n = 263 observations on Notogrammitis billardierei. Taylor and Burns (2016)

tested for uniformity in the five data sets and in all cases such hypothesis was rejected,

indicating that the distribution of each of the studied species have certain orientation, as

can be easily appreciated by looking at Figure 3, which displays the rose diagrams for

each data set. So, it would be interesting to check if the data follow some distribution,

such as the vMD. In fact, Taylor and Burns (2016) calculated certain confidence inter-

vals based on the vMD. Table 5 reports the values of the maximum likelihood estimates

by assuming a vMD, as well as the p-values for testing goodness-of-fit to that distri-
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Table 5: Maximum likelihood estimators of the parameters and p-values for the real data sets.

µ̂ κ̂ K W C0.5

1 2.5551 0.7700 0.5335 0.6410 0.4710

2 5.7677 0.8447 0.1505 0.2815 0.7555

3 2.8226 1.1120 0.0080 0.0050 0.0265

4 3.0454 1.2589 0.0080 0.0050 0.0220

5 2.5551 0.7699 0.8310 0.0060 0.0050

bution that resulted by applying the tests K, W and C0.5. These three test criteria lean

towards the null hypothesis for Data Set 1 and Data Set 2, and all of them suggest that

the vMD is not a good model for Data Set 3 and Data Set 4. For Data Set 5, the tests

W and C0.5 reject that the vMD provides an adequate description of the data, while test

K concludes in the opposite direction. From the power results in our simulations, we

deduce that the vMD does not provide a satisfactory fit to Data Set 5.

8 Discussion

We suggest here a general class of GOF tests for circular distributions. The proposed

test statistic may conveniently be expressed as a weighted L2–type distance between

the empirical trigonometric moments and the corresponding theoretical quantities, and

is shown to compete well with classical tests based on the CDF. Our method imposes

minimal technical conditions is widely applicable for arbitrary distributions under test.

Here however we focus specifically on GOF testing for the vMD because it is one of

the most commonly used distributions in practice, and one would like to verify if this

model fits a given data set before utilizing the various parametric tools that have been

developed for this particular model.

A Appendix

All limits are understood to be taken as n → ∞.

A.1 Technical assumptions

ASSUMPTION A. Under H0, if βββ ∈ B denotes the true parameter value, then

√
n
(

̂βββ−βββ
)

=
1
√

n

n
∑

i=1

L(ϑ j;βββ)+oP(1),

with E{L(Θ;βββ)}= 0 and J(βββ) = E{L(Θ;βββ)L(Θ;βββ)⊤}< ∞.
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ASSUMPTION B. ∂

∂βββk
ℜϕ(r;βββ) and ∂

∂βββk
ℑϕ(r;βββ), exist ∀r ∈ N0 and 1 ≤ k ≤ p, and

satisfy

∑

r≥0

∂

∂βββk

ℜϕ(r;βββ)2 p(r)< ∞,

∑

r≥0

∂

∂βββk

ℑϕ(r;βββ)2 p(r)< ∞.

Let ‖ · ‖ stand for the Euclidean norm.

ASSUMPTION C. For any ε > 0 there is a bounded neighborhood Nε ⊆ R
p of βββ, such

that if γγγ ∈ Nε then ∇ℜϕ(r;γγγ) and ∇ℑϕ(r;γγγ) exist and satisfy

‖∇ℜϕ(r;γγγ)−∇ℜϕ(r;βββ)‖ ≤ ρℜ(r), ∀r ∈ N0, with
∑

r≥0

ρ2
ℜ
(r)p(r)< ε,

‖∇ℑϕ(r;γγγ)−∇ℑϕ(r;βββ)‖ ≤ ρℑ(r), ∀r ∈ N0, with
∑

r≥0

ρ2
ℑ
(r)p(r)< ε.

Assumptions A∗ and B∗ below are a bit stronger than Assumptions A and B, respec-

tively. They are required for the consistency of the parametric bootstrap null distribution

estimator.

ASSUMPTION A∗. (a) There is a βββ0 ∈ B so that ̂βββ → βββ0, a.s., βββ0 being the true param-

eter value if H0 is true,

(b)

√
n

(

̂βββ
∗
− ̂βββ
)

=
1
√

n

n
∑

i=1

L(ϑ∗
j ;
̂βββ)+oP∗(1),

with E∗{L(Θ∗;̂βββ)}= 0, J(̂βββ) = E∗{L(Θ∗;̂βββ)L(Θ∗;̂βββ)⊤}→ J(βββ0)< ∞, a.s.

(c) sup
βββ∈N0

E
βββ

[

‖L(Θ;βββ)‖2
ℓ2

p
I

{

‖L(Θ;βββ)‖ℓ2
p
> ǫ

√
n

}]

−→ 0, ∀ǫ> 0, where N0 ⊆ B is

an open neighborhood of βββ0, where E
βββ

stands for the expectation when data have CDF

F(x;β).

ASSUMPTION B∗. Assumption B holds true ∀βββ in an open neighborhood of βββ0, where

βββ0 is as defined in Assumption A∗.

A.2 Proofs

Proof of Theorem 1

By Taylor expansion,

ℜϕ(r;̂βββ) = ℜϕ(r;βββ)+∇ℜϕ(r;βββ)⊤(̂βββ−βββ)+g1n(r).
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From Assumptions A and C, it follows that

‖
√

ng1n‖
2
ℓ2

p
= oP(1).

From Assumptions A and B, it follows that

∇ℜϕ(r;βββ)⊤(̂βββ−βββ) = ∇ℜϕ(r;βββ)⊤
1

n

n
∑

j=1

L(ϑ j;βββ)+g2n(r)

with

‖
√

ng2n‖
2
ℓ2

p
= oP(1).

Analogous expansions hold for ℑϕ(r;̂βββ), so that if we let

Z0,n(r) =
1
√

n

n
∑

j=1

ϒ(r,ϑ j;βββ),

these expansions imply that

Zn(r) = Z0,n(r)+g3n(r), (17)

with

‖g3n‖
2
ℓ2

p
= oP(1). (18)

From Assumptions A and B, it follows that E
βββ

{

‖ϒ(·,Θ;βββ)‖2
ℓ2

p

}

< ∞. Therefore, by

applying the Central Limit Theorem in Hilbert spaces (van der Vaart and Wellner, 1996,

p. 50), we get that

Z0,n
L
−→ Z, (19)

and then the result follows from (17)–(19).

Proof of Theorem 2

Let Z∗
n(r) =

√
n{ϕ∗

n(r)−ϕ(r;̂βββ
∗
)}, with ϕ̂∗

n(r) = n−1
∑n

j=1 e
irϑ∗j . Proceeding as in the

proof of Theorem 1, we have that

Z∗
n(r) = Z∗

0,n(r)+g∗n(r),

with Z∗
0,n(r) = n−1/2

∑n
j=1 ϒ(r,ϑ∗

j;
̂βββ),

‖g∗n‖
2
ℓ2

p
= oP∗(1), a.s.
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To prove the result we derive the asymptotic distribution of Z∗
0,n(r), showing that it

coincides with the asymptotic distribution of Cn,p when the data come from F(·;βββ0).

Notice that, for each n, the elements in the set {ϒ(·,ϑ∗
1;̂βββ), . . . ,ϒ(·,ϑ∗

n;̂βββ)} are indepen-

dent and identically distributed random elements taking values in the separable Hilbert

space ℓ2
p, but their common distribution may vary with n. Because of this reason, in

order to derive the asymptotic distribution of Z∗
0,n(r), we apply Theorem 1.1 in Kundu,

Majumdar and Mukherjee (2000). So we will prove that conditions (i)–(iii) in that the-

orem hold. For k ≥ 0, let ek( j) = I(k = j)/
√

p(k). {ek}k≥0 is an orthonormal basis of

ℓ2
p.

Let Cn and Kn denote the covariance operator and the covariance kernel of Z∗
0,n,

respectively. Let C0 and K0 denote the covariance operator and the covariance kernel

of Z0, respectively, where Z0 stands for the random element figuring in Theorem 1 with

βββ = βββ0. Assumptions A∗ and C imply that

〈Cnek,er〉ℓ2
p
=
√

p(k)p(r)Kn(k,r)→
√

p(k)p(r)K0(k,r) = 〈C0ek,er〉ℓ2
p
, a.s.,

Setting akr = 〈C0ek,er〉ℓ2
p

in the aforementioned Theorem 1.1, this proves that condition

(i) holds.

Assumptions A∗, B∗ and C imply that

∑

k≥0

〈Cnek,ek〉ℓ2
p
=
∑

k≥0

Kn(k,k)p(k)→
∑

k≥0

K0(k,k)p(k)= E

{

‖Z0‖
2
ℓ2

p

}

< ∞, a.s.,

and thus condition (ii) holds. Finally, condition (iii) readily follows from Assumption

A∗.
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services: bootstrap simultaneous

confidence region
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Abstract

Public services, such as higher education, medical services, libraries or public administration of-

fices, provide services to their customers. To obtain opinion-satisfaction indices of customers, it

would be necessary to survey all the customers of the service (census), which is impossible. What

is possible is to estimate the indices by surveying a random customer sample. The efficiency ob-

tained with the classic data envelopment analysis models, considering the opinion indices of the

customers of the public service as output data estimated with a user sample, will be an estimation

of the obtained efficiency if the census is available. This paper proposes a bootstrap methodology

to build a confidence region to simultaneously estimate the population data envelopment analysis

efficiency score vector of a set of public service-producing units, with a fixed confidence level and

using deterministic input data and estimated customer opinion indices as output data. The use-

fulness of the result is illustrated by describing a case study comparing the efficiency of libraries.
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1 Introduction

Data envelopment analysis (DEA) is clearly of enormous potential in measuring pub-

lic sector efficiency, particularly in areas where there exists a large number of agen-

cies to compare (see Smith and Mayston, 1987 or chapter 15 of Cooper, Seiford and

Zhu, 2011). In this context, DEA efficiency is usually evaluated using determinist

input/output data. However, the quality of the service delivered by a provider can

therefore have important implications and available results. Bayraktar et al. (2012),

Witte and Geys (2013), Mayston (2015, 2017), Santı́n and Sicilia (2017) and Førsund

(2017) analyse the efficiency of any individual public services producer, where output
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variables can include the quality of the service produced and the said quality is measured

by a consumer satisfaction survey. Tapia, Salvador and Rodrı́guez (2018) study the

relationship between customer sample size and accuracy in estimating the efficiency of

public services. Of course, a public service is more efficient when, with its resources,

it is able to achieve the highest opinion-satisfaction of its users. Customer opinion-

satisfaction surveys are widely used tools to measure the perception of the quality of

the service (Parasuraman, Berry and Zeithaml, 1993), and to obtain outputs and the

DEA efficiency scores (Lee and Kim, 2014). In this paper, using confidence regions,

we estimate the DEA efficiency of a fixed (not random) set of public service-producing

units, i.e., our decision-making units (DMUs). We do so using indices of the service

quality obtained as the mean of the answers given by the sample of surveyed people

in the opinion-satisfaction survey as the data output, and the resources of the services

measured in a deterministic way as the data input. For example, when comparing the

DEA efficiency of all the cinemas in a city, user opinion on the quality of each cinema is

measurable with opinion indices estimated using a survey of the cinemagoers to know

their satisfaction with the location, the staff, the state of the cinema, etc. The number of

seats, screens in the cinema, daily movies on show, or monthly premiering movies are

the resources of the service.

The studies where the DEA efficiency is evaluated in the presence of sampling infor-

mation have had two approaches until now. In the first one, the set of DMUs from which

input/output information is known is considered as a sample of a population of DMUs

and the randomness comes from the DMU sample. In this approach, Banker (1993),

Simar and Wilson (1998, 2000, 2007, 2011, 2013, 2015), Kneip, Park and Simar (1998)

and Kneip, Simar and Wilson (2008), have proved statistical properties of the nonpara-

metric estimators used to estimate the productivity efficiency of DMUs, derived the

asymptotic distribution of DEA estimators and tested hypotheses about the structure of

the underlying nonparametric model.

In the second approach, samples are used to estimate input and/or output data. The

efficiency is evaluated using linear programming (LP) problems subject to constraints

defined in terms of probability, or chance-constrained problems. A great number of pa-

pers have reported a wide range of uses of chance-constrained programming, including:

Charnes and Cooper (1959, 1963), Land, Lovell and Thore (1993), Olesen and Petersen

(1995), Cooper, Huang and Li (1996), Cooper et al. (2002), Huang and Li (2001), Wu

and Olson (2008), Khodabakhshi and Asgharian (2009), Khodabakhshi (2010), Wu and

Lee (2010), Wu (2010) and Tavana, Shiraz and Hatami-Marbini (2014). Charles and Ku-

mar (2014) introduced a chance-constrained model to measure the stochastic efficiency

of the service quality.

In this paper, we assume a fixed set of homogeneous DMUs in terms of the nature

of the operations they perform, the measures of their efficiency, and the conditions un-

der which they operate, as in the classic DEA models (Charnes, Cooper and Rhodes,

1978). The randomness comes solely from the customer sample in each DMU with

which we estimate the output data. However, to evaluate the DEA efficiency with a
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bootstrap confidence region, we do not use chance-constrained programming, only the

classic DEA models with constant (CCR) and variable returns-to-scale (BCC), i.e., LP

problems subject to deterministic constraints.

Using estimated output data with a sample of customers instead of population output

data causes an estimation error to be transferred to the evaluation of the DEA efficiency

(Ceyhan and Benneyan, 2014). The vector of DEA efficiency scores obtained is, there-

fore, an estimation of the vector of the population DEA efficiency scores that would be

obtained if we had the customer population data, i.e., if the output data were obtained

with a customer census in each DMU. In our study, we solve the problem of determining

how many customers need to be surveyed in order to estimate the output data in each

DMU, with a previously fixed estimation error, when estimating the vector of popula-

tion DEA efficiency scores with a bootstrap simultaneous confidence region. With the

same assumptions as in this study, Tapia et al. (2018) obtained the customer sample size

needed in each DMU to estimate the population DEA efficiency with a fixed accuracy

in each DMU; while in this paper, the customer sample size necessary in each public

service-producing unit is determined so that the maximum efficiency estimation error in

the service-producing units will be smaller than a previously fixed value.

Using bootstrap, smooth bootstrap or double-smooth bootstrap methodologies to

evaluate the efficiency of the public sector with confidence intervals is not new (Simar

and Wilson, 1998, 2000, Simar and Zelenyuk, 2006, Kneip, Simar and Wilson, 2011).

For instance, these methodologies have been used to measure the efficiency in health

care (Tsekouras et al., 2010, Chowdhury and Zelenyuk, 2016), universities and research

institutes (Barra and Zotti, 2016), government (Benito, Solana and Moreno, 2014), pub-

lic libraries (Liu and Chuang, 2009), schools (Essid, Ouellette and Vigeant, 2014,

Alexander, Haug and Jaforullah, 2010), tourism (Assaf and Agbola, 2011), banks

(Casu and Molyneux, 2003) or public transport services (Assaf, 2010, Gil, Turias and

Cerbán, 2019). In all these references, the different bootstrap resampling techniques are

used considering the observed DMUs to be a sample taken from a population of DMUs

and the resampling is done over the estimated efficiencies. In our study, we consider

a fixed (not random) set of services, a customer sample in each service to estimate the

client opinion indices (outputs) and a bootstrap resampling on the customer sample. As

far as we know, the bootstrap efficiency simultaneous confidence region introduced in

this paper has not been attempted in the literature. Our confidence region is the prod-

uct of intervals and these intervals allow efficiency rankings, dominance relations and

efficiency bounds to be determined as in Salo and Punkka (2011).

The rest of the paper is organized as follows. The problem is introduced in Section 2.

Section 3 studies the determination of the customer sample size in each public service,

in order to achieve a fixed accuracy in the simultaneous DEA efficiency estimation.

In Section 4, a bootstrap simultaneous confidence region to estimate the population

DEA efficiency in a fixed set of public services is determined. Section 5 contains an

application of the proposed approach using real inputs and opinion indices estimated

with a user sample (output data) of 15 libraries. Finally, the main conclusions are given.
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2 Preliminaries

Consider a fixed set of M service-producing units, our DMUs, m resources of the ser-

vices as known inputs X j = (x1 j, . . . ,xm j) ; j = 1, . . . ,M and s customer opinion in-

dices as unknown outputs. We distinguish between the population and sampling con-

texts. As for the population context, we consider U j =
(

U1 j, . . . ,UN j j

)

; j = 1, . . . ,M the

opinion of all of the N j customers of the jth DMU (DMU j for short). Each Uk j =
(Uk1 j, . . . ,Uks j) is the quantitative answer of the kth customer (k = 1, . . . ,N j) of the

DMU j ( j = 1, . . . ,M) to the s opinion items. The output data Y j in the DMU j is

g(U j) where g : ℜ
N j×s −→ ℜ

s. In this paper we consider g as the sample mean Y j =
(∑N j

k=1
Uk1 j

N j
, . . . ,

∑N j
k=1

Uks j

N j

)

. The LP model CCR or BCC with the output orientation of

Table 1 (CCR-O or BCC-O), taking data {(X j,Y j)} j=1,...,M, determines the population

DEA efficiency scores {ϕ j} j=1,...,M . The output orientation is selected because the inter-

est is to know which services, with their resources, can improve the opinion indices of

their customers. Keeping in mind the impossibility of getting the opinion of all the popu-

lation of N j customers of the DMU j, the outputs Y j and the efficienciesϕ j , j = 1, . . . ,M,

are unknown.

Table 1: DEA models with constant (CCR) and variable (BCC) returns-to-scale; output orientation.

max ϕ+ε

(∑m
i=1 s−i +

∑s
r=1 s+r

)

s.t.

∑M
j=1λ jyr j − s+r = ϕyro, r = 1, . . . ,s

∑M
j=1λ jxi j + s−i = xio, i = 1, . . . ,m

CCR-O λ j ≥ 0,s−i ≥ 0,s+r ≥ 0; j = 1, . . . , M; i = 1, . . . , m; r = 1, . . . ,s (1)

BCC-O

M∑

j=1

λ j = 1 (2)

where s−i and s+r are slack variables and ε> 0 is a non-Archimedian element.

In the sampling context, in the DMU j, we take a random customer sample
(

U1 j, . . . ,Un j j

)

⊂ U j of size n j and we estimate the output data Y j by ̂Y j =

(∑n j
k=1

Uk1 j

n j
, . . . ,

∑n j
k=1

Uks j

n j

)

.

We denote by ŷ j the observed value of this estimator. The LP model (1) or (2), taking
{(

X j, ̂Y j

)}

j=1,...,M
as input-output data, determines the estimators {ϕ̂ j} j=1,...,M of the

population efficiency scores {ϕ j} j=1,...,M, understanding that the model is maximized

with the data {(X j, ŷ j)} j=1,...,M to obtain the estimates {ω̂ j} j=1,...,M . Tapia et al. (2018)
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prove that the estimator ϕ̂ j is statistically consistent in the particular case of the CCR-O

model with one known input and one estimated output.

Therefore, our statistical model (Ω,P) corresponds to independent, random samples

in each DMU, that is, the sample space is Ω = ∏
M
j=1 Ω j, where Ω j = {samples u j of

sample size n j in the DMU j}, and the probability P depends on the sample design used.

The problem in this paper is to estimate the population efficiency scores vector ϕϕϕ =

(ϕ1, . . . ,ϕM) with a simultaneous confidence region. Formally, for any δ ∈ (0,1) and

α ∈ (0,1), we then calculate the customer sample size n j in the DMU j, j = 1, . . . ,M, to

guarantee

P(max j=1,...,M |ϕ̂ j −ϕ j| ≤ δ) ≥ 1−α, (3)

that is,
M

∏
j=1

[ϕ̂ j ± δ] (4)

defines a simultaneous region of confidence 1−α for ϕϕϕ.

3 How many customers to interview?

We analytically solve the problem to determine the customer sample size proposed in

(3) of Section 2, proving Theorem 2 under these assumptions:

C1 Fixed M DMUs

C2 One known input {X j} j=1,...,M and one unknown opinion index (output) {Yj} j=1,...,M

C3 CCR-O model

Lemma 1 is the result used to prove Theorem 2, establishing the relation between

sample size and accuracy, in order to simultaneously estimate the vector of DEA effi-

ciencies.

Lemma 1 Under assumptions C1, C2 and C3, for any 0 < p < 1, we consider the sets

of Ω:

A j =
{

u = (u1 ×·· ·×uM) ∈ Ω /
∣

∣

∣

̂Yj(u j)−Yj

∣

∣

∣
≤ pYj

}

; j = 1, . . . ,M (5)

B j =

{

u ∈ Ω /
∣

∣

∣
ϕ̂ j(u)−ϕ

j

∣

∣

∣
≤

2p

1+ p

}

; j = 1, . . . ,M (6)

then
M
⋂

j=1

A j ⊂
M
⋂

j=1

B j.
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Theorem 2 Under assumptions C1, C2 and C3, for any 0 < δ < 1 and any 0 < α < 1,

for every j = 1, . . . , M, let n j be the sample size in the DMU j such that

P

(∣

∣

∣

̂Yj −Yj

∣

∣

∣
≤ pYj

)

≥ M
√

1−α (7)

with p = δ

2−δ
∈ (0, 1). Then

M

∏
j=1

[ϕ̂ j ± δ] (8)

defines a simultaneous region of confidence 1−α for the population efficiency scores

vector.

Remark 3 gives the explicit formulas to obtain the sample size under the usual simple

random sample without replacement in a finite population.

Remark 3 If the customer sampling in each DMU is a simple random sample without

replacement and the output is a population mean then

Yj =

∑N j

k=1 uk j

N j

; j = 1, . . . ,M

where uk j is the answer (opinion) of the customer k in the DMU j and N j its population

size; then the sample size n j that it verifies

P

(∣

∣

∣

̂Yj −Yj

∣

∣

∣
≤ pYj

)

≥ α1

is (Särndal, Swensson and Wretman, 2003)

n j ≥
no j

(

no j

N j
+1
) (9)

with no j =

τ
2

1−

(

1−α1
2

)

(pY j)
2 σ j

2 and τ
1−
(

1−α1
2

) = φ−1
(

1−
(

1−α1
2

))

, where σ j
2 is the popula-

tion variance and φ the normal standard distribution function.

4 Bootstrap efficiency simultaneous confidence region

We carried out a simulation to check the confidence of the simultaneous region (8) in

the case of two known inputs, two outputs estimated with a simple random sample

without replacement of customers of size (9) and BCC-O model (2). This confidence is

approximately one, so the region (8) is very conservative. We propose, as an alternative,
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an algorithm to construct a simultaneous confidence region for the population DEA

efficiency scores vector, using Theorem 2 to determine the sample size, and bootstrap

resampling of the samples of the customers’ answers to the opinion items to estimate

the population efficiency.

The algorithm is, considering M DMUs, each one using m ≥ 1 known inputs

X j = (X1 j, . . . , Xm j) and s ≥ 2 unknown outputs Y j = (Y1 j, . . . ,Ys j):

i. Taking 0 < δ < 1 and 0 < α < 1, we calculate the customer sample size n j in the

DMU j as

n j = max{n1 j, . . . ,ns j} (10)

where nr j is the sample size to estimate the rth output in the DMU j such that

P

(∣

∣

∣

̂Yr j −Yr j

∣

∣

∣
≤ pYr j

)

≥ M
√

1−α; r = 1, . . . ,s (11)

with p = δ

2−δ
∈ (0, 1).

ii. In the DMU j, j = 1, . . . ,M, we take the simple random sample without replace-

ment of customers uk j = (uk1 j, . . . ,uks j) of size n j, k = 1, . . . ,n j, and we estimate

the outputs ŷ j = (ŷ1 j, . . . , ŷs j) with the sample mean:

ŷr j =

∑n j

k=1 ukr j

n j

; r = 1, . . . ,s, j = 1, . . . ,M. (12)

iii. We take a bootstrap sample with replacement û∗
k j from uk j of size n j, j = 1, . . . ,M,

with which we obtain the bootstrap version of the s output estimations

ŷ∗j =
(

ŷ∗1 j, . . . , ŷ
∗
s j

)

; j = 1, . . . ,M.

With the data
{(

X1 j, . . . , , Xm j, ŷ
∗
1 j, . . . , ŷ

∗
s j

)}

j=1,...,M
, using a Table 1 model, we

obtain the bootstrap version of the estimated efficiency scores,
{

ω̂∗
j

}

j=1,...,M
.

iv. We repeat step iii B times and the B bootstrap versions of the estimated efficiency

scores for the DMU j, j = 1, . . . ,M, should be
{

ω̂
∗(b)
j

}

b=1,..., B
.

For any 0 < α′ < 1, let 1−α′ be the level of coverage intention; then the observed

bootstrap simultaneous confidence region of the population efficiency vector is

RC∗ =
M

∏
j=1

(

ω̂∗
j

(

α
′

2n

)

, ω̂∗
j

(

1−α
′

2n

)
)

(13)

where ω̂
∗(α)
j is the α-percentile of the B values

{

ω̂
∗(b)
j

}

b=1,..., B
.

This algorithm is ad hoc. No theory is given to suggest if it permits an estimate of

the confidence region with asymptotically correct coverages, only the simulation study

check the estimate quality.
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4.1 Simulation study

We generate a simulated population model, as in Tapia et al. (2018), using the health

centre data of Cooper, Seiford, and Tone (2006) (Table 2): in the j-th health centre,

j = 1, . . . ,12, a finite patient population U j =
{

u1 j, . . . ,uN j j

}

, of size N j, j = 1, . . . ,12,
is generated where N j are independent random variables with uniform distribution in

[10000,50000], and

uk j = (uk1 j,uk2 j)→ N2

((

z1 j

z2 j

)

,

(

z2
1 j/4 0

0 z2
2 j/4

))

; k = 1, . . . ,N j; j = 1, . . . ,12

and (z1 j,z2 j) are the original value outputs of the jth health centre, columns 4 and 5 of

Table 2.

Table 2: Number of doctors, nurses, outpatients and inpatients in 12 health centres.

DMU Doctor X1 Nurse X2 Outpatient Z1 Inpatient Z2
CCR-O efficiency

score

BCC-O efficiency

score

1 2.0 15.1 10 9 1 1

2 1.9 13.1 15 5 1 1

3 2.5 16 16 5.5 0.883 0.925

4 2.7 16.8 18 7.2 1 1

5 2.2 15.8 9.4 6.6 0.763 0.767

6 5.5 25.5 23 9 0.835 0.955

7 3.3 23.5 22 8.8 0.902 1

8 3.1 20.6 15.2 8 0.796 0.826

9 3 24.4 19 10 0.960 0.990

10 5 26.8 25 10 0.871 1

11 5.3 30.6 26 14.7 0.955 1

12 3.8 28.4 25 12 0.958 1

Source: Table 1.5 Cooper et al. (2006)

Table 3 shows the simulated population model: the patient population size for each

health centre (column 2), the known inputs (columns 3 and 4) and the simulated values

of the two outputs (columns 5 and 6) obtained with the population means

(Y1 j,Y2 j) =

(

∑N j

k=1 uk1 j

N j

,

∑N j

k=1 uk2 j

N j

)

; j = 1, . . . ,M (14)

where ukr j is the answer of the kth patient of the jth health centre to the rth opinion

question. Columns 6 and 7 show the population DEA efficiency CCR-O and BCC-O,

respectively.



Jesús A. Tapia, Bonifacio Salvador and Jesús M. Rodrı́guez 345

Table 3: Simulated population model.

Population

size N j

Doctor

X1

Nurse

X2
Y1 Y2

Population efficiency score ϕ j

DMU CCR-O BCC-O

1 43341 2.0 15.1 9.98 9.01 1 1

2 24438 1.9 13.1 14.98 5.01 1 1

3 45606 2.5 16 15.99 5.50 0.883 0.926

4 12578 2.7 16.8 17.96 7.18 1 1

5 19314 2.2 15.8 9.40 6.58 0.763 0.766

6 21782 5.5 25.5 22.96 8.97 0.835 0.957

7 19024 3.3 23.5 21.99 8.77 0.901 0.998

8 36271 3.1 20.6 15.17 8.01 0.797 0.826

9 30691 3 24.4 19.02 10.04 0.963 0.991

10 28385 5 26.8 24.89 10.01 0.871 1

11 28005 5.3 30.6 26.11 14.69 0.958 1

12 49077 3.8 28.4 25.09 11.98 0.960 1

Supposing a simple random sample without replacement of patients in each health

centre, having fixed an efficiency estimation error δ= 0.1 and a probability 1−α= 0.95,

Table 4 shows the customer sample size n j, j = 1, . . . ,12, calculated using (10) and (11).

Table 4: Patient sample size obtained for each DMU, fixed δ = 0.1 and α= 0.05.

DMU n j

1 985

2 674

3 779

4 1078

5 900

6 1415

7 795

8 814

9 765

10 617

11 1194

12 682

With this sample size: we first repeat the bootstrapping methodology steps ii. -

iv. 1000 times, obtaining 1000 observed bootstrap efficiency simultaneous confidence

regions,
{

RC∗(k)
}

k=1,...,1000
, as in (13). The confidence of the bootstrap efficiency simul-

taneous confidence region is approximated through
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C∗ =
1

1000

1000
∑

k=1

I(ϕ1,...,ϕ12)∈RC∗(k) . (15)

Having fixed a percentile bootstrap confidence 1−α′ = 0.9, Table 5 shows the approxi-

mated confidence (15) of the bootstrap confidence region to simultaneously estimate the

population efficiency score vector. This result confirms that, by determining the sample

size in each DMU using (10), we get the fixed accuracy with the percentile bootstrap

efficiency simultaneous confidence region.

Table 5: Confidence approximation of the bootstrap efficiency simultaneous confidence region taking 1−

α
′ = 0.9 and fixed δ = 0.1 and α= 0.05. CCR and BCC model with output orientation.

CCR-O BCC-O

C∗ 0.975 0.983

In order to justify the basic percentile method to obtain bootstrap confidence inter-

vals, we analyse the bias of the bootstrap process. Using the 1000 data
{

ω̂ j − ω̂
∗(b)
j

}

b=1,...,1000
for each DMU j, we represent graphically the nonparametric den-

sity estimates with kernel N(0,1) and smoothing parameter selected with rule-of-thumb

(Silverman (1986)). The smooth density estimates obtained are approximately symmet-

rical with respect to 0, therefore the bias is negligible.

5 A Case Study

This section provides an empirical DEA efficiency analysis of libraries using real data

input. Table 7 corresponds to the database from 15 libraries used in Tapia et al. (2018).

The data input are the number of book loans, (X1), the library’s seating capacity and

the number of computers for users, (X2), and the data are scaled 0-10. Column 2 shows

the distribution of the user population in each of the 15 libraries. In each library, we

use only the output given by the users’ mean, monthly time use of the library, in hours,

measured for each user, on a scale of 0-10. In order to determine the user sample size n j

in the jth library, j = 1, . . . ,15, using Remark 3 in each library, we take a previous user

simple random sample without replacement of 0.1% of the user population size and we

estimate the output and the population variance, shown in columns 2, 3 and 4 of Table

7, respectively. Having fixed the efficiency estimation error δ = 0.1 and a probability

1−α= 0.9, we determine the sample size n j; j = 1, . . . ,15 with (10) and (11). We then

take the user sample in each library and estimate the mean monthly time of permanence

in the library {ŷ j} j=1,...,15
, column 6 of Table 7.
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Table 6: Results of the previous simple random sample without replacement: User sample size, Estimation

of monthly time use mean and of population variance.

DMU Sample size n
(0)
j

Estimation of the monthly time

use library mean

Estimation of the

population variance

1 89 6.61 14.34

2 79 5.78 13.76

3 64 3.87 12.93

4 59 5.06 13.26

5 57 6.12 14.48

6 51 2.88 8.67

7 42 5.41 17.08

8 37 4.31 13.79

9 35 6.06 12.79

10 32 4.10 10.24

11 24 4.57 15.16

12 21 5.27 16.97

13 19 3.09 13.10

14 17 4.37 14.55

15 13 7.81 10.63

Table 7: Database for 15 libraries: User population size, book loans and user posts (inputs), user sample

size to estimate the mean monthly library time use (output) with δ = 0.1 and α= 0.1.

DMU
User population size

N j

Book loans

X1

User posts

X2

User sample size
n j

Estimated monthly time

use library mean

ŷ j

1 89300 7.04 7.82 855 6.03

2 78500 7.81 6.87 1065 5.33

3 64000 5.41 5.60 2190 3.26

4 59100 2.66 5.18 1326 5.33

5 56500 3.96 4.95 998 6.13

6 50700 3.28 4.44 2601 3.37

7 41600 4.36 3.64 1476 5.79

8 37000 6.29 3.24 1850 3.44

9 34600 5.82 3.03 891 5.14

10 32000 7.69 2.80 1523 3.48

11 23600 2.61 2.07 1761 5.28

12 21200 3.61 1.86 1492 5.87

13 18900 4.73 1.65 3028 5.33

14 17200 2.12 1.51 1791 3.40

15 12900 2.16 1.13 442 5.77

The estimated efficiency scores, {ω̂ j} j=1,...,15
and the intervals whose product de-

termines the bootstrap efficiency simultaneous confidence region (columns 2 and 3 in

Table 8, respectively) are obtained using the data {(X1 j, X2 j, ŷ j)} j=1,...,15
and the BCC

model with orientation output. The libraries {1, 5, 7, 14, 15} can be considered efficient
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because the corresponding intervals of the bootstrap efficiency simultaneous confidence

region contains the value 1.

Table 8: Estimated efficiency scores and intervals whose product determines the bootstrap efficiency si-

multaneous confidence region, taking 1−α
′ = 0.9. BCC model with output orientation.

DMU
Estimated

efficiency score
Intervals

1 0.983 [0.904, 1]

2 0.870 [0.797, 0.942]

3 0.531 [0.493, 0.567]

4 0.908 [0.841, 0.982]

5 1 [0.959, 1]

6 0.562 [0.524, 0.596]

7 0.962 [0.902, 1]

8 0.574 [0.529, 0.611]

9 0.862 [0.791, 0.925]

10 0.585 [0.539, 0.625]

11 0.900 [0.826, 0.981]

12 1 [0.913, 1]

13 0.914 [0.839, 0.959]

14 1 [1, 1]

15 1 [1, 1]

6 Conclusions

Over the last decade, the use of opinion-satisfaction surveys on customers of public

services has been an essential tool in measuring the quality of the service given. Without

a doubt, a public service will be more efficient when, with its resources, it is able to

have the highest opinion-satisfaction of its customers. The questionnaire is a common

tool to find out customer opinion-satisfaction with the service received. The mean of

the opinion-satisfaction answers of the sample of customers are indices, indicators of

the service quality, that can be considered as output data. If we add the deterministic

information of the resources of the public service-producing unit as input data, we will

have the necessary input and output data to calculate the DEA efficiency in the set of

services.

We focus on this DEA efficiency problem as a statistical one, considering an un-

known population efficiency vector that would be obtained if we had the opinion of the

entire service customer population (census). We estimate this parametric vector with a

confidence region using the outputs estimated with the opinion of the user sample, the

known inputs and the classical DEA models (LP models subject to deterministic con-

straints). To our knowledge, this statistical view of the DEA is totally novel and the

use of a simultaneous confidence region is a statistical concept that has not been used
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in DEA efficiency analysis in the form that we propose. From a practical point of view,

the application in library datasets shows the usefulness of the bootstrap region confi-

dence efficiency methodology. This region, based on the product of confidence intervals

in each library, detects whether the library is “efficient in any case” because the lower

bound is equal to unity, or if the library is “efficient” because the upper bound is equal

to unity and “inefficient” because the upper bound is less than unity. More public ser-

vice examples where it may be interesting to apply the results of this paper are: leisure

centres (where there are attractions for which it is necessary to maximize the demand,

which can be evaluated by carrying out customer surveys), marketing or electoral polls

(where the effect of the advertising or electoral campaign is evaluated with a survey),

hospitals, airports, banks, universities, supermarkets, government services or schools

(where existing resources can explain customer opinion-satisfaction).

In this paper, we obtain two types of confidence region for the population efficiency

scores vector. Theorem 2 allows us to define the first simultaneous region, finding a rela-

tion between the accuracy of the simultaneous confidence region and the customer sam-

ple size needed to guarantee an output estimation error in each public service-producing

unit. By simulation, we check that this confidence region is very conservative. As an

alternative, we propose to determine the sample size of customers necessary using The-

orem 2 and Remark 3 and to obtain an efficiency confidence region based on the basic

percentile bootstrap method. The simulation shows that we are able to reach the con-

fidence of the bootstrap efficiency simultaneous confidence region close to the desired

level.

Other possible extensions currently under investigation by the authors also include

considering stochastic inputs estimated with a provider sample or using other bootstrap

methods, such as the adjusted percentile method or the ABC method, and comparing

them with the method used in this paper.

7 Appendix section

7.1 Proof of Lemma 1

Let u = (u1 ×·· ·×uM) ∈
⋂M

j=1 A j.

Let us consider the DMUr. Then, ϕr = 1 or ϕr < 1:

• If ϕr = 1, it is because Yr
Xr

= max j
Y j

X j
.

The most unfavourable situation, where Br is verified, is that the output of the

DMUr is as small as possible and the rest of the DMUs are as big as possible, that

is to say

Y ∗
j = (1− p)YjI( j=r)+(1+ p)YjI( j 6=r).
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Let ϕ∗
j , j = 1, . . . ,M be the efficiencies of the DMUs obtained with the data

{

(X j,Y
∗
j )
}

j=1,...,M
, therefore

ϕ∗
r =















1 if
(1−p)Y r

Xr
≥ max j 6=r

(1+p)Y j

X j
(a)

(1−p)Y r

(1+p)
Yk
Xk

Xr

if (1+ p) Yk

Xk
= max j 6=r

(1+p)Y j

X j
>

(1−p)Y r
Xr

(b)

and

|ϕr − ϕ̂r(u)| = 1− ϕ̂r(u)≤ 1−ϕ∗
r

where the first equality is obtained because ϕr = 1 and the second inequality is

verified because, as the efficiency of a DMU decreases when the output of this unit

decreases, while the outputs of the rest of the DMUs also increase, ϕ̂r(u) ≥ ϕ∗
r ,

then

|ϕr − ϕ̂r(u)| ≤

{

0 if (a)

1− (1−p)
(1+p) =

2p

1+p
if (b)

and it is verified that u ∈ Br ∀r / ϕr = 1.

• If ϕr < 1

Let k 6= r / Yk
Xk

= max j
Y j

X j
and ϕr =

Yr
Xr
Yk
Xk

< 1.

There are two more favourable situations for Br to be verified

Case (I) Y ∗
j = (1− p)YjI( j=r)+(1+ p)YjI( j 6=r).

Case (II) Y ∗∗
j = (1+ p)YjI( j=r)+(1− p)YjI( j 6=r).

Case (I): Let ϕ∗
j , j = 1, . . . ,M, be the DMU efficiencies obtained with the

data
{

(X j,Y
∗
j )
}

j=1,...,M
, then

ϕ∗
r =

(1− p) Yr
Xr

(1+ p) Yk
Xk

=
(1− p)

(1+ p)
ϕr < ϕr.

As the efficiency of a DMU decreases when the output of this unit

decreases, while the outputs of the rest of the DMUs also increase,

|ϕr − ϕ̂r(u)| ≤ |ϕr −ϕ∗
r |

and therefore

|ϕr − ϕ̂r(u)| ≤ ϕr −ϕ∗
r = ϕr

(

2p

1+ p

)

<
2p

1+ p
.
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Case (II): Let ϕ∗∗
j , j = 1, . . . ,M, be the DMU efficiencies obtained with the

data
{

(X j,Y
∗∗
j )
}

j=1,...,M
, then

– If max
(

(1+p)Y r
Xr

,max j 6=r
(1−p)Y j

X j

)

=
(1+p)Y r

Xr

then ϕ∗∗
r = 1 and ϕr ≥

(1−p)
(1+p) and therefore

|ϕr − ϕ̂r(u)| ≤ |ϕr −ϕ∗∗
r | = 1−ϕr ≤

2p

1+ p
.

– If max
(

(1+p)Y r
Xr

,max j 6=r
(1−p)Y j

X j

)

=
(1−p)Y k

Xk
for k 6= r then ϕr <

(1−p)
(1+p) and ϕ∗∗

r =
(1+p)Yr

Yr

(1−p)
Yk
Xk

= (1+p)
(1−p)ϕr > ϕr and therefore

|ϕr − ϕ̂r(u)| ≤ ϕ∗∗
r −ϕr ≤

2p

1− p
ϕr <

2p

1+ p
.

In consequence u ∈ Br ∀r / ϕr < 1.

7.2 Proof of Theorem 2

It is enough to prove that

P
(

max j=1,...,M

∣

∣

∣
ϕ̂ j −ϕ

j

∣

∣

∣
≤ δ

)

≥ 1−α. (16)

Using the notation of (5) and (6), by Lemma 1, we know that

M
⋂

j=1

A j ⊂
n
⋂

j=1

B j

and, as the events {A j} j=1,...,M are independent, then

P

(

M
⋂

j=1

B j

)

≥ P

(

M
⋂

j=1

A j

)

=
M

∏
j=1

P(A j)≥
(

M
√

1−α
)M

= 1−α.
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Abstract

In this article, we consider two univariate random environment integer-valued autoregressive pro-

cesses driven by the same hidden process. A model of this kind is capable of describing two

correlated non-stationary counting time series using its marginal variable parameter values. The

properties of the model are presented. Some parameter estimators are described and imple-

mented on the simulated time series. The introduction of this bivariate integer-valued autore-

gressive model with a random environment is justified at the end of the paper, where its real-life

data-fitting performance was checked and compared to some other appropriate models. The fore-

casting properties of the model are tested on a few data sets, and forecasting errors are discussed

through the residual analysis of the components that comprise the model.
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Keywords: INAR, negative binomial thinning, random states, time series of count, non-stationary

process.

1 Introduction

After many scientific proposals of possible models of counting processes in the last

decades of the 20th century, so far the best results have been obtained by the thinning-

based integer-valued autoregressive models of order one (INAR(1)) introduced almost

simultaneously by McKenzie (1985) and Al-Osh and Alzaid (1987). For the first time,

they used an idea of defining the deterministic part of the counting process in a certain

moment, designated by Xn, for the given Xn−1 = xn−1, using the random sum of xn−1

independent and identically distributed (i.i.d.) Bernoulli variables. Precisely,

Xn =

xn−1
∑

i=1

vi + εn,
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where {vi} is a counting sequence of i.i.d. Bernoulli random variables and εn are the

innovation process. It is assumed that εn and Xn−k are independent for all k > 0. The

INAR model of order one (INAR(1)) can be expressed such:

Xn = α◦ xn−1 + εn.

where the operator α ◦Xn−1|Xn−1 = xn−1 is equal to α ◦ xt−1 =
∑xn−1

i=1 vi, and it is called

the binomial thinning or binomial subsampling operator. The first addend of the model

above can be interpreted as a survival process. Therefore, these kinds of processes were

ideal for modeling counts generated by limited surviving entities. During the adaptation

of this INAR model to many different counting time series, many modifications and

generalizations were done. Some researchers were focused on the thinning operator,

and their innovative results can be found in Aly and Bouzar (1994), Latour (1998),

Zheng, Basawa and Datta (2006, 2007), Zhu and Joe (2006), Ristić, Bakouch and

Nastić (2009) and Zhu and Joe (2010). Even though Al-Osh and Aly (1992) as well as

Alzaid and Al-Osh (1993) focused on the marginal distribution of the process, other au-

thors preferred to concentrate on the distribution of the innovations, like Jazi, Jones and

Lai (2012a, 2012b), Fernández-Fontelo, Fontdecaba and Puig (2017). Also, a certain

modification of the innovation process was studied recently in Qi, Li and Zhu (2019).

Later, more attention was paid to the correlation characteristics of the observed pro-

cesses, i.e. the additional assumptions about the dependence in the counting sequence

were introduced. Initial results on the INAR models based on the thinning operator

defined using dependent counting sequences were given by Ristić, Nastić and Miletić

Ilić (2013). Also, the possibility of serially dependent innovations of the INAR model

was studied and well-presented in Weiß (2015). In addition, Weiß, Homburg and Puig

(2019) considered testing for zero inflation and overdispersion in INAR(1) models.

Parameter-driven models provided another approach to modeling counting processes.

A good insight into these models can be found in Fokianos (2011) and some recent

progress is presented in Chakraborty and Bhati (2016) (see also Chakraborty and Bhati,

2017) and Rydén (2017).

In addition to all the preceding models and given aspects of counting processes

construction, there were many other approaches which resulted, especially in the last

decade, with significant number of papers covering this area of time series research.

Although, a great majority of them referred to the problems of modeling stationary pro-

cesses, in the past years, some authors have been working to accommodate potential

patterns of trend and seasonality in INAR models. Significant results in this area can be

found in Moriña et al. (2011), Fernández-Fontelo et al. (2017).

Since non-stationarity may be noted in many real life situations, inspired by the

work of Tang and Wang (2014), and in order to provide more efficient INAR modeling,

a new random environment INAR process of order one (INAR(1) with variable marginal

distribution was introduced in Nastić, Laketa and Ristić (2016). This model was non-

stationary, which made it more applicable to counting processes in practice. The same
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authors also presented a higher-order r-states random environment non-stationary INAR

model, which can be found in Nastić, Laketa and Ristić (2019) and Laketa, Nastić and

Ristić (2018). Fernández-Fontelo et al. (2016) gave an under-reported data analysis with

INAR-hidden Markov chains. However, in the matter of modelling two correlated simul-

taneous integer-valued series, significant results were achieved by introducing bivariate

INAR models which can be found in Pedeli and Karlis (2011), Ristić et al. (2012) and

Popović, Ristić and Nastić (2016). The first model is based on the binomial thinning

operator, and the dependence between time series was introduced through the innova-

tion processes. The second model is based on the negative binomial thinning operator,

considering geometric marginal distribution with the same mean parameters. The last

model also has a geometric marginal distribution but assuming different mean parame-

ters. Besides, while in the first model, the dependence between the series is considered

in the innovation process, in the last two models, this dependence is considered in the

survival components, i.e. the components defined through the thinning operator.

In this article, we focus on the bivariate random environment INAR model which

is composed of the two univariate models discussed in Laketa et al. (2018). The two

univariate series follow the same hidden process which determines the states of the ob-

served processes. Thus, simultaneously with the observed process we have a Markov

process {Zn}, with a finite state space Er = {1,2, . . . ,r}, called the random state pro-

cess. Its realized values zn define marginal distribution parameter values. So, since each

value from Er corresponds to one state of the process environment, then the marginal

distribution is directly dependent on the possible random states of the observed process

environment. This can be found in nature every time we consider two random vari-

ables in the same circumstances. These variables do not have to be correlated directly,

but only through their distributions which depend on the same conditions, i.e. random

states. Also, considering such a bivariate model, we present its forecasting properties

by conducting the residual analysis of its univariate components.

Like all random environment INAR models, the model proposed here is good for the

data which are non-stationary (to be precise, they are part by part stationary), where we

can suppose that the conditions in which they are measured can change and affect the

measured values. So, this model is better than the other bivariate models for such data.

In the second section of this article, we give a short review of random environment

INAR models. Then, in the following section, we introduce the corresponding bivariate

model based on the realizations of the random environment process. Section 4 is mainly

devoted to moment-based estimators. Also, a brief construction of the likelihood-based

estimator is given. Section 5 deals with the residual analysis of the model. The quality

of defined estimators is confirmed using simulated series of different sizes, presented

in Section 6. The next section contains some real-life examples of the application of

the introduced model to certain counting processes, where the model performance is

compared to some other competitive bivariate INAR models. Also, the errors produced

by one-step-ahead forecasting are analysed. Finally, all the proofs of the theorems are

given in the Appendix.
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2 A short review of random environment INAR models

The first random environment integer-valued autoregressive model was introduced in

Nastić et al. (2016), and that is the random environment INAR(1) model. It is based on

the random environment process, which represents the conditions of the environment in

which the counting process is observed. Also, the corresponding process {Zn} is said to

be an r-state random environment process if it is a Markov chain of order one and takes

values from the set Er = {1,2, . . . ,r}. The main assumption of the observed process

is that the environment conditions have an effect on its marginal distribution. Thus, the

r-state random environment INAR(1) process with the determined geometric marginal

distribution, based on the negative binomial thinning operator (RrNGINAR(1)), is given

by the equation

Xn(zn) = α∗Xn−1(zn−1)+ εn(zn−1,zn), n ∈ N, (1)

where {zn} is a realization of the process {Zn}. The notation Xn(zn) is used to em-

phasize the fact that the distribution of Xn depends on zn. The value zn determines the

value µzn from the supposed set of marginal parameter values {µ1,µ1, . . . ,µr} where,

Xn(zn) has the geometric distribution with the expectation µzn , since we supposed that

its probability mass function (pmf) is defined as

P(Xn(zn) = x) =
µx

zn

(1+µzn)
x+1

, x ∈ N0.

Here we gave an explanation on how the observable component Xn of the process de-

pends on its latent component zn. In addition, the denotation α∗ stands for the negative

binomial thinning operator, which is defined by

α∗X =
X
∑

i=1

Ui,

for an integer-valued random variable X , where α ∈ (0,1) and {Ui}, i ∈N, is a sequence

of i.i.d. random variables with pmf given by

P(Ui = u) =
αu

(1+α)u+1
, u ∈ N0.

In Laketa et al. (2018), this (RrNGINAR(1)) model is generalized, assuming that the re-

alized random environment sequence {zn} determines not only the marginal distribution

of the model, but also the order of the process and the thinning parameter value. In order

to accurately present the models from Laketa et al. (2018), the following sets should be

previously introduced: the set M = {µ1,µ2, . . . ,µr} which consists of the possible mean

values of the process in the corresponding states, the set A = {α1,α2, . . . ,αr} contain-

ing possible values of the thinning parameters corresponding to different states, and the

set P = {p1, p2, . . . , pr} considering the order of the process. For example, when zn = i,
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the RrNGINAR(1) model is in its i-th state, and this means that the counting process is

observed in the i-th environment state. Additionally, the model parameters in the i-th

state are µi, αi and pi. In fact, in Laketa et al. (2018) two different RrNGINAR are intro-

duced: RrNGINARmax(M ,A ,P) and RrNGINAR1(M ,A ,P). The set P contains

actually the maximal orders for all states. The difference between these models (the one

indexed by max, and other by 1) relies on the way of reaching these maximal orders.

Let explain now this in more details, starting from the general form of these two models

Xn(zn) =























αzn ∗Xn−1(zn−1)+ εn(zn−1,zn), w.p. φ
(zn)
1,Pn

,

αzn ∗Xn−2(zn−2)+ εn(zn−2,zn), w.p. φ
(zn)
2,Pn

,
...

...

αzn ∗Xn−Pn(zn−Pn)+ εn(zn−Pn,zn), w.p. φ
(zn)
Pn,Pn

,

, (2)

where Xn(zn) has geometric distribution with expectation µzn . Since the distribution

of the residuals would be complicated to obtain when Pn = pzn , Pn should be defined

differently. Thus, for the RrNGINARmax(M ,A ,P) model, named INAR process with

r-states, distribution parameters set M , thinning parameters set A and maximal order

set P, it holds that

Pn = min{pzn , p∗n},

p∗n = max{i ∈ {1,2, . . . ,n} : zn−1 = zn−2 = · · ·= zn−i}.

From here, when the state change occurs, zn 6= zn−1, the process order becomes one,

i.e. Pn = 1, and afterwards it starts rising by 1 in every moment of the process, until it

reaches its maximum value for that state, which equals pzn . Then it remains at maximum

until the process state changes again. The alternative way, for the other type of the

considered model (RrNGINAR1(M ,A ,P)), is letting the value Pn equal 1 (instead of

making it growing gradually), but still considering the value at the same moment at

when the previously explained model RrNGINARmax(M ,A ,P) reaches the maximal

order. Accordingly, for the RrNGINAR1(M ,A ,P) model, the only possible order

values corresponding to the process state i are 1 and pzn

Pn =

{

pzn , p∗n ≥ pzn

1, p∗n < pzn

This model is named the random environment INAR process with r-states, distribution

parameters set M , thinning parameters set A and the order set P.

If, as a special case, it holds that p1 = p2 = · · · = pr = 1, then both models are the

same and of order one. Also, the RrNGINAR(1) model is a special case of these two

models, when p1 = p2 = · · ·= pr = 1 and α1 = α2 = · · · = αr.

Explaining these two models from Laketa et al. (2018) further, let us now recall the

Theorem 1 from that paper, which makes a point about residual distribution (see Ap-

pendix for details). Considering the models in Laketa et al. (2018), we should com-
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prehend these random environment INAR models as an attempt of fitting counting pro-

cesses in time-varying conditions, which directly affect to certain parameters of the

observed process. As long as the conditions of the process environment do not change,

the process itself has the same (and unchanged) value of its latent component zn. How-

ever, when the environment eventually changes (e.g., social circumstances or economic

factors), then the random environment INAR models introduced in this paper adapt to

these changes. In fact, these models accommodate these environment changes by ad-

equately modifying the values of specific parameters, including even the order of the

process. Notice that these models are stationary while they are in the same state zn,

and their non-stationarity starts when changing this state. The latter is a consequence

of changing the marginal distribution of the models, the thinning operator value, and

the order of the process. When we observe the order, we notice that after the process

state is changed from zn−1 to zn, the process order is reduced to 1, which is necessary

because of the definition of the model. The way it reaches its value of pzn depends on

the model type (i.e., whether its type is “1” or “max”, which was explained earlier).

Finally, it should also be emphasized that we consider non-stationary processes, which

are “part-by-part stationary”, where each “part” corresponds to the period of a random

process {Zn} remaining in the same state.

3 Considered models

Now, we focus on the model introduced in this article. Let {Xn(zn)} and {Yn(zn)} be

the RrNGINAR1(M1,A1,P1) and RrNGINAR1(M2,A2,P2) processes, respectively,

where M1 = {µ1,µ2, . . . ,µr}, M2 = {ν1,ν2, . . . ,νr}, A1 = {α1,α2, . . . ,αr}, A2 = {β1,
β2, . . . ,βr} and P1 = P2 = {1}. Then, they are defined with the following relations

Xn(zn) = αzn ∗Xn−1(zn−1)+ εn(zn−1,zn), n ∈ N, (3)

Yn(zn) = βzn ∗Yn−1(zn−1)+ηn(zn−1,zn), n ∈ N. (4)

In order to give a precise definition of the processes introduced in (3) and (4), we add

some additional assumptions:

(C1) {εn(1,1)}, {εn(1,2)}, . . . , {εn(r,r)}, {ηn(1,1)}, {ηn(1,2)}, . . . , {ηn(r,r)} are mu-

tually independent for all n ∈ N0,

(C2) εm(i, j) and ηm(i, j) are independent of Yn(k) and Xn(k), respectively, for n < m

and for all i, j,k ∈ Er,

(C3) the covariance between Xn(zn) and Yn(zn) is the same as the covariance between

Xm(zm) and Ym(zm), when zn = zm.
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Based on the Theorem 1 from Laketa et al. (2018), the distributions of the innovation

series {εn} and {ηn} are given by the following relations:

εn(i, j)
d
=











Geom
(

µ j

1+µ j

)

, w.p. 1−
α jµi

µ j−α j
,

Geom
(

α j

1+α j

)

, w.p.
α jµi

µ j−α j
.

(5)

ηn(i, j)
d
=











Geom

(

ν j

1+ν j

)

, w.p. 1−
β jνi

ν j−β j
,

Geom

(

β j

1+β j

)

, w.p.
β jνi

ν j−β j
.

(6)

Now, we will present some new results of considered models. For the simplicity of no-

tation, in the following text, we shall use Xn and Yn instead of Xn(zn) and Yn(zn), respec-

tively. We will consider Xn = (Xn,Yn) as a bivariate process named BRrNGINAR(1).

Also, let us define vector µµµn =

[

µzn

νzn

]

and matrix An =

[

αzn 0

0 βzn

]

.

The following theorem explains the process correlation structure.

Theorem 1 (a) The covariance matrix of random variables Xn and Xn−k, k ∈ {0,1,
. . . ,n}, is given as

Cov(Xk,X0) = A1A2...AkCov(X0,X0), (7)

(b) The correlation matrix of random variables Xn and Xn−k, k ∈ {0,1, . . . ,n}, is given

as

Corr(Xk,X0) =





√

Var(X0)
Var(Xk)

0

0

√

Var(Y0)
Var(Yk)



A1A2...AkCorr(X0,X0), (8)

where Var(Xi) =
µzi

1+µzi
and Var(Yi) =

νzi
1+νzi

.

The proof is given in the Appendix.

Following theorem contains the results of the conditional expectations and variances.

Theorem 2 a) The conditional expectation of the random variable Xn+k on Xn is

given by

E (Xn+k|Xn) = An+1An+2...An+k [Xn −µµµn]+µµµn+k, k ∈ N0, (9)
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b) The conditional variance of Xn+k on Xn is given by

Var(Xn+k|Xn,Yn) =

{

αzn+1
(1+αzn+1

)

(

k

∏
s=2

α2
zn+s

I{k > 1}+ I{k = 1}

)

+
k−1
∑

i=2

(

i−1

∏
s=1

αzn+s

)

αzn+i
(1+αzn+i

)

(

k

∏
s=i+1

α2
zn+s

)

I{k > 2}

+

(

k

∏
s=1

αzn+s

)

αzn+k
(1+αzn+k

)I{k > 1}

}

(Xn −µzn)

+µzn+k
(1+µzn+k

)−

(

k

∏
s=1

α2
zn+s

)

µzn(1+µzn),

and the conditional variance of Yn+k on Xn is analogous.

c) The conditional probability mass function is given by

P(Xn = xn,Yn = yn|Xn−1 = xn−1,Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1)

= P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1)

·P(Yn = yn|Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1),

where

P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1)

=

xn
∑

k=0

(

xn−1 + k−1

xn−1 −1

)

αk
zn−1

(1+αzn−1
)k+xn−1

·

[

(

1−
αznµzn−1

µzn −αzn

)

µxn−k
zn

(1+µzn)
xn−k+1

+
αznµzn−1

µzn −αzn

·
αxn−k

zn

(1+αzn)
xn−k

]

I{xn−1 6=0}

+

[(

1−
αznµzn−1

µzn −αzn

)

µxn
zn

(1+µzn)
xn+1

+
αznµzn−1

µzn −αzn

·
αxn

zn

(1+αzn)
xn

]

I{xn−1=0},

and the analogous formula holds for Yn.

The proofs are given in the Appendix.

Remark 1 Regarding the correlation between {Xn(zn)} and {Yn(zn)}, the following can

be said. Values of the processes {Xn(zn)} and {Yn(zn)} are determined by the random

process realization. Namely, certain parameter values of one component may only occur

with the corresponding parameter values of another component. This explains the cor-

relation between {Xn} and {Yn}, which cannot be calculated, since it is not a correlation

in the standard sense and definition. However, as {zn} is determined by the clustering

of the observed counting processes, it is actually this sequence, {zn}, that contains in-
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formation about this kind of correlation. Beside this, the standard covariance function

Cov(Xn,Ym), for some m,n ∈ N, can be different from zero, which is in fact used in the

section about the Yule-Walker method of estimation of the unknown process parameters.

4 Parameter estimation

Let X1,X2, . . . ,XN and Y1,Y2, . . . ,YN be samples from the RrNGINAR1(M1,A1,P1) and

RrNGINAR1(M2,A2,P2) processes, respectively, where M1 = {µ1,µ2, . . . ,µr}, M2 =
{ν1,ν2, . . . ,νr}, A1 = {α1,α2, . . . ,αr}, A2 = {β1,β2, . . . ,βr} and P1 = P2 = {1} are

the corresponding sets of unknown parameters. In the following subsections, two meth-

ods for parameter estimation are given: the Yule-Walker method and the conditional

maximum likelihood method.

4.1 Yule-Walker estimation

The Yule-Walker parameter estimators are defined matching theoretical and empirical

values of the correlation structure of the model. Recall that, usually the Yule-Walker

estimation method (YW) assumes that the process is stationary. Since this assumption

does not hold for the models with a random environment, because they have different

states, it is necessary to define the Yule-Walker estimators using some parts of the sam-

ple, which can be considered stationary.

Let us define the set Ik = {i ∈ {1,2, . . . ,N}|zi = zi+1 = k} of indices i of the process

elements Xi(zi) and Yi(zi) corresponding to the state k, whose followers Xi+1(zi+1) and

Yi+1(zi+1) are also in the same state k and denote its number of elements by nk = |Ik|.

µ̂k =
1

nk

∑

i∈Ik

Xi(k), γ̂X ,k
0 =

1

nk

∑

i∈Ik

(Xi(k)− µ̂k)
2,

ν̂k =
1

nk

∑

i∈Ik

Yi(k), γ̂Y,k
0 =

1

nk

∑

i∈Ik

(Yi(k)− ν̂k)
2,

γ̂X ,k
1 =

1

nk

∑

i∈Ik

(Xi+1(k)− µ̂k)(Xi(k)− µ̂k),

γ̂Y,k
1 =

1

nk

∑

i∈Ik

(Yi+1(k)− ν̂k)(Yi(k)− ν̂k),

γ̂X ,Y,k
10 =

1

nk

∑

i∈Ik

(Xi+1(k)− µ̂k)(Yi(k)− ν̂k),
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γ̂X ,Y,k
01 =

1

nk

∑

i∈Ik

(Yi+1(k)− ν̂k)(Xi(k)− µ̂k),

γ̂X ,Y,k
00 =

1

nk

∑

i∈Ik

(Xi(k)− µ̂k)(Yi(k)− ν̂k),

where

γX ,k
1 =Cov(Xn,Xn+1), γY,k

1 =Cov(Yn,Yn+1) if zn = zn+1 = k,

γX ,k
0 =Var(Xn), γY,k

0 =Var(Yn) if zn = k,

γX ,Y,k
00 =Cov(Xn,Yn) if zn = k,

γX ,Y,k
01 =Cov(Xn,Yn+1), γX ,Y,k

10 =Cov(Xn+1,Yn) if zn = zn+1 = k.

These estimators are all strongly consistent, which can be shown by a similar proof as

in Nastić et al. (2016). From the covariance properties, analysed in the previous section,

it follows that

Cov(Xn+1(zn+1),Yn(zn)) = αzn+1
Cov(Xn(zn),Yn(zn)),

Cov(Xn+1(zn+1),Xn(zn)) = αzn+1
Cov(Xn(zn),Xn(zn)),

so we can write

αzn+1
=

1

2

(

Cov(Xn+1(zn+1),Yn(zn))

Cov(Xn(zn),Yn(zn))
+

Cov(Xn+1(zn+1),Xn(zn))

Cov(Xn(zn),Xn(zn))

)

.

Let us now consider Xn(zn), such that n ∈ Ik. Then,

αk =
1

2

(

Cov(Xn+1(k),Yn(k))

Cov(Xn(k),Yn(k))
+

Cov(Xn+1(k),Xn(k))

Cov(Xn(k),Xn(k))

)

.

Therefore, we can estimate αk in the following way

α̂k =
1

2

(

γ̂X ,Y,k
10

γ̂X ,Y,k
00

+
γ̂X ,k

1

γ̂X ,k
0

)

.

Similarly, we get

̂βk =
1

2

(

γ̂X ,Y,k
01

γ̂X ,Y,k
00

+
γ̂Y,k

1

γ̂Y,k
0

)

.

From the consistency of the modified sample covariances follows the consistency of α̂k

and ̂βk.
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4.2 Conditional maximum likelihood estimation

We also consider likelihood-based estimation method (CML), where we conduct the

maximization of the log-likelihood function for the given sample {(X1(z1),Y1(z1)), . . . ,

(XN(zN),YN(zN))}. The function that needs to be maximized is of the form

logL =

N
∑

i=2

logP((Xi,Yi) = (xi,yi)|(Xi−1,Yi−1) = (xi−1,yi−1)).

The conditional probability mass function is given by Theorem 2, where values X0 and

Y0 are treated as known. The maximization procedure is conducted numerically using

the optim function in the programming language R.

5 Analysis of prediction errors

In this section, we give the equations for the analysis of one-step-ahead prediction er-

rors. Since model’s prediction is conducted with two processes, survival and innovation,

we analyse the prediction errors of these two processes separately. Since these two pro-

cesses are unobservable, we will discuss their prediction errors in terms of conditional

expectations. Namely, knowing the realization of the processes {Xn} and {Yn} at the

moment n, we calculate the conditional expectations of survival and innovation pro-

cesses for that moment. This approach was discussed in detail in Freeland and McCabe

(2004) for the univariate case and in Popović, Nastić and Ristić (2018) for the bivariate

case. Here we use the similar methodology as in Popović et al. (2018). Notice that the

survival and the innovation processes are mutually independent for known realization of

the process {Zn}.

Knowing all states up to moment n, we want to determine P(αzn ∗ Xn−1(zn−1) =
m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1) and P(εn(zn,zn−1) =

xn −m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1), and similarly

for βzn ∗Yn−1(zn−1) and ηn(zn,zn−1). As stated above, we consider a model which is

based on a realization of the process {Zn} i.e. {zn}. Thus,

P(αzn ∗Xn−1(zn−1)=m|Xn=xn,Yn=yn,Zn=zn,Xn−1=xn−1,Yn−1 =yn−1,Zn−1=zn−1)

=
P(αzn ∗Xn−1(zn−1) = m,Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)
= f (m), (10)

where we have in mind that the survival component of the process Xn is independent

of Yn for known Xn, Xn−1, Zn and Zn−1. Function f (m) is introduced here for practical

reasons. The denominator is given in Theorem 2. Further, we calculate the nominator

having in mind the definition of the process Xn, i.e. Xn = αzn ∗Xn−1(zn−1)+εn(zn,zn−1).

Thus, for known Xn and Xn−1, the probability P(αzn ∗Xn−1(zn−1) = m,Xn = xn) is the
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same as P(αzn ∗Xn−1(zn−1) = m,εn(zn−1,zn) = xn −m). According to the definition of

the process, Xn−1 is independent from εn (statement (C2)), so the nominator of the above

equation is obtained as

P(αzn ∗Xn−1(zn−1) = m,εn(zn−1,zn) = xn −m|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

= P(NB(xn−1,αzn) = m) ·P(εn(zn−1,zn) = xn −m).

NB(xn−1,αzn) stands for a random variable with a negative binomial distribution with

stated parameters. The probability of the random variable εn(zn−1,zn) is given by equa-

tion (5) and it is equal to

P(εn(zn−1,zn) = xn −m) =

(

1−
αznµzn−1

µzn −αzn

)

µxn−m
zn

(1+µzn)
xn−m+1

+
αznµzn−1

µzn −αzn

αxn−m
zn

(1+αzn)
xn−m+1

.

Further, the conditional distribution of the innovation process can be obtained following

computations similar to those presented above for equation (10). Thus we have

P(εn(zn−1,zn) = m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1)

= f (xn −m). (11)

By using equations (10) and (11), we can derive the conditional expectations for the

survival and innovation components, respectively. With Fn, we denote the σ-algebra

generated with (Xn,Yn,Zn), (Xn−1,Yn−1,Zn−1), . . . , (X0,Y0,Z0). Then, we have that

E(αzn ∗Xn−1(zn−1)|Fn) =
xn−1αzn−1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

·P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1), (12)

and

E(εn(zn−1,zn)|Fn) =
1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

· [xnP(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

−xn−1αzn−1
P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1)

]

. (13)

The detailed derivations of equations (12) and (13) are given in Appendix. The analogue

equations stand for E(βzn ∗Yn−1(zn−1)|Fn) and E(ηn(zn,zn−1)|Fn).
According to equation (9), the one-step-ahead prediction error at moment n, denoted

as rn, is equal to
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rn = xn(zn)− (αznxn−1(zn−1)+µzn −αznµzn−1
)

= E(xn(zn)|Fn)−αznxn−1(zn−1)−µzn +αznµzn−1

= E(αzn ∗ xn−1(zn−1)+ εzn(zn−1,zn)|Fn)−αznxn−1(zn−1)−µzn +αznµzn−1

= E(αzn ∗ xn−1(zn−1)|Fn)−αznxn−1(zn−1)+E(εzn(zn−1,zn)|Fn)−µzn +αznµzn−1
.

We can conclude that the prediction error can be decomposed into two components. The

first one is the prediction error of the survival process rsur = E(αzn ∗Xn−1(zn−1)|Fn)−
αznXn−1(zn−1) and the second one is the prediction error of the innovation process rinn =

E(εzn(zn−1,zn)|Fn)−µzn +αznµzn−1
.

6 Model simulations

In this section, we test two methods for estimating the parameters of the BRrNGINAR(1)
model on simulated data sets. The first method is the conditional maximum likelihood

method where the conditional likelihood function can be obtained from Theorem 2,

statement c). The second one is the Yule-Walker method presented in Section 4.1.

We simulate 100 samples of lengths 100, 500, 1000 and 5000. Using the Monte

Carlo method, we generate a time series that evolves according to equations (3) and (4).

The values for εn and ηn are picked randomly from the distribution determined by equa-

tions (5) and (6), respectively. Further, the values for components αzn ∗Xn−1(zn−1) and

βzn ∗Yn−1(zn−1) are random numbers generated from the appropriate negative binomial

distribution (where we take X0 = ε0 and Y0 = η0 as initial values).

The following parameters were used for the simulation procedure: a) α1=0.1, α2=
0.2, β1=0.15, β2=0.25, µ1=1, µ2=2, ν1=1, ν2=3; b) α1=0.45, α2=0.5, β1=0.55,

β2 = 0.65, µ1 = 2, µ2 = 3, ν1 = 4, ν2 = 5; c) α1 = 0.1, α2 = 0.2, α3 = 0.25, β1 = 0.15,

β2=0.25, β3=0.25, µ1=1, µ2=2, µ3=3, ν1=1, ν2=2, ν3=3; d) α1=0.35, α2=0.4,

α3 =0.4, β1 =0.4, β2 =0.25, β3 =0.35, µ1 =2, µ2 =3 , µ3 =4, ν1 =3, ν2 =4 ν2 =5.

These values were chosen according to our experience in testing BRrNGINAR(1) as

well as other bivariate models. We tried to determine the sets of parameters that are most

likely to be found with real data sets. In all cases, we take into account the appropriate

boundaries for the thinning parameters. The random environment processes with 2 and

3 random states are considered. For the cases a) and b), the probability vector of states

is (0.5,0.5), while this vector has values (0.3,0.4,0.3) for cases c) and d), so all the

states are nearly equally probable. We set the transition probability matrix from state i

to state j as

[

0.7 0.3

0.3 0.7

]

for cases a) and b), and





0.4 0.3 0.3

0.3 0.4 0.3
0.3 0.3 0.4



 for cases c) and

d). They are chosen in such way that diagonal elements are the biggest in the matrices,

so that the corresponding processes stay in the same state long enough. The estimated

values obtained with the YW method are presented in Table 2 and Table 4, and with the
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CML method in Table 1 and Table 3. Besides the estimated values of the parameters,

there are also standard deviations of the estimates.

Table 1: Estimated values of unknown parameters for the BRrNGINAR(1) model with two states using the

conditional maximum likelihood method. The standard errors of estimates are given in the brackets.

a) α1=0.1 α2=0.2 β1=0.15 β2=0.25 µ1=1 µ2=2 ν1=1 ν2=3

100 0.1149 0.1879 0.1438 0.2118 0.9979 1.9679 0.9589 2.4212

(0.095) (0.0959) (0.078) (0.080) (0.145) (0.260) (0.129) (0.524)

500 0.1082 0.1982 0.1439 0.2345 1.0044 2.022 0.9773 2.715

(0.045) (0.058) (0.034) (0.046) (0.083) (0.162) (0.095) (0.367)

1000 0.099 0.202 0.1459 0.2423 1.0067 2.0106 0.9905 2.7554

(0.0337) (0.0350 (0.024) (0.036) (0.067) (0.123) (0.071) (0.327)

5000 0.0988 0.1909 0.1527 0.2441 1.0022 1.9972 0.9982 2.9955

(0.0138) (0.014) (0.012) (0.015) (0.022) (0.042) (0.028) (0.051)

b) α1=0.45 α2=0.5 β1=0.55 β2=0.65 µ1=2 µ2=3 ν1=4 ν2=5

100 0.4316 0.4454 0.5283 0.5894 1.989 2.9757 3.9493 4.9333

(0.057) (0.064) (0.064) (0.064) (0.159) (0.212) (0.248) (0.444)

500 0.4489 0.4745 0.5416 0.6257 2.0079 2.992 4.0002 4.9824

(0.041) (0.030) (0.040) (0.032) (0.103) (0.127) (0.133) (0.141)

1000 0.4516 0.4803 0.5444 0.6344 2.007 2.9871 4.0101 4.9915

(0.029) (0.025) (0.027) (0.027) (0.096) (0.109) (0.130) (0.155)

5000 0.4425 0.4877 0.5431 0.6401 1.985 2.988 3.9874 4.9854

(0.021) (0.012) (0.020) (0.014) (0.064) (0.065) (0.074) (0.092)

Table 2: Estimated values of unknown parameters for BRrNGINAR(1) model with two states using Yule-

Walker method. The standard errors of estimates are given in the brackets.

a) α1=0.1 α2=0.2 β1=0.15 β2=0.25 µ1=1 µ2=2 ν1=1 ν2=3

100 0.1681 0.2175 0.1671 0.2017 0.9671 1.9477 1.0168 2.8605

(0.123) (0.127) (0.127) (0.123) (0.247) (0.359) (0.214) (0.560)

500 0.1163 0.2004 0.1459 0.2382 1.0035 1.9938 1.0155 2.9531

(0.075) (0.079) (0.073) (0.074) (0.097) (0.186) (0.104) (0.262)

1000 0.1061 0.195 0.1516 0.2402 1.0007 1.9983 1.016 3.0034

(0.057) (0.058) (0.048) (0.055) (0.065) (0.119) (0.077) (0.221)

5000 0.1009 0.2029 0.1484 0.2529 0.994 1.9956 1.0003 3.0076

(0.025) (0.024) (0.025) (0.024) (0.027) (0.057) (0.031) (0.091)

b) α1=0.45 α2=0.5 β1=0.55 β2=0.65 µ1=2 µ2=3 ν1=4 ν2=5

100 0.4149 0.449 0.5316 0.5641 1.9574 2.972 4.0829 5.1293

(0.169) (0.169) (0.178) (0.159) (0.513) (0.739) (0.930) (1.279)

500 0.4409 0.4803 0.5359 0.6358 1.9907 2.9747 3.9991 5.0536

(0.085) (0.077) (0.076) (0.075) (0.235) (0.358) (0.447) (0.588)

1000 0.4457 0.4877 0.5396 0.6361 1.9744 2.9839 4.0285 5.0532

(0.064) (0.057) (0.054) (0.053) (0.163) (0.245) (0.288) (0.398)

5000 0.4472 0.4988 0.5477 0.6486 1.9963 2.9922 3.9944 5.0088

(0.027) (0.029) (0.025) (0.024) (0.064) (0.100) (0.130) (0.197)
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Predrag M. Popović, Petra N. Laketa and Aleksandar S. Nastić 371

From the presented results, we can conclude that the estimates converge to the true

values with the growth of the sample length, which is followed by the decrease of the

standard deviation of the estimates. We can notice that both methods perform better

when the true values of the parameters are larger (this will be important when we discuss

the results from the application section). A probable reason for that is that when the

parameters take small values, the generated series have a lot of zeros. So, these methods

need bigger samples to estimate parameters of such “flattened” series.

The CML method provides good results even for samples of length 100. Also, there

is no influence on the estimates with respect to the number of random states. On the

other hand, the number of random states has a large impact on YW estimates when the

sample length is 100. When there are only two states, YW performs similarly as the

CML method. With three states, YW provides quite unprecise estimates for samples

of length 100. The reason for that lies in the fact that the correlation functions are

calculated on small sub-samples, thus their values are not very reliable. So, we can

notice large deviations from the true values in the test c). The estimates are much better

when the length of the sample is 500 or larger. The estimates of the parameters µi and

νi, i ∈ {1,2,3} converge very quickly with both methods, regardless of the number of

states.

The probability vector of states and the transition probability matrix are estimated

regardless of YW and CML methods. The probability vector is estimated by dividing

the number of occurrences of a state by the length of the sample, while for the transition

probability matrix, the number of transitions from state i to state j is divided by the

total number of occurrences of states i. This way, we obtain very precise results for all

studied samples, thus we omit a detailed discussion here.

We can conclude that CML is much more reliable for small samples (when the length

of series is 100). On the other hand, a disadvantage of the CML method is that CML es-

timates are obtained numerically, thus the CML method is much more time consuming.

The YM method provides estimates quite close to the real values when the sample size

is 500 or greater and, since it has the analytical solution, it proves to be a better choice

than CML for large samples.

The estimation procedure was conducted by using the Monte Carlo simulation. Thus,

for each of 100 sample paths we estimate the model parameters. So, for each of these

parameters, we get series of 100 values. The mean values and the sample standard

deviations of these series are presented respectively as the estimations and their standard

errors in Tables 1-4.

7 Application

This section is devoted to the practical aspect of the model. We test the model on a real

data set and compare the results to some other known bivariate models. The comparison

is based on the ability of the model to predict a value one step ahead for the observed
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time series. The goodness of fit is measured in terms of the root mean square error

(RMS). Also, we provide values for the Akaike information criterion (AIC), but since

we are focused on the forecasting ability of the model, the main attention is paid to the

values of RMS.

Parameters of the model are estimated using the conditional maximum likelihood

method. As we have concluded in the previous section, the YW method is not very

reliable for samples of length 100. Since the series that we deal with in this section have

between 105 and 144 observations, we will only use the CML method for parameter

estimation.

We compare the BRrNGINAR(1) model with three other bivariate models. Two of

these models are with constant coefficients and dependent innovation processes, where

one evolves under the Poisson bivariate distribution (BVPOIBINAR(1) model) and the

other evolves under the negative binomial distribution (BVNBIBINAR(1) model). Both

models were presented in Pedeli and Karlis (2011). The third model that we use for

comparison was presented in Popović et al. (2016), it has random coefficients and inde-

pendent innovation processes (BVGGINAR(1) model).

We test our model on three data sets. First, we consider the data set that contains

two series of different events observed in the same region. Then, we focus on bivariate

time series composed of data of the same event, observed in different regions. The

third test considers two series of data of the same type of event that evolve in the same

environment. In all three cases, we assume that the same factors influence both observed

series.

7.1 Different events observed in the same region

First, we will test our model on the same data series as in Popović et al. (2016). These

series are monthly counts of robberies (ROBB) and aggravated assaults (AGGASS)

from January 1990 to December 2001 (for more details about these time series, see

Popović et al. (2016)). The observed series together with their ACF and PACF are given

in Figure 1. The bar plots in Figure 1 imply a higher level of activities in the first half

compared to the end of the series. The series fluctuate around different means during

two periods, so the BRrNGINAR(1) model might be appropriate since it has the ability

to capture these changes of the frequency.

The results can be found in Table 5. It can be noticed that RMS for both series is the

lowest for the BRrNGINAR(1) model. For the observed series, we have detected two

states. According to this conclusion, we define the BRrNGINAR(1) model. For the

BRrNGINAR(1) model, the main drawback is the number of parameters, but as we can

see the model produces the lowest prediction errors, especially for the AGGASS series,

and the lowest AIC value.
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Table 5: Parameter estimates of INAR models, RMS and AIC for ROBB and AGGASS data series.

Model CML estimates RMS RMS AIC

ROBB AGGASS

BRrNGINAR(1)
α̂1 = 0.515(0.008), α̂2 = 0.568(0.021)

2.376 1.648 1044.45
β̂1 = 0.259(0.105), β̂2 = 0.37(0.059)

µ̂1 = 2.388(0.001), µ̂2 = 3.205(0.001)

ν̂1 = 1.117(0.001), ν̂2 = 2.018(0.001)

BVGGINAR(1)
α̂= 0.499(0.052), p̂ = 0.887(0.12), â = 2.877(0.328)

2.496 1.827 1065.83
β̂ = 0.281(0.058), q̂ = 0.805(0.192), b̂ = 1.765(0.187)

BVPOIBINAR(1)
α̂1 = 0.413(0.042), λ̂1 = 1.664(0.148)

2.541 1.857 1183.76
α̂2 = 0.21(0.053), λ̂2 = 1.389(0.128), φ̂= 0.443(0.107)

BVNBIBINAR(1)
α̂1 = 0.413(0.046), λ̂1 = 1.665(0.205)

2.541 1.88 1077.39
α̂2 = 0.169(0.061), λ̂2 = 1.461(0.182), β̂ = 0.883(0.176)

Figure 1: Bar plots, autocorrelation and partial autocorrelation functions of robberies and aggravated

assaults recorded in one police station.
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Table 5 contains the estimated values of model parameters as well as the standard

errors of these estimates. Since the estimates are obtained with the CML method, these

standard errors are computed as the square root of the diagonal elements of the inverse

of the Hessian (the optim function from the programming language R can return the

Hessian). The same holds for Table 6 and Table 7 that are going to be discussed in the

next two subsections.

Table 6: Parameter estimates of INAR models, RMS and AIC for SIMPASS-A and SIMPASS-B data series.

Model CML estimates RMS RMS AIC

SIMPASS-A SIMPASS-B

BRrNGINAR(1)
α̂1 = 0.502(0.131), α̂2 = 0.507(0.001)

1.448 2.164 1066.63
β̂1 = 0.52(0.088), β̂2 = 0.63(0.191)

µ̂1 = 1.768(0.001), µ̂2 = 2.485(0.001)

ν̂1 = 3.877(0.552), ν̂2 = 4.52(0.454)

BVGGINAR(1)
α̂= 0.492(0.001), p̂ = 0.558(0.075), â = 2.076(0.001)

1.612 2.48 1118.61
β̂ = 0.65(0.041), q̂ = 0.291(0.053), b̂ = 2.075(0.001)

BVPOIBINAR(1)
α̂1 = 0.315(0.065), λ̂1 = 1.544(0.171)

1.588 2.243 1053.74
α̂2 = 0.294(0.064), λ̂2 = 2.96(0.303), φ̂= 0.42(0.201)

BVNBIBINAR(1)
α̂1 = 0.33(0.067), λ̂1 = 1.512(0.183)

1.584 2.238 1043.91
α̂2 = 0.345(0.066), λ̂2 = 2.744(0.319), β̂ = 0.168(0.065)

Table 7: Parameter estimates of INAR models, RMS and AIC for Bitfinex and Kraken data series.

Model CML estimates RMS RMS AIC

Bitfinex Kraken

BRrNGINAR(1)
α̂1 = 0.819(0.001), α̂2 = 0.767(0.084)

9.611 4.142 1333.53
β̂1 = 0.83(0.001), β̂2 = 0.829(0.011)

µ̂1 = 20.782(1.647), µ̂2 = 24.362(1.619)

ν̂1 = 10.056(1.252), ν̂2 = 11.117(0.985)

BVGGINAR(1)
α̂= 0.497(0.012), p̂ = 0.783(0.069), â = 23.361(0.001)

11.415 4.727 1522.22
β̂ = 0.433(0.001), q̂ = 0.233(0.054), b̂ = 10.138(0.001)

BVPOIBINAR(1)
α̂1 = 0.515(0.022), λ̂1 = 11.409(0.583)

10.802 4.287 1603.54
α̂2 = 0.558(0.037), λ̂2 = 4.529(0.405), φ̂= 4.465(0.416)

BVNBIBINAR(1)
α̂1 = 0.611(0.023), λ̂1 = 9.142(1.141)

10.509 4.263 1273.17
α̂2 = 0.666(0.026), λ̂2 = 3.432(0.466), β̂ = 1.198(0.252)

7.2 The same event observed in the different regions

The BRrNGINAR(1) model evolves under hidden time series that represents certain

states of the observed series. Thus, the observed series are affected by some com-

mon factor. To find the most realistic scenario, we will focus on the time series of the

same event that took place in different regions. From the database that can be found

on website http://www.forecastingprinciples.com, we examine the number of

http://www.forecastingprinciples. com
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simple assaults recorded in two police stations located in Rochester. These data were

recorded from January 1990 to December 2000 in police stations number 36055009401

and 36055009602, so we denote the data series SIMPASS-A and SIMPASS-B, respec-

tively. The mean values of these series are 2.24 and 4.23, while the variances are 3.11

and 5.79, respectively. The correlation coefficient between the two series is 0.29. The

autocorrelation coefficients at lag one are 0.45 and 0.36 for SIMPASS-A and SIMPASS-

B, respectively.

The bar plots of the observed series are given in Figure 2. We can notice some

similar patterns in the evolution of these two series. The bar plots in Figure 2 imply a

higher rate of activities at the beginning compared to the end of the observed data. This

suggests the existence of two or more random states for the BRrNGINAR(1)model. The

BRrNGINAR(1) with two random states shows better performance than the model with

three random states in terms of RMS. Models with more than three random states are

not adequate for these series, since the observed data set is not long enough to properly

estimate all parameters of such models.

Figure 2: Bar plots for simple assaults recorded in the two police stations.

Since the random states have to be the same for both series, they are defined in

the following way. The step one is to determine states for each series separately. This

procedure is performed by using the quantiles of the observed series. Since we have

only two states, we use the median as the boundary for determining states. Then, the

states for the BRrNGINAR(1) model are determined as rounded average values of the

states from step one for each observed moment. The states are given in Figure 3. In

some cases, two observed values of one series have different states although they are

equal. This is the consequence of determining random states for both series. But, in

spite of this, it can be noticed that observed values are grouped into clusters.

Once again, we will compare the BRrNGINAR(1) model to three bivariate mod-

els mentioned above. The results are summarized in Table 6. We can notice that the

BRrNGINAR(1) model achieved a much lower RMS for both observed series. Since

we examine two time series of the same criminal activity, we can expect that the same

factors affect the generation of these series. For example, unemployment or lack of

police officers will encourage someone to commit a criminal act such as a simple as-
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sault. Our model is based on this assumption, and as such it provides the best results

from the forecasting point of view. We can notice that the AIC value is quite close to

the BVPOIBINAR(1) and BVNBIBINAR(1) models. Since the BRrNGINAR(1) model

depends on a larger number of parameters, it was expected to have a little bit larger value

of the AIC.

Figure 3: States for SIMPASS-A and SIMPASS-B data series. The state one is denoted with × and the state

two with ◦.

For the analysis of the prediction error made by the BRrNGINAR(1) model, we use

the approach discussed in Section 5. On the data sets SIMPASS-A and SIMPASS-B,

the model makes the root mean square errors of 1.448 and 2.164, respectively. It can be

said that these errors are produced by two sources, the prediction of the survival process

and the prediction of the innovation process. We measure the prediction error of the

survival component as the difference between the value calculated from equation (12)

and the first addend of equation (14) when k = 1. Similarly, the prediction error of the

innovation component is the difference between the value calculated from equation (13)

and the second addend of equation (14) when k = 1. The residuals are presented in

Figure 4.

The black line shows the series of the prediction errors created by the survival com-

ponent, while the gray one represents the error of the innovation component. The dots

are the actual prediction errors that we get when we apply the BRrNGINAR(1) model to

the two observed series. It can be noticed that the two components produce errors with

the opposite sign. Actually, the correlation coefficient between the two components

for SIMPASS-A series is -0.55, and for SIMPASS-B it is -0.75. As a result of these

negatively correlated errors, the actual prediction error is reduced. The most obvious

consequence of this kind of behaviour can be noticed on the tenth observed value of the

SIMPASS-A data set and on the seventh observed values of the SIMPASS-B data set.

It cannot be said that one or the other component produces larger errors. The be-

haviours of the survival and the innovation processes are quite similar. One of the most

probable reasons for this is that they are both driven by the same hidden process which

determines the states of the observed series.
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Figure 4: Prediction errors produced by the survival and the innovation processes.

7.3 The same type of event in the same environment

In order to more clearly motivate the introduction of the BRrNGINAR(1) model, we

give another example where we test the model on two time series that nowadays spark

a lot of interest among many people. Namely, we observe the volumes of two cryp-

tocurrencies traded on weekly bases. The data set contains the traded volumes from the

beginning of April 2017, until the end of March 2019, for cryptocurrencies Bitfinex and

Kraken. We denote the smallest fraction of a coin that can be traded as a unit. Since

these cryptocurrencies are traded in vary small fractions, the data that we present here

are in 1012 units. So, the average values of these series are 23.36 and 10.14, respectively

(which are actually 23.36× 1012 and 10.14× 1012 units). The standard deviations for

the two series are 14.93 and 5.64, respectively, while the correlation between the series

is 0.53. The autocorrelation coefficients on lag one are 0.71 and 0.64 for Bitfinex and

Kraken, respectively.

Both series are presented in Figure 5. From the bar plots, we can conclude that

similar factors influence weekly volumes for these two cryptocurrencies. We can clearly

distinguish periods of high and low trading intensity. Thus, a stationary model for these

two series would not be the best choice. Also, for the second series we can notice that

the three periods of high volumes are followed by low market activities, which is the
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usual trading behavior. These three peeks occurred on the last week of May 2017, the

second week of February 2018 and the last week of November 2018. Thus, we cannot

conclude that high trading volumes are connected to a specific time of year, nor that they

occur after a certain period.

Figure 5: Bar plots for weekly traded volumes of Bitfinex and Kraken cryptocurrencies.

Figure 6: States for weekly traded volumes of Bitfinex and Kraken cryptocurrencies. The state one is

denoted with × and the state two with ◦.

We notice two states of trading intensities for our model, which implies that we de-

fine the BRrNGINAR(1) with two random states, i.e. r = 2. These states are presented

in Figure 6. Similarly as in two previous examples, following these states, we esti-

mate the coefficient with the CML method and compare the results with the other three

mentioned models. The obtained results are given in Table 7.

The values in Table 7 suggest that the BRrNGINAR(1) model has the smallest RMS.

Thus, from the forecasting perspective, this model shows the best results. The advantage

of the BRrNGINAR(1) model can be noticed especially with Bitfinex series, and some

improvements are present with Kraken series as well. The reason for that probably lies

in the fact that the observed series is non-stationary. As we can see with Bitfinex series,

the BRrNGINAR(1) model estimated the mean value as µ̂1 = 20.782 and µ̂2 = 24.362,

depending on the state. Other tested models have only one parameter for modelling the

mean value. Even with the Kraken series where the difference between parameters ν̂1

and ν̂2 is not that big, we can see the improvements with RMS. The BRrNGINAR(1)
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model achieves the second best value of AIC, which is a consequence of a larger number

of parameters. Beside the fact that the number of parameters increases the AIC value,

the estimated values of all these parameters have some deviation from the real values

when the series are of length 105, as they are is this case. This fact also increases AIC

value to a certain extent, having in mind the definition of AIC.

The purpose of all this testing is not to point out one model as the best model, but

to demonstrate the type of series for which the BRrNGINAR(1) model is an adequate

one. All observed series have in common that they fluctuate around different means

during their evolution, which is expected to see when observing non-stationary series.

This kind of behaviour looks like the series have trend, but not trend that can be easily

captured with some linear or quadratic function, for example. These series take values

from different intervals in different time frames which can be captured (in some degree)

with the presented model.

8 Conclusion

The paper discusses a bivariate integer-valued autoregressive model of order one. The

model is composed of two univariate models driven by the same hidden process. This

hidden process is determined by the states that are assigned to the observed data. So, the

hidden process allows the model to adjust itself to environment changes. As such, the

model is non-stationary. Besides the main properties of the model, the focus is placed

on its forecasting ability. Through tests on real data sets, it was shown that the model

produces the smallest one-step-ahead prediction errors in terms of the root mean square

error. Also, prediction errors are analysed in more detail by investigating prediction

errors of each model component, the survival and the innovation component. These

two components produce negatively correlated one-step-ahead prediction errors. This

fact contributes to the reduction of the prediction errors which the model makes. The

model contains a large number of parameters, so it requires a little bit larger data set for

parameter estimation.

9 Appendix

Theorem 1

Proof.

a) Using the properties of the negative binomial thinning operator we have

Cov(Xk,Yl) = αzk
Cov(Xk−1,Yl), Cov(Xk,Xl) = αzk

Cov(Xk−1,Xl),
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Cov(Xk,Yl) = βzl
Cov(Xk,Yl−1), Cov(Xk,Xl) = βzl

Cov(Xk,Xl−1).

Now, from these equalities, we simply get what is required.

b) This is obvious, based on the results given in a) and the fact that correlation is

defined using the covariance.

Theorem 2

Proof. It holds that

E(Xn+k|Xn) =

(

k

∏
s=1

αzn+s

)

Xn +

k−1
∑

l=1

(

k

∏
s=1

αzn+s

)

E(εn+l)+E(εn+k), (14)

from the properties of the negative binomial thinning operator. If we take into account

the distribution of the residuals, we get

E(Xn+k|Xn) =

(

k

∏
s=1

αzn+s

)

(Xn −µzn)+µzn+k
.

The analogous relation holds for the Y component, so the required relation in a) is valid.

For the proof of b), the recurrent relation

Var(Xn+k|Xn,Yn) = α2
zn+k

Var(Xn+k−1|Xn,Yn)

+αzn+k
(1+αzn+k

)E(Xn+k−1|Xn)+Var(εn+k)

is used.

The statement c) follows from the fact that Xn and Yn are independent for known Zn,

Xn−1, Yn−1 and Zn−1. Also, Zn is independent from Xn−1 and Yn−1 for known Zn−1. From

the definition of the process {(Xn,Yn)}, we have that

P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1) = P

(

xn−1
∑

i=1

U
zn−1
i + εn(zn−1,zn) = xn

)

,

P(Yn = yn|Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1) = P

(

yn−1
∑

i=1

V
zn−1

i +ηn(zn−1,zn) = yn

)

.

Therefore, the statement c) is obtained using the above equations and properties of the

residuals.

Equation (12)

Proof. For simplicity, we will denote the probability mass function in the denominator

as P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1) = P(Xn = xn|zn,xn−1,zn−1). Now we
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have

E(αzn ∗Xn−1(zn−1)|Fn) =

xn
∑

j=0

j · f ( j)

=

xn
∑

j=0

j ·
P(NB(xn−1,αzn) = j) ·P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=

∑xn
j=0 j

(

xn−1+ j−1
j

) α
j
zn−1

(1+αzn−1
)xn−1+ j P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=

xn−1

αzn−1

1+αzn−1

∑xn
j=1

(

xn−1+ j−1
j−1

) α
j−1
zn−1

(1+αzn−1
)xn−1+ j−1 P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=
xn−1

αzn−1

1+αzn−1

∑xn−1
j=0

(

xn−1+1+ j−1
j

) α
j
zn−1

(1+αzn−1
)xn−1+ j P(εn(zn−1,zn) = xn −1− j)

P(Xn = xn|zn,xn−1,zn−1)

= xn−1αzn−1

xn−1
∑

j=0

(

xn−1+1+ j−1
j

) α
j
zn−1

(1+αzn−1
)xn−1+1+ j P(εn(zn−1,zn) = xn −1− j)

P(Xn = xn|zn,xn−1,zn−1)

=
xn−1αzn−1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

·P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1),

Equation (13)

Proof. For simplicity, we will introduce the following notation P(A = a|Zn = zn,Xn−1 =

xn−1,Zn−1 = zn−1) = P(A = a|zn,xn−1,zn−1). Now we have

E(εn(zn−1,zn)|Fn) =

xn
∑

i=0

i · f (xn − i) =

xn
∑

i=0

(xn − i) · f (i)

=
1

P(Xn = xn|zn,xn−z,zn−1)

·

xn
∑

i=0

(xn − i)P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

=
1

P(Xn = xn|zn,xn−z,zn−1)
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·

[

xn

xn
∑

i=0

P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

−

xn
∑

i=0

i ·P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

]

=
1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

· [xnP(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

−xn−1αzn−1
P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1)

]

,

where the second term inside the brackets is derived in the same way as equation

(12).

Theorem 1 from Laketa et al. (2018)

Let {Xn(zn)} be the RrNGINARmax(M ,A ,P) or the RrNGINAR1(M ,A ,P) pro-

cess. Let us suppose that zn = j and zn−1 = i for some i and j ∈ Er. If 0 ≤ α j ≤
µ j

1+maxk∈Er µk
, then the distribution of the random variable εn(i, j) can be written as a

mixture of two geometric distributed random variables with means µ j and α j as follows

εn(i, j)
d
=











Geom
(

µ j

1+µ j

)

, w.p. 1−
α jµi

µ j−α j
,

Geom

(

α j

1+α j

)

, w.p.
α jµi

µ j−α j
.

(15)
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Ristić, M.M., Nastić, S.A. and Miletić Ilić, V.A. (2013). A geometric time series model with dependent

Bernoulli counting series. Journal of Time Series Analysis, 34, 466–476.

Rydén, J. (2017). Statistical modeling of warm-spell duration series using hurdle models. SORT, 41, 177–

188.



384 Forecasting with two generalized integer-valued autoregressive processes...

Tang, M. and Wang, Y. (2014). Asymptotic behavior of random coefficient INAR model under random

environment defined by difference equation. Advances in Difference Equations, 2014, 1–9.

Weiß, C.H. (2015). A Poisson INAR(1) model with serially dependent innovations. Metrika, 78, 829–851.

Weiß, C.H., Homburg, A. and Puig, P. (2019). Testing for zero inflation and overdispersion in INAR(1)

models. Statistical Papers, 60, 823–848.

Zheng, H., Basawa, I.V. and Datta, S. (2006). Inference for pth-order random coefficient integer-valued

autoregressive processes. J. Time Ser. Anal., 27, 411–440.

Zheng, H., Basawa, I.V. and Datta, S. (2007). First-order random coefficient integer-valued autoregressive

processes. Journal of Statistical Planning and Inference, 137, 212–229.

Zhu, R. and Joe, H. (2010). Negative binomial time series model based on expectation thinning operators.

Journal of Statistical Planning and Inference, 140, 1974–1888.

Zhu, R. and Joe, H. (2006). Modelling count data time series with Markov processes based on binomial

thinning. Journal of Time Series Analysis, 27, 725–738.


	1
	2
	3
	4
	5
	6
	7
	8

