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A Framework for Official Temporary
Population Statistics

Elin Charles-Edwards1, Martin Bell1, Radoslaw Panczak1,

and Jonathan Corcoran1

There is considerable demand for official statistics on temporary populations to supplement
statistics on resident and working populations. Progress has been slow, with temporary
population statistics not part of the standard suite of measures produced by national statistical
offices. This article adopts the framework for official statistics proposed by Raymer and
colleagues as a guide to aspects relating to society, concepts, data, processing, outputs and
validation. The article proposes a conceptual framework linking temporary population
mobility, defined as a move more than one night in duration that does not entail a change in
usual residence, and temporary populations. Using Australia as an example, we discuss
various dimensions of temporary mobility that complicate its measurement. We then report
the outcomes of a survey of user needs for temporary population statistics along with a
desktop review of OECD countries to identify the best formulation of temporary population
statistics, and current international practice respectively. The article concludes by proposing
two related concepts for temporary populations: population present and person-time, which
overcome a number of issues currently impeding progress in this area and discuss their
potential implementation.
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1. Introduction

Accurate and timely population statistics are fundamental to understanding society.

Official statistics take a range of forms, reflecting different population concepts, varying

data availability, and changing societal needs (Raymer et al. 2015). The two most

commonly produced forms of population statistics are de jure counts, which measure the

population usually resident in an area at a particular point in time, and de facto counts,

which capture the population present in an area. Both de jure and de facto estimates tend to

capture a snapshot of populations at a single point in time, and miss the daily, weekly and

seasonal flux in populations that are driven by diurnal and temporary population

movements. There is an established demand for estimates that account for short-term

shifts in populations to serve as the denominator for health, crime and other statistics, to

q Statistics Sweden

1 The University of Queensland, St Lucia, Brisbane, Australia, 4072. Emails: e.charles-edwards@uq.edu.au,
martin.bell@uq.edu.au, r.panczak@uq.edu.au and jj.corcoran@uq.edu.au
Acknowledgments: The authors wish to thank the Australian Bureau of Statistics (ABS) for facilitating the
collection of data on which the paper is based. However, the interpretations of the analysis are solely those of the
authors and do not necessarily reflect the views and opinions of the ABS or any of their employees. This research
was funded by the Australian Government through the Australian Research Council Linkage project scheme,
LP160100305.

Journal of Official Statistics, Vol. 36, No. 1, 2020, pp. 1–24, http://dx.doi.org/10.2478/JOS-2020-0001

Unauthentifiziert   | Heruntergeladen  23.03.20 10:35   UTC

http://dx.doi.org/10.2478/JOS-2020-0001


assist in emergency preparedness and response, and for the planning and provision of local

goods and services (Smith 1989; Deville et al. 2014; Kounadi et al. 2018). The United

Nations (2017) has called for estimates of temporary or service populations “if a

population present count or usual resident population count does not accurately represent

the demand for, or provision of services in a country or part of a country” (United Nations

2017, 180). Improved data availability, particularly from mobile phones and related

technologies, has led to an increased interest in enumerating short-term population change.

However, such estimates have been produced outside of official statistical frameworks,

often for a single area, and intermittently. Despite their importance as a complement to

common population statistics, few statistical agencies currently produce official temporary

population estimates, and it remains unclear how such estimates are best conceptualised

and generated.

This article explores issues associated with the production of official temporary

population statistics. The production of estimates is complex due to variability in the

nature and dynamics of the underlying mobility driving short-term shifts in population

numbers, a lack of clarity with respect to user needs, limited data availability and

nascent conceptual development. We seek to advance the field of temporary population

estimates by systematically exploring these issues, and through this process, provide

greater conceptual clarity on the formulation of estimates. We begin in Section 2 with a

discussion of the spatiotemporal dynamics of various forms of temporary population

mobility and their impacts on temporary populations, using Australia as a case study.

Understanding the dynamics of mobility is an essential prerequisite to the production of

a robust and useful suite of measures of temporary populations. While statistics must be

responsive to national contexts, Australia offers a useful testbed, since it features both

the diverse forms of mobility and the differing types of data that are commonly found

in developed countries.

In Section 3, we report the results of a survey of Australian government officials and

planners as to their requirements for temporary population statistics. We then examine

currently published outputs of temporary population statistics in a number of OECD

countries in Section 4, before concluding by outlining a consistent conceptual basis for

temporary population statistics.

2. Temporary Mobility in Australia

Temporary population mobility can be defined as displacements from a usual residence

which are one night or more in duration but do not entail a change in usual residence.

Academic interest in temporary population mobility is longstanding (Chapman and

Prothero 1983). Early research was directed at temporary mobility in the developing

world, where temporary mobility was viewed as both a customary process and as a means

of adapting to transformations brought about by colonisation and industrialisation

(Chapman 1978; Chapman and Prothero 1983; Prothero and Chapman 1985; Mitchell

1969; Taylor 1986). Not until later did researchers in the developed world turn to the study

of temporary population mobility, spurred by Zelinsky’s (1971, 230) ‘Hypothesis of the

Mobility Transition’, which postulated an advanced society characterised by ‘[V]igorous

accelerating circulation, particularly the economic and pleasure-oriented, but other
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varieties as well’. There is now a considerable literature examining various forms of

temporary mobility in developed world settings.

In Australia, as elsewhere, temporary movements are undertaken in response to a range

of demographic, social, economic and environmental stimuli, and are facilitated by

transport technology (Figure 1). Movements are conveniently classified according to

whether they are undertaken for purposes of production or consumption at the destination

(Williams and Hall 2000). Production-related moves are exemplified by fly-in fly-out/

drive-in drive-out mobility in the resources sector, long-distance commuting, seasonal

agricultural mobility along with short-term business trips. Consumption-related mobility

includes short-term tourist stays, visits to second homes, the extended cross-continental

sojourns of elderly grey nomads, mobility to access health care, the mobility of indigenous

peoples to participate in customary activities and visits to friends and relatives (Bell and

Ward 2000). Critically, these different forms of mobility have distinct spatial and temporal

signatures, the interaction of which underpin the short-term fluctuation in temporary

populations stocks.

Bell (2004) identified nine dimensions of temporary mobility that vary for different

movement types. These are movement intensity, spatial impact, connectivity, movement

distance, spatial circuits, duration, seasonality, frequency, and periodicity. Table 1

illustrates variation in these nine dimensions for eleven types of mobility that are

nationally or locally significant in Australia (Bell 2001; Charles-Edwards et al. 2008). We

now describe these in turn.

Forces shaping mobility

Demographic Social Economic Environmental

Transport technology

Spatial

M
ob

ili
ty

 (f
lo

w
s)

Varying granularity

Dimensions Dimensions
Movement distance;
circuits; spatial
connectivity; spatial
impact

Intensity; duration;
frequency; periodicity;
seasonality

Temporal
Forms of mobility

Space-time
interactions

Temporary population
stock

Density Person-time

Production Consumption

Fig. 1. Conceptualising the mobility system.
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Intensity refers to the overall level of movement within a population. This dimension

allows numerically significant forms of mobility to be identified and also provides insights

into the composition of temporary mobility in Australia. While data are incomplete,

available information suggests that tourism, both international and domestic, business

travel, and visits to friends and relatives have the highest intensity of temporary mobility

in Australia (Charles-Edwards and Bell 2015). In 2018, there were more than 8.1 million

short-term international visitors arrivals visiting for holidays, to see friends and relatives,

on business, and for conferences or conventions (ABS 2019) and an estimated 42 million

domestic tourism trips, 23 million business trips, and 33 million trips to visit friends and

relatives taken by Australians aged 15 and older in the year ending September 2018

(Tourism Research Australia 2018). A distinct form of mobility tied to family is that of

children in shared care arrangements following parental separation. One in five Australian

children will experience parental separation before the age of 17 (Halford 2018), with 49%

of children staying overnight with their non-resident parent in 2012–2013 (ABS 2015).

Other forms of mobility are locally important. Mobility tied to second homes is significant

in several coastal areas, with second homes accounting for up to 50% of the housing stock

(Paris et al. 2014). Fly-in fly-out and drive-in drive-out mining, whereby workers in the

resource sector live remotely and travel to the mine site for extended shifts (two weeks

onsite, one week off, for example), are a significant component of the population in

resource regions, such as the Bowen Basin coal mining region of Queensland (QGSO

2018) or Western Australia’s remote north-west (Houghton 1993). Other forms of long-

distance commuting, for instance travel between regions and cities on a weekly basis, also

occur, but there are no reliable statistics on the intensity of these movements. Grey

nomads, older people who travel the country in recreational vehicles, are estimated at 2%

of the Australian population (Davis 2011) and concentrate in northern Australia during the

winter months. Other forms of mobility, such as seasonal agricultural mobility undertaken

by international working holidaymakers and itinerant groups, are an important component

of the workforce in many rural areas (Hanson and Bell 2007). Indigenous mobility is

another significant form of movement, with extensive circuits of movement tied to

customary activity and access to services across remote and rural Australia (Taylor and

Bell 2012).

The demographic impact of temporary population mobility is determined by its

intensity, but also by the degree to which temporary population mobility redistributes

population across the settlement system or its spatial impact. Borrowing from

conventional measures of permanent migration, this can be captured by measures of

movement effectiveness, that is, the degree to which flows from one area to another are

balanced by counter-flows in the opposite direction. A system with unidirectional flows

will be highly effective at redistributing populations, while systems with balanced flows

will result in minimal redistribution of the population, even though there may be a high

intensity of movement. Although there is substantial evidence demonstrating the spatial

concentrations generated by particular types of temporary mobility (see, for example Bell

and Ward 1998), little work has been undertaken to directly measure movement

effectiveness among temporary populations. That said, some assessment of particular

types of movement can be made a priori. For example, seasonal agricultural labour, fly-in

fly-out or drive-in drive-out mining are likely to be highly effective at redistributing
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populations due to the spatial concentration of the activities that trigger these moves. By

contrast, business travel and visits to friends and relatives tend to more closely reflect

national settlement patterns and are more likely to be balanced by counter-flows.

Another spatial aspect is connectivity, also termed spatial focusing (Plane and Mulligan

1997). In any system of interregional mobility, the magnitude of flows varies between

origin and destination pairs. This reflects both the size of the populations at origins and

destinations along with the distance between them, and also indicates the strength of

functional linkages (Bell et al. 2002). While empirical evidence is scant, a high degree of

spatial focusing at destinations is likely when mobility is triggered to access spatially

concentrated goods or services. Second home mobility, for example, is concentrated in

high amenity areas, often within a few hours of major population centres (Back and

Marjavaara 2017).

With respect to movement distance, temporary movements in Australia involve longer

distances on average than permanent migration (Bell and Brown 2006); however, the rate

of distance decay varies according to the purpose of the move. Tourism movements

(McKercher 2018) and second home mobility (Müller et al. 2004), exhibit high distance

decay, whereas visits to friends and relatives and fly-in fly-out mining are less affected.

Distance can also be a driver of temporary mobility. For example, mobility associated with

fly-in fly-out/ drive-in drive-out mining substitutes for permanent moves in remote

regions, where the costs of establishing permanent settlements are prohibitive (Houghton

1993).

The final spatial dimension of mobility concerns movement circuits. While some forms

of mobility involve a simple oscillation between a single origin and destination (e.g., travel

to and from second homes), others involve complex itineraries linking multiple

destinations (Bell 2001). The mobility of seasonal agricultural workers is one such

example, with working holiday makers, retirees and permanent itinerants following a

series of harvest trails to meet seasonal demand for horticultural labour across regional

Australia (Hanson and Bell 2007).

Shifting to the temporal dimensions of mobility, temporary movements are of variable

duration, ranging from a single night (i.e., business travel) to sojourns extending over

many months (i.e., grey nomads). Duration can be measured with respect to the length of

absence from an origin, or the length of a visit at the destination. The majority of

movements undertaken in Australia are of short duration, with around half of all

movements undertaken within Australia being fewer than two nights in duration. Longer

trips, however, make-up three-quarters of all nights away from home (Tourism Research

Australia 2018), and thus have a disproportionate impact on temporary population stocks

at origins and destinations.

Seasonality is a key aspect of mobility that differentiates it from permanent migration.

Institutional seasonality, which reflects the timing of school and public holidays and

religious festivals, such as Easter and Christmas, impact the timing of both discretionary

tourism and business flows. Natural seasonality, driven by climatic factors, is evident in

the mobility of tourists, grey nomads and seasonal agricultural labour. The areal expanse

of Australia, spanning multiple climatic zones, produces a north-south gradient in

seasonality. Visits peak in the north of the country during the southern hemisphere winter,

or “dry season”, at which time climate is comfortable and roads are accessible. By
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contrast, visits in southern Australia peak over the summer months (Charles-Edwards and

Bell 2015). Seasonality means that the timing of peaks in temporary populations varies

across the country.

The frequency of mobility refers to the number of moves undertaken by a person in

a fixed interval. Some forms of mobility are undertaken at frequent intervals, such as

the movements associated with long-distance business commuting or second home

ownership. Other movements are more sporadic, for example, occasional tourist trips.

Like a number of other dimensions of mobility, frequency can be measured with respect to

absences from an origin, and may involve multiple destinations for different purposes, or

may reflect frequent visits to a particular destination. Movement frequency can have

implications for estimates of temporary populations, as it leads to a divergence between

the number of moves and the number of movers as the measurement interval increases.

Data from the Australian National Visitor Survey reveal that one quarter of Australians

aged 15 and over make an overnight trip in any given four week period. Of these, only 77%

make a single trip, but 45% of trips are made by repeat movers (Tourism Research

Australia 2018). This suggests that repeat movers account for a disproportionate share of

temporary populations.

Periodicity combines information on frequency and duration to capture the sequences of

movements (Taylor and Bell 2012). Fly-in fly-out mobility, mobility tied to second homes

and many forms of customary mobility undertaken by indigenous Australians can all

demonstrate a high degree of periodicity that differentiates them from other forms of

mobility of similar duration. Periodicity may be of interest to planners and policy makers

as it can impact the level of place attachment and different service requirements of visitors

at destinations, with regular visitors having different demands to those visiting a region on

a one-off basis.

The nine dimensions of mobility proposed by Bell (2004) highlight the complex

spatiotemporal behaviours that characterise temporary forms of mobility in Australia.

Useful progress has been made in developing robust measures that capture these multiple

dimensions of mobility (see, for example Charles-Edwards and Bell 2015; Taylor and Bell

2012), but implementation is commonly hampered by a lack of consistent, reliable data.

Moreover, even the more straightforward metrics, such as intensity and duration, depend

on whether the movement is measured at the origin or destination. Equally challenging is

whether to measure moves or movers, more or less identical when the observation interval

is short, but divergent as the interval lengthens due to repeat mobility. The dimensions

described above provide important insights into the dynamics of mobility, and the

processes that generate shifts in the population surface from day to day, week to week and

month to month, but they are not necessarily the measures that are best suited to the needs

of users, nor are they readily estimated by statistical agencies.

3. Survey of User Needs

An understanding of user needs is fundamental to the production of official statistics

(Raymer et al. 2015). While there have been long-standing calls for the estimation of

temporary populations (Smith 1989; Cook 1996, 1998; Hugo and Harris 2013), little is

known about user requirements with respect to population coverage, geography, the
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frequency of estimates, population characteristics and the types of metrics that may be of

most use. To gain insight into user needs, an online survey was distributed with support

from the Australian Bureau of Statistics to a range of stakeholders including government

agencies, state statistical offices, local government associations and the private sector. The

survey was initially distributed to a list of over 100 individuals and organisations, with

users encouraged to share the survey link with others in their network. A total of 57

responses were received. Most respondents worked in the government sector, with 25

employed in local government, and a further 26 in state or federal agencies. Four

respondents were private sector employees, while one was employed in academia. One

respondent did not state their employment sector. The survey asked fifteen questions

relating to the potential uses of temporary population estimates, desired population

coverage, the temporal resolution of estimates, the output geography and population

characteristics of interest. We note that the sample is largely comprised of local

government planners and officials and recognise that other users may have different needs.

3.1. Why are Estimates of Temporary Populations Needed?

Fundamental to the creation of official statistics is an understanding of the need for, and

utility of, any output statistics. Respondents were asked an open-ended question on the

need for estimates of temporary populations. All respondents (57) answered this question.

Responses were manually coded using an inductive approach. Codes were first created

based on a 50% sample of responses. These codes were then reapplied to this sample to

validate before being applied to the remaining responses. Results are shown in Figure 2.

The major application of temporary population estimates was seen to lie in better planning

and provision of local goods and services (36 of 57 responses) to cater for peak and

seasonal variations in demand. A second commonly cited purpose was to provide a more

robust basis for the equitable distribution of Commonwealth Government financial

resources to local government authorities (10/57). These are currently allocated using a

formula based principally on de jure population estimates prepared by the Australian

0 5 10 15 20 25 30 35 40

Environmental impact

Emergency planning

Understanding social impacts

Land-use planning

Understanding economic impacts

Denominator for statistics and other research

Fiscal equalisation grants

Infrastructure and service planning and provision

Number of responses

Fig. 2. Need for estimates.
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Bureau of Statistics, which are seen as disadvantaging local authorities that host large

temporary populations.

Other responses included the need for appropriate denominators for crime and health

statistics, a theme that has emerged in the academic literature, as well as information to

better understand the nature of the temporary populations themselves (e.g., fly-in-fly-out

populations). A number of respondents suggested that estimates were needed to better

understand the economic (8/57), social (6/57) and environmental impacts (2/57) of

temporary populations. This included the need for statistics to better model labour market

impacts and local economic effects, including the impact of temporary population on

housing affordability arising from the short-term letting market. Land-use planning,

particularly as it relates to land supply, and emergency planning and preparedness, were

also nominated. The results overwhelmingly focused on local impacts, perhaps

unsurprising given the high proportion of local government officials among respondents,

but there was also a desire for statistics with wider geographic coverage for modelling and

research purposes.

3.2. Who Should be Captured?

Respondents were asked to identify the groups of visitors that are significant in their region

of interest from a closed list, with multiple responses accepted (Figure 3). Domestic

tourists (48/57) and international tourists (44/57) topped the list, reflecting the high overall

intensity of these movements. Second home owners (36/57) were also of strong interest,

followed by grey nomads (33/57), fly-in fly-out (30/57) and drive-in drive-out workers

(29/57). Indigenous peoples, seasonal and itinerant workers, homeless populations, people

visiting friends and relatives, and international workers received fewer mentions. Two

respondents noted that a single index capturing all forms of temporary population,

irrespective of motives, would be most valuable.

In addition to information on overnight visitors, respondents expressed a need for

estimates of daytime populations, including commuters (28/57) and those travelling for

Day trippers (e.g., tourists; shoppers)
Daily commuters

Other
Working holiday makers

Fly-in fly-out workers
Drive-in drive-out workers

Grey nomads
Second home owners
International tourists

Domestic tourists
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Number of responses

Fig. 3. Types of visitors.
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consumption-related purposes (39/57). Most of these preferred separate estimates of

daytime as against overnight populations (38/55). Respondents were also asked about the

need to identify the purpose of the move. A total of 47 of 57 respondents wanted to

distinguish tourists, while 46 wanted to separately identify business travellers. Thirty-eight

respondents wanted to know if visitors accessed goods and services at the destination and

45 thought it was important to distinguish between occasional and repeat visitors (e.g.,

second home owners). What emerges from these results is the diverse composition of

temporary populations across Australian regions. For official statistical purposes, targeting

population subgroups for estimation may produce locally useful results, but will not serve

as a national standard.

3.3. Temporal Framework

A key feature of temporary populations is their variation over time, therefore a single

point estimate is unlikely to adequately represent the temporary population of an area.

Respondents were asked about the temporal variations in populations they were most

interested in capturing from a closed set of responses (Figure 4). Seasonal variation in

population numbers was the most common response (49/56), followed by variations

between weekday and weekend populations (35/56). Estimates capturing holiday

populations were nominated by 34 respondents. Daily estimates were nominated by 16.

Significantly, there was little desire for estimates capturing variation over the course of

a single day (12/56). Other time periods were nominated by 13 respondents; these

included estimates capturing monthly variations (3), periods coincident with
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Fig. 4. Temporal variation to be captured.
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agricultural harvest seasons (2), estimates timed to capture specific events (2), and

single point estimates to facilitate comparison with other Australian population

statistics. The results suggest that daily estimates would best meet the needs of most

users; however, the data and processing needed for continuous estimates are significant.

Monthly estimates offer a potential compromise providing a balance between temporal

specificity and data demands.

3.4. Geography

Respondents were asked about the geographic scale at which estimates were needed.

Results are summarised in Figure 5, differentiating three levels in the hierarchy of spatial

units that make up Australia’s regional statistical framework: States and territories (of

which there are nine), Local Government Areas (LGAs – 563), and Statistical Areas

Level 2 (SA2s – 2310). Local Government Areas (44/57) emerged as the spatial unit for

which such estimates were most widely sought, unsurprisingly given that local

government officials comprised almost half the respondents. However, a large proportion

of respondents underlined the need for estimates at the small area level. SA2s, a

geographic unit with an average population of around 10,000 people (ABS 2016), were

nominated by 42 respondents. Other responses requested estimates for individual towns,

suburbs and discrete communities, as well as for Level 1 Statistical Areas, which have an

average population of just 400 people. At the other end of the spatial scale, States and

territories were nominated by nine respondents, while others pointed to a need for custom

geographies, included gridded population data. The results confirm that estimates are

needed at relatively high spatial resolution, and also reveal a desire to aggregate estimates

over space. Estimates must therefore be in a form that allows summation over multiple

spatial units without risking double counting of populations.
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Fig. 5. Australian geographic units for which respondents sought estimates of temporary populations.
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3.5. Measures

To gain a better understanding of the most useful output statistic, four measures of

temporary populations that commonly appear in the literature as options were put to

respondents (see Figure 6). These were:

1. The peak visitor population;

2. The total number of visitors in some period (e.g., a week, month or year);

3. The population present at a defined point in time; and

4. Visitor nights (or Person-time).

Estimates of the peak visitor population were the most popular option in the survey,

nominated by 42 of 57 respondents. There are two ways in which measures of peak visitor

populations are commonly implemented. The first is a measure of the capacity of an area,

that is, the maximum number of people that can be accommodated in private and

commercial accommodation (Planning Information and Forecasting Unit 2006). Estimates

of capacity can be derived from tourist accommodation surveys, counts of unoccupied or

second dwellings (McKenzie and Canterford 2018), or employer-provided housing, such

as mining camps, as well as data from sources such as (AirDNA 2019). The second

approach is to estimate the peak in actual visitor numbers, either directly from survey data

or indirectly using symptomatic data (Smith 1989) to model the change in population

numbers over time, benchmarked against the usually resident population. Examples

include the use of wastewater data (SGS Economics and Planning 2007), retail spending

statistics (Smith 1994), and mobile phone activity (Edmondson et al. n.d.). There are

limitations to both the capacity approach and measures of the actual peak in population

numbers. Estimates of capacity do not capture the timing of visits, and when aggregated

over multiple spatial units, will produce a figure many times larger than the population,

actually present. By contrast, it may be possible to capture the timing of population peaks,

but again, estimates cannot be aggregated because the seasonality of temporary

movements varies widely across space.

Population present

Visitor nights

Total visitors

Peak population
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20

Fig. 6. Potential measures of temporary populations.
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Forty-one respondents nominated estimates of the visitor population in a defined

interval, such as a month or a year, as a statistic of interest. This measure corresponds

closely to the concept of a service population, that is, the population that accesses goods

and services in a defined area (ABS 2008; United Nations 2017). In practice, visitor

population estimates tend to capture specific groups, such as elderly snowbirds, who

migrate seasonally from northern to southern states of the United States over the winter

months (Happel and Hogan 2002) or indigenous populations (Markham et al. 2013). Such

estimates undoubtedly provide insights into the demand for some goods and services and

visitor characteristics, but rarely reflect the actual population in a region at a given point in

time. Efforts to estimate total visitor numbers by summing the component visitor groups

(e.g., touristsþbusiness travellersþcommuters) risk double-counting individuals belong-

ing to multiple populations (StatsNZ 2015). Double-counting is also an issue if estimates

are for large areas, as movers can be counted at both their origin (as a resident) and the

destination, or at multiple destinations if a trip involves a complex circuit. These issues are

compounded if estimates are summed across multiple geographical units.

A third option put to respondents was a measure of visitor nights or person-time spent in a

region, which was nominated by 38 of 57 respondents. Visitor nights is a common metric in

tourism research (Theobold 2005), while person-time is a concept familiar to demographers

and epidemiologists (Vandenbroucke and Pearce 2012), used in the calculation of

occurrence-exposure rates. In essence, person-time combines information on the number of

visitors (and absentees) in a region with the duration of time they spend in that region. In

contrast to instantaneous estimates of the population present, person-time measures capture

population over extended discrete time intervals that can be of varying duration. Person-

time is not impacted by double-counting and can be aggregated over both space and time.

Also, person-time can be used to approximate the average population present in a region in a

defined interval by dividing the total person-time by the number of time units in the interval.

However, it has not been widely adopted in the literature as a measure of temporary

population (for exceptions, see Smith 1989; Batista e Silva et al. 2017).

Population present at a defined point in time was nominated by 32 of 57 respondents as a

useful measure of temporary populations. Estimates of the temporary population present

capture the number of people in an area at a given point in time and are conceptually

equivalent to a de facto population figure. The latter would include both usual residents

and visitors to a region. Given the significant seasonal variation of many forms of

temporary movement, frequent estimates would be needed to capture peaks and troughs in

population numbers. Population present measures have been generated using symptomatic

data, including mobile phone data, to track changes in populations over time (Deville et al.

2014). An alternative approach is to estimate the various components of the population at

a set point in time (see Swanson and Tayman 2011, for a formulation of this concept).

However, in the absence of temporally and spatially synchronised data enumerating

different groups, double counting is a potential source of error. Population present

estimates have many merits. They are conceptually consistent with de facto population

statistics and are not susceptible to double counting, as movers must be physically present

in a region to be counted. Population present estimates can be aggregated across multiple

geographies, though not over time. If estimates are produced at high frequency, summary

metrics, such as the peak and average population of a region, can also be created.
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3.6. Other Characteristics

Respondents were asked what was needed in regard to the characteristics of temporary

movers. Age was seen as important by 48 of 54 respondents, while sex was nominated by

29. Other characteristics mentioned by respondents included indigenous status (6/54) and

employment status (5/54). Given the difficulties in capturing population totals, at this time,

estimates of other characteristics are a secondary concern, although information on age

and sex would have clear value.

Synthesising the results of the survey, some principles for temporary population

statistics can be identified. Population outputs need to include all visitors to a region,

including domestic and international visitors, and occasional and regular visitors. The

highest demand is for estimates that capture seasonal variation in population numbers and

for small geographic areas. In Australia, Local Government Areas were nominated as the

preferred spatial unit, reflecting their political function, but Statistical Areas, Level 2, with

an average population across the country of around 10,000 persons (ABS 2016), and

bespoke geographies were also identified as necessary. Fine spatial units would facilitate

user wishes for estimates that can be aggregated into custom regions. Concerning the type

of measure, respondents sought a wide range of statistics, including the ability to

differentiate seasonal and periodic change. Within that framework, they also called for

measures covering various aspects, including the peak population, total visitors and visitor

nights. They also wanted information on characteristics and motives, but these emerge as

secondary priorities. While this does not provide definitive guidance, it does demonstrate

that demand is high and that all forms of data would likely be well received. In the first

instance, at least, the way forward therefore, should be guided by considerations of data

availability and processing.

4. Official Temporary Population Statistics: A Survey of OECD Countries

Temporary population statistics do not generally form part of standard national statistical

outputs. However, a range of information is captured in other collections that may serve as

input into temporary population estimates. These include travel and tourism surveys that

capture information on domestic and international travel. Questions on temporary

populations have been asked in a number of national censuses. For example, the 2011

Census of England and Wales asked “Do you stay at another address for more than 30 days

a year?”. A number of countries record information on second homes, but information

must be accompanied by data on utilisation to produce population estimates (Back and

Marjavaara 2017). In recent years, several statistical agencies have also explored the

utility of mobile phone and other “big data” sets as a source of information on population

mobility, with pioneering work in this space emerging in Estonia (Ahas et al. 2011). To

take stock of progress, we undertook a desktop survey of the national statistical agencies of

35 OECD member countries to determine the type of population estimates currently

produced (de jure, de facto and working) and whether any type of temporary population

estimates are available or undergoing development. We also sought to identify national

travel and tourism surveys that collect data on temporary population mobility that may be

used to inform official estimates. For this exercise, temporary population statistics were

defined broadly as any statistic that counts a non-resident population; this includes both
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diurnal and overnight visitors. The review was undertaken in the last quarter of 2018 and

was limited to national statistical agencies. Other government agencies, such as tourism

bureaus or regional government offices might also produce relevant statistics, but these fell

outside of our survey frame. As the survey was confined to online resources, results should

be viewed as indicative rather than definitive, but do provide a flavour of contemporary

approaches in the sample countries.

Results are shown in Table 2. Consistent with the UN Principles and Recommendations

(United Nations 2017), all OECD countries produce de jure population estimates and most

censuses are carried out on a de jure basis. However, five member countries also publish

de facto counts from national population censuses (Australia, Ireland, Israel, Italy, and

New Zealand). Comparison of de facto and de jure counts can provide useful insights into

the overall intensity and spatial impacts of temporary mobility (Bell and Ward 2000).

In the 2001 Australian Census, nearly 5% of the Australian population were enumerated

away from home in a distinctive spatial pattern. Cross-tabulating place of usual residence

by place of enumeration also helps identify origin-destination flows among temporary

Table 2. Desktop survey of official population statistics, OECD members.

Country
De
jure De facto

Working
population
(from census
or register)

Temporary
population
estimates

Travel or
tourism
survey Notes

Australia Yes Yes Yes No Yes 1
Austria Yes No Yes No Yes
Belgium Yes No Yes No Yes
Canada Yes No Yes No Yes
Chile Yes No Yes No Yes
Czech Republic Yes Not known Yes No Yes
Denmark Yes No Yes Yes Yes 2
Estonia Yes No Yes Yes Yes 3
Finland Yes No Yes No Yes
France Yes No Yes Yes Yes 4
Germany Yes Not known Not known No Yes
Greece Yes Not known Not known No Not known
Hungary Yes Not known Yes No Yes
Iceland Yes No Not known No Yes
Ireland Yes Yes Yes Yes Yes 5
Israel Yes Yes Yes No Yes
Italy Yes Yes Yes Yes Yes 6
Japan Yes No Yes No Yes
Korea

(Republic of)
Yes Not known Not known No Not known

Latvia Yes No Yes No Yes
Luxembourg Yes No No No Yes
Mexico Yes Not known Yes No Yes
Netherlands Yes No Yes Yes Yes 7
New Zealand Yes Yes Yes Yes Yes 8
Norway Yes No Yes No Yes
Poland Yes No Yes No Yes
Portugal Yes No Yes No Yes
Slovak Republic Yes Not known Yes No Yes
Slovenia Yes No Yes No Yes
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movers, while other census questions also reveal their characteristics. However, these

benefits of compositional and spatial detail are offset by the fact that the census provides a

snapshot of temporary mobility on a single day of the year, which may not be more broadly

representative. In the United States, the American Community Survey (ACS) captures a

modified de facto population based on a current residence rule, interviewing people living

at an address for more than two months. Official guidance suggests that the data produced

by the ACS are similar to usual resident counts derived from the decennial Census, except

in areas ‘: : :that include large beach, lake, or mountain vacation areas, or large migrant

worker communities: : :’ (U.S. Census Bureau 2018, 60). In addition to de jure and

de facto counts, estimates of working populations (i.e., based on place of work or study)

are available from the Census or population registers in 28 countries.

Temporary populations statistics, defined in this instance to include daytime populations

are produced in 9 of the 35 OECD member countries. Statistics fall into three main types.

Table 2. Continued.

Country
De
jure De facto

Working
population
(from census
or register)

Temporary
population
estimates

Travel or
tourism
survey Notes

Spain Yes No Yes No Yes
Sweden Yes No Yes Yes Yes 9
Turkey Yes Not known Not known No Yes
United Kingdom Yes No Yes Yes Yes 10
United States Yes Yes Yes No Yes

1. The Australian Bureau of Statistics conducted a pilot study to estimate temporary populations based on mobile

phone data in 2016. The pilot study has yet to be released. http://www.abs.gov.au/websitedbs/

d3310114.nsf/home/ABSþMediaþStatementsþ -þResponseþ toþ reportsþaboutþuseþofþaggregateþ level

þ telcoþdata

2. Holiday dwellings: number and nights spent (https://www.dst.dk/en/Statistik/dokumentation/documentatio-

nofstatistics/holiday-dwellings)

3. Feasibility study on the use of mobile positioning data for tourism statistics (https://www.stat.ee/78262?

highlight¼mobile%2Cphone); Commuting in Estonia. An analysis based on mobile positioning data https://

www.stat.ee/65754?highlight¼mobile%2Cphone

4. Daytime population (https://www.cso.ie/en/releasesandpublications/ep/p-cp11eoi/cp11eoi/dtpn/)

5. Population a compete a part: this captures people counted away from their commune of usual residence, but

certain groups are excluded, for example military personnel, people in hospitals, people in convents/monasteries

https://www.insee.fr/fr/metadonnees/definition/c1650

6. 2001 Census question on multiple residences (https://unstats.un.org/unsd/demographic/sources/census/quest/

ITA2001en.pdf)

7. Mobile phone estimates How many people are here? (https://www.cbs.nl/en-gb/our-services/innovation/

project/how-many-people-here-)

8. Using mobile phone data to measure population movements (https://www.google.com/url?sa¼ t&rct¼

j&q¼&esrc¼s&source¼web&cd¼1&ved¼2ahUKEwjsweavzqjgAhXNfH0KHVUDBI0QFjAAegQIChAC

&url¼http%3A%2F%2Farchive.stats.govt.nz%2F~%2Fmedia%2FStatistics%2Fservices%2Fearthquake-

info%2Fusing-cellphone-data-measure-pop-movement.pdf&usg¼AOvVaw1vjQVs2_SDGgvNrhlHNwlb)

9. Holiday home areas (https://www.scb.se/en/finding-statistics/statistics-by-subject-area/environment/land-use/

concentrations-of-holiday-homes/)

10. Workday population (https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/

populationestimates/articles/theworkdaypopulationofenglandandwales/2013-10-31); 2011 Census question on

second address (https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/2011censusnumber

ofpeoplewithsecondaddressesinlocalauthoritiesinenglandandwales/2012-10-22)
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The first estimate daytime populations using a combination of working population and usual

resident statistics captured by national censuses (see, for example the UK Office of National

Statistics (ONS 2014) and the Irish Central Statistics Office (CSO 2017)). These estimates

use an accounting framework in which entrants to the population are people working in a

region, while exits are usual residents working outside the region. The statistical output is an

estimate of the average population present in a region during working hours.

The second group of estimates capture second home populations using surveys (e.g.,

Denmark), administrative data (e.g., Sweden) or via a census (England and Wales, and

Italy). These estimates have varying conceptual bases in different countries. In Sweden,

statistics are produced measuring the number of second home dwellings, but not their

associated population, in a defined area, which can be used to estimate carrying capacity.

In Italy, and England and Wales, statistics capture the number of people who used a second

dwelling in the year prior to the Census. In Denmark, estimates are produced of both the

number of second homes and the cumulative person-nights spent in those homes.

The third group of estimates capture temporary populations using mobile phone data.

Statistics Netherlands has produced experimental estimates of the population present in

municipalities at hourly intervals (CBS n.d.). In Australia, mobile phone data have been

explored for their use in population estimates (ABS 2018). In addition to instantaneous

estimates of the population present, mobile phone data have been used to capture

temporary population flows. In Estonia, commuting and tourist flows have been monitored

in partnership with academic researchers (Ahas et al. 2011; Ilves and Karus 2014).

Statistics New Zealand used mobile phone data to track the temporary movements of

people following the Christchurch earthquake in 2011 (StatsNZ 2012).

The desktop review suggests that there is some interest in the production of temporary

population statistics in OECD countries, but there is no consensus as to how these are best

conceptualised or produced. Approaches vary with respect to population coverage (e.g.,

daytime populations, second home owners, all visitors), how estimates are conceptualised

(e.g., person-time, population present) and the methods and data used to produce the

estimates. However, almost all countries do conduct some form of tourism or travel survey

that can provide data on common forms of temporary population mobility. While progress is

needed on multiple fronts, clear conceptualisation of temporary population statistics is a

critical first step.

5. Towards Official Temporary Population Statistics

To date, there has been little progress in the production of temporary population statistics.

This is not due to a lack of demand, as calls for temporary population statistics go back

decades. What can account for this lack of progress? A paucity of data and inadequate

processing procedures are undoubtedly factors, as is the embryonic state of

conceptualisation of temporary populations and poor understanding of the underlying

dynamics of temporary mobility. “Service population” is the principal concept relating to

temporary populations in the official statistical literature, having entered the lexicon of the

United Nations Population Division, and national statistical agencies, including Statistics

New Zealand and Australia (see, for example StatsNZ 2015; ABS 2008). This concept has

proven difficult to implement across multiple geographies and multiple population groups,
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and suffers from a range of shortcomings associated with estimates of total visitors that are

described in Subsection 3.5. Two concepts discussed in this paper may prove useful

to progress temporary population estimates: population present and person-time. The

strength of both measures is their ability to aggregate numbers across regions (and across

time, in the case of person-time) and constrain them to national estimates. Daily

population present estimates are consistent with demographic accounts, in that changes in

population stocks can be linked to the flows driving dynamic shifts in populations (Rees

and Wilson 1973). In practice, the implementation of a full set of multi-regional accounts

at daily intervals is likely unworkable due to the complexity of the underlying temporary

mobility that we have described in Section 3. However, high frequency estimates of the

population present can be generated from symptomatic data for single areas, and for

multiple geographies using mobile phone data (CBS n.d.).

While population present estimates are now feasible in some settings, data access

remains a key impediment. Mobile phone records are available in some countries, but in

others, privacy concerns, fragmentation across multiple providers, and cost make access

difficult. Ironically, access to mobile phone data is often easier in developing world

countries due to data philanthropy, particularly following natural disasters (Bengtsson

et al. 2011; Wilson et al. 2016). Person-time estimates that combine information on the

numbers of visitors (and absentees) in a region with the duration of time they spend in that

region are an alternative. In contrast to population present estimates, person-time measures

population over discrete time intervals that can be of varying duration. To estimate person-

time, information is needed on both the intensity of movement and the duration of stay at a

destination. Fortunately, such data are collected in travel and tourism surveys that are

ubiquitous across OECD countries. These two options are not mutually exclusive. Person-

time is consistent with instantaneous measures of population present: if the population

present over time is represented by a curve on a population-time chart, person-time is

equivalent to the area under the curve. This relationship between person-time and

population present offers potential avenues for combining data from multiple sources. A

framework that exploits this relationship provides flexibility across national contexts.

6. Whither Temporary Population Estimates?

In this article, we explored issues associated with the production of official temporary

population statistics. Guided by the framework developed by Raymer and colleagues

(2015) we touched on a number of interrelated elements: the dynamics of the mobility

driving short-term shifts in population numbers in a developed world context, user needs

for statistics on temporary populations, and existing outputs measuring temporary

populations published by OECD countries. The culmination of the article was a discussion

of two statistical concepts germane to temporary population statistics: estimates of

population present and of person-time. These concepts are, of course, not new to

demographers. Integrating under a curve of population counts to calculate person-time is

key to the calculation of occurrence-exposure rates, as well as the Lx column in life tables.

However, these concepts have been absent from discussions of temporary population

estimates. These concepts each have the potential to produce the statistics sought by users

and the relationship between the two measures offers a potential avenue for combining
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data from different sources. Population present might be estimated using mobile phone

data, while person-time might be derived from tourism surveys.

Statistical outputs are ultimately dependent upon matching concepts with available data

sets. Temporary population mobility has not generally been measured in standard

demographic collections, such as censuses or population registers. In instances where this

has occurred (e.g., the 2011 Census of England and Wales), data have not been linked

explicitly to clearly defined concepts. As data from mobile phone and other ICT develop, it

is becoming more feasible to produce such estimates, but a number of challenges remain

that relate to privacy, ownership, access and cost. There are also methodological and

production challenges relating to bias, groundtruthing, and computing resource demands

that are non-trivial (Tam and Clarke 2015), particularly if estimates are sought across

multiple regions. In many instances, temporary population statistics will need to be based

on a combination of disparate data sources, rather than a single data set. This echoes broader

trends in the production of demographic statistics linking administrative data sets. Indeed,

many countries are embarking on a transition away from traditional censuses, towards

linked administrative data sets capable of producing longitudinal data (Kukutai et al. 2014).

For example, Australia proposed replacing the 2016 Census with linked administrative data

sets, although plans have since been put on hold (Bell 2015), while the Office of National

Statistics (England and Wales) has a programme to develop an administrative census (ONS

2017). Systems are more developed in Nordic countries, with for example Statistics Finland

having developed a fully operational statistical system linking population, business and

property registers (Ruotsalainen 2018). The shift to longitudinal data offers promising new

opportunities to assemble data on both suggested measures, first by providing an effective

continuing census from which a snapshot of temporary populations can be extracted, and

secondly by cumulating the time spent in particular jurisdictions to generate data on person-

time. Also promising are longitudinal statistics on international visitors in countries such as

Australia, which can be used to estimate the population physically present in a country by

tracking arrivals and departures of international visitors and residents (Burleigh 2018).

From this database, it is possible to estimate the persons present at any point in time, but

person-time measures can also be generated by summing durations of absence and of stay.

Despite these developments, longitudinal data are not essential for the production of

person-time measures and their development should not lead agencies to overlook existing

data sets, such as tourism and travel surveys that capture retrospective information on the

intensity and duration of moves. Also useful are occupancy statistics collected in tourist

accommodation surveys, and from online platforms, such as AirBNB and HomeAway

(AirDNA 2019). The need for official temporary population statistics will ultimately vary

across national contexts and will be impacted by data availability and processing capability.

A clear and consistent conceptual approach is an important first step in the development of

widespread temporary population statistics.
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Identifying the Direction of Behavioral Dependence in
Two-Sample Capture-Recapture Study

Kiranmoy Chatterjee1 and Diganta Mukherjee2

With the possibility of dependence between the sources in a capture-recapture type
experiment, identification of the direction of such dependence in dual system of data
collection is vital. This has a wide range of applications, including in the domains of public
health, official statistics and social sciences. Owing to the insufficiency of data for analyzing a
behavioral dependence model in dual system, our contribution lies in the construction of
several strategies that can identify the direction of underlying dependence between the two
lists in the dual system, that is, whether the two lists are positively or negatively dependent.
Our proposed classification strategies would be quite appealing for improving the inference as
evident from recent literature. Simulation studies are carried out to explore the comparative
performance of the proposed strategies. Finally, applications on three real data sets from
various fields are illustrated.

Key words: Classification; direction of behavioral dependence; human population;
randomized rule; recapture probability.

1. Introduction and Motivation

Estimation of the size of a given population is an important statistical concern that has vast

application in the field of public health, population studies and animal abundance. In

practice, it is mostly impossible to count all the individuals in a population accurately by

any attempt, especially when the population is large enough or very hard to reach. As a

remedy, more than one attempt is carried out independently and the population size (N ) is

estimated by matching the available (two or more) lists of information. This kind of data

structure is known as a multiple-record system, which is equivalent to the capture-

recapture system popularly relevant to abundance of animal population. However, in the

context of a closed human population, use of more than two sources of information is

uncommon in the official registration systems of most countries. When two attempts have

been made to estimate the N in capture-recapture format, then the resulting data structure

is known as a dual-record system (DRS), which is presented in Table 1. Estimation of

census coverage error (Gerritse et al. 2017; Chatterjee and Mukherjee 2016a),

epidemiological events (Iñigo et al. 2003; Granerod et al. 2013), size of hard-to-count
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population (Ruiz et al. 2016) are the primary applications of DRS for human population.

ChandraSekar and Deming (1949) proposed homogeneous post-stratification of the data

obtained in DRS structure in order to reduce heterogeneity with respect to the capture

probabilities among individuals. This proposal has been commonly applied in most of the

official statistics, as well as in epidemiological data sets (Eckberg 2000; Iñigo et al. 2003).

Bohning et al. (2017) discussed some recent developments of the applications of various

capture-recapture models in the arena of epidemiology, medical and social science.

After the construction of such mutually exclusive post-strata, which are within

homogeneous but between heterogeneous, relevant statistical models for DRS can be

analyzed for each of those post-strata. Model Mt (Otis et al. 1978), equivalent to the

Petersen Model (Wolter 1986), has received much attention among practitioners because

of its simplicity and identifiability in the vicinity of DRS for a human population. In

Table 1, x1., x.1 and x11 refer to the number of individuals present in the first list (List 1),

second list (List 2) and their common list, respectively. Following the underlying

assumption of list-independence between the two lists, the estimator of N based on the

model Mt is found to be x1:x:1
x11

(Wolter 1986; Chatterjee and Mukherjee 2016b). This

estimator is popularly known as the Petersen estimator in epidemiology, or the

ChadraSekar-Deming estimator in the domain of demography or population studies. More

details on this model, including various likelihood based estimating approaches, can be

found in Chatterjee and Mukherjee (2016b).

However, the assumption of list-independence may seriously mislead in many

situations for human populations. Several methodologists and practitioners (ChandraSekar

and Deming 1949; Greenfield 1975; El-Khorazaty 2000; Jarvis et al. 2000; Chao et al.

2001) argued that the list-independence assumption may not be justifiable in reality. An

efficient brief review was done by Brittain and Bohning (2009) on the various methods

available by relaxing the independence assumption and associated comparative study was

undertaken in DRS context. The assumption of list-independence is often violated due to

the presence of behavioral response variation at the time of a second capture attempt in

DRS. An individual who is enlisted in List 1 may be more likely to also be included in List

2 than the individual who has not been enlisted in List 1. Hence, the corresponding

population is treated as recapture prone. This kind of behavioral connection at the second

time attempt is commonly encountered in epidemiological (Chao et al. 2001; Granerod

et al. 2013) and demographic (Bell 1993; Griffin 2014) studies. Otherwise, in reverse

cases, populations become recapture averse, for example hard-to-count population, drug

addicted population. An interesting attempt to judge the effect of violation of the list-

independence in this context was done by Gerritse et al. (2017). These kinds of changes in

Table 1. Data structure in Dual-Record System (DRS).

List 2

List 1 In Out Total

In x11 x10 x1.
Out x01 x00 x0.

Total x.1 x.0 x.. ¼ N
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the behavior of an individual, while he/she attempts to be included in List 2, is grossly

known as behavioral response variation (Wolter 1986; Chatterjee and Mukherjee 2018).

O’Connell and Pollock (1992) introduced a strategy using demographic co-variates for

partitioning a population in terms of direction of behavioral dependence. When both the

time variation and behavioral response variation act together, model Mtb, to be defined

later, can be treated as the most general and suitable statistical model for analyzing

capture-recapture data under homogeneity. Gosky and Ghosh (2011) showed the

appropriateness of this model among all the capture-recapture models proposed in Otis

et al. (1978).

Now we state some basic notation before proceeding further. Let pij be the probability

attached to each individual to be included in the count xij in (i, j )th cell of Table 1, where

i, j [ {0, 1, ·}. In addition we denote

Pr (an individual is captured in List 2 j s/he is listed in List 1) ¼ p11

p1:
¼ c,

Pr (an individual is captured in List 2 j s/he is not listed in List 1) ¼ p01

12p1:
¼ p, following

Wolter (1986). In this article, we consider c – p which refers a violation of independence

between the two lists. Thus, there always exists some constant f(.0) such that c ¼ fp.

This f is termed as behavioral response effect. Note that f . 1 (equivalently, c . p)

refers to positive association between the two sources and the associated population is said

to be recapture prone and f , 1 (equivalently, c , p) refers to negative association and

the associated population is said to be recapture averse. A capture-recapture model with

time variation and behavioral response variation, denoted as Mtb, incorporates behavioral

dependence between lists. However, model Mtb suffers from a problem in DRS, as f or p is

not estimable separately, but their product fp ¼ c is. This unidentifiability of the realistic

model Mtb in DRS is discussed in Chao et al. (2000) and Chatterjee and Mukherjee

(2016c).

One important aspect of the model Mtb is that if some proper knowledge on the direction of

f is available, then it might help to draw a reasonably good inference on the N, as evident from

literature (Nour 1982; Chatterjee and Mukherjee 2016c, 2018). Particularly, if underlying f

for a population is correctly known to be greater than 1 (or less than 1), then uncertainty onf

will be reduced, since the domain of f shrinks to (1, 1) (or (c, 1)), where c is the recapture

probability of an individual, defined earlier. Hence, one can expect that inference would

likely be better if that available knowledge is used. This issue has been proved empirically

in Chatterjee and Mukherjee (2016c, 2018). For example, in a demographic study or

homicide death study, two sources (or, lists) are commonly positively depended on, which

leads to a high estimate of c. On the one hand, in economic surveys, people often want to

avoid to be enlisted repeatedly in both the lists, and that leads to low estimate of the

recapture probability c. Therefore, one may intuitively suggest that a given population is

recapture prone if the maximum likelihood estimate of c, denoted by ĉ, is very close to its

upper bound 1. On the other hand, if ĉ is very close to its lower bound 0, then the associated

population would be recapture averse with high probability. Giving an idea about the

possible direction off is always a challenging job if ĉ is neither close to 1, nor close to 0. As

per our knowledge, no strategy has been developed yet to infer the direction of f from

capture-recapture data only. Therefore, in this article, our aim is to develop some
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classification strategies with which a given population can be identified as recapture prone,

recapture averse, or list-independent with high probability in connection with DRS.

In this article, based on various considerations, we propose a large number of

classification strategies in Section 2 to identify the direction of list-dependency in DRS.

Performance of the proposed strategies are thoroughly investigated with simulated data in

Section 3. Based on their performances, a subset of the proposals are applied to three real

data sets from various fields of application including demography, crime statistics and

economics in Section 4. We illustrate our classification strategies through inference about

the direction of inherent dependence in DRS corresponding to each of the three data sets.

Finally, in concluding Section 5, we discuss the implications, advantages and possible

extensions of the proposed classification strategies.

2. Proposed Classification Strategies

In this section, we propose strategies to identify whether individuals belonging to a given

population are recapture prone or recapture averse or their inclusion statuses in DRS are

list-independent. To formulate such strategies, we need to impose an assumption on a

parameter of the model Mtb. For the present context, we consider that the conditional

probability p $ p, where a value of p can be chosen. Note that this assumption allows a

larger interval of possible values of p,[p, 1), as one chooses a smaller p. We will discuss

this choice later. For a justification of this, we refer to a parallel assumption adopted in

Nour (1982) for estimating total number of vital events (e.g., birth, death) where the

capture probability in each of the two lists (i.e., p1. and p.1) is assumed to be greater than

0.5. Now, from the definition of p, stated in Section 1, one can write that

p ¼
p01

1 2 p1:
¼

x01

N 2 x1:
;

since DRS satisfy Npij ¼ xij for all i, j [ {0, 1, ·}. The assumption of p $ p can be

rewritten as (c2fp) $ 0, since c ¼ fp. By virtue of the mle, ĉ ¼ (x11/x1.) being

consistent, as well as an efficient estimator of c, we replace c by ĉ and use the approximate

relation f ¼ ĉp21 for sufficiently large N. Therefore, as N $ x0, where x0 denotes the total

number of distinct individuals counted in DRS,

f ¼ ĉp21 ¼
x11

x1:

N 2 x1:

x01

$
x11

x1:

or; ðx1:f 2 x11Þ $ 0:
ð1Þ

Thus, using the inequalities in Equation (1) and (ĉ 2 fp) $ 0, obtained earlier with the

consideration of approximation of c by ĉ, we consider the (composite) inequality

ðĉ 2 fpÞ ðx1:f 2 x11Þ

x:1f
$ k

for x.1 . 0, where k is some non-negative real number. The choice of k will be explained

later. Hence, the above inequality may be expressed as
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f2 þ f
kx:1ðpþ 1Þx11

px1:
þ ĉ 2p21 # 0 ð2Þ

or; ðf 2 f0Þðf 2 f1Þ # 0; ð3Þ

where f0 and f1 are two real roots of the quadratic equation corresponding to (2), which

are functions of the unknown k and satisfy f0 þ f1 ¼
ðpþ1Þx112kx:1

px1:
and f0f1 ¼ ĉ 2p21

with f0 # f # f1 from Equation (3). In fact, the two roots are positive real valued under

some condition on k. All the mathematical proofs and justifications on the nature of the

two said roots of f are rigorously discussed in the Appendix (Section 6). Since the

arithmetic mean of any two positive real numbers is always greater than or equal to their

geometric mean, therefore one will have

k <
x11

x:1
ð1 2

ffiffiffiffi

p
p
Þ2;

equality holds only when f0 ¼ f1 ¼ f ¼ ĉp 21/2. From the Appendix we know that the

above upper bound of k is the necessary and sufficient condition for both the roots f0 and

f1 to be positive real-valued. In addition, as k $ 0 holds under the assumption that p $ p,

the values of f0 and f1 corresponding to the lower bound of k are ĉ and ĉp 21 respectively.

Furthermore, the root f0 is a monotonically increasing function of k, while f1 is

decreasing in k. This implies

ĉ # f0 # ĉp21=2

and

ĉp21=2 # f1 # ĉp21:

Proposals. By combining the two above inequalities for the two roots f0 and f1, we

have

ĉ # f # ĉp21:

Now, arithmetic (A.M.), geometric (G.M.) and harmonic (H.M.) means of the two limits

of the above interval are, ð1þpÞĉ
2p

; ĉp21=2 and 2ĉ
1þp

, respectively. We want to consider a

reasonably moderate value of k to allow the possibility of a small value of p. As discussed

earlier, f0 and f1 are respectively increasing and decreasing functions of k, we consider

f0 $ H.M. to accommodate such reasonable value of k and it automatically implies f1 #

A.M. as f0f1 ¼ ĉ 2p21. Since f0 # f # f1, one would therefore readily have H.M. # f

# A.M., that is,
2ĉ

1þ p
# f #

ð1þ pÞĉ

2p
: ð4Þ

We call this proposed interval for f as Proposal 1. One may further propose tighter

bounds for the classification strategies as per the following reasoning.

Proposal 2: As ĉp 21/2 # f1, we may propose the bound for f as H.M. # f # G.M.,

since G.M. is the smallest upper bound for f. So,
2ĉ

1þ p
# f # ĉp21=2: ð5Þ

One can alternatively propose,
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Proposal 3: As f0 # ĉp21/2, we may propose the bound for f as G.M. # f # A.M.,

since G.M. is the greatest lower bound for f. So,

ĉp21=2 # f #
ð1þ pÞĉ

2p
: ð6Þ

Now, we present classification rules to identify the direction of behavioral dependence

among individuals in a population. Three alternative rules for each of the above three

proposals are designed to indicate whether underlyingf is greater than 1 (i.e., proneness), less

than 1 (i.e., aversion) or very close to 1 (i.e. list-independence). Let us consider that fl andfu

respectively are the lower and upper tolerance limits of f, equidistant from 1, beyond which

one may say that underlying DRS is list-dependent. For example, if we consider 5% tolerance,

then (fl, fu) ¼ (0.95, 1.05). We outline the classification strategies in detail for Proposal 1

based on the bounds in Equation (4), corresponding to Proposal 1. The variations for other

proposals are analogously defined, based on the bounds in Equations (5) and (6).

Rule 1L. We set the lower bound of the interval, 2ĉ
1þp

# f # ð1þpÞĉ
2p

; that is, 2ĉ
1þp

as a

threshold to infer about the direction of dependence. So, if 2ĉ
1þp

. fu we say the population is

recapture prone. Again if 2ĉ
1þp

, fl, we say the population is recapture averse. Further, the

population will be termed as list-independent if fl # 2ĉ
1þp

# fu. This lower bound technique

may be conservative as it has a tendency towards indicating recapture aversion (see Section 3).

Analogously, if we replace the threshold in Rule 1L by the upper bound of the interval,

we can define Rule 1U. Note that Rule 1U may be conservative towards recapture

proneness (see Section 3).

Admitting results of the previous classification rules, now we propose a randomized

rule, similar to the statistical hypothesis test rule (as in the Neyman-Pearson tradition), that

will safeguard the decision rule from possible threats of bias towards recapture proneness

or aversion. Here, the randomized decision is taken when the tolerance limits fl or fu lie

in the interval (4).

Rule 1R. We consider the following steps involving randomized decisions to infer about

the behavioral classification of a given population.

Step 1: Carry out a randomized trial based on a Bernoulli r.v., say Xp, with the following

probability function in favour of recapture proneness of the given population.

cpðĉÞ ¼

1 if
2ĉ

1þ p
. fu

dp if
2ĉ

1þ p
# fu ,

ð1þ pÞĉ

2p

0 if
ð1þ pÞĉ

2p
# fu

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

;

where

dp ¼ max 0; 1 2 fu 2
2ĉ

1þ p

� ��

ð1þ pÞĉ

2p
2

2ĉ

1þ p

� �� �

;
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Step 2: If the given population is not found to be recapture prone in Step 1 that is, if Xp is

not observed to be 1, carry out another randomized trial based on Bernoulli r.v., say, Xa

with the following probability function in favor of recapture aversion.

caðĉÞ ¼

1 if
ð1þ pÞĉ

2p
, fl

da if
2ĉ

1þ p
# fl #

ð1þ pÞĉ

2p

0 if
2ĉ

1þ p
. fl;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

;

where

da ¼ fl 2
2ĉ

1þ p

� ��

ð1þ pÞĉ

2p
2

2ĉ

1þ p

� �

:

Step 3: If the given population is not found to be recapture averse in Step 2 that is, if Xa

is observed to be 0, the given population is classified as list-independent.

It is to be noted that when the above probability cp(ĉ) (ca(ĉ)) in Step 1 (Step 2) is neither

1 nor 0, one has to perform a Bernoulli experiment with probability of recapture proneness

(recapture aversion) equal to dp (da), in order to classify whether a given population is

recapture prone (averse).

As we have defined Rules 1L, 1U and 1R for Proposal 1, one can analogously define

Rules 2L, 2U and 2R for Proposal 2 based on the bounds in Equation (5). Similarly, Rules

3L, 3U and 3R can be defined for Proposal 3 based on the bounds in Equation (6). We omit

the details and proceed to an empirical evaluation of these rules.

The probabilities for considering an individual as recapture prone (RP), recapture

averse (RA), or list-independent (LI) can be obtained effectively by computing the

probabilities Pr(Xp ¼ 1), Pr(Xa ¼ 1, Xp ¼ 0) and Pr(Xa ¼ 0, Xp ¼ 0) respectively. These

probabilities are computed based on the asymptotic normality of the mle ĉ. These probabilities,

corresponding to the randomized rule under proposal 2 (i.e., Rule 2R), are presented in the

following theorem and the associated proof is sketched in the Appendix.

Theorem 1. For a large population, probabilities for considering an individual to be

recapture prone, recapture averse or list-independent under Rule 2R respectively, are as

follows:

Pr ðRPÞ ¼ 1 2 dpFðfu

ffiffiffiffi

p
p
Þ2 ð1 2 dpÞF

ð1þ pÞfu

2

� �� 	

;

Pr ðRAÞ ¼ daF
ð1þ pÞfl

2

� �

þ ð1 2 daÞFðfl

ffiffiffiffi

p
p
Þ if

ð1þ pÞfl

2
, fu

ffiffiffiffi

p
p

;

ð1 2 daÞFðfl

ffiffiffiffi

p
p
Þ þ dað1 2 dpÞF

ð1þ pÞfl

2

� �

þ dadpFðfu

ffiffiffiffi

p
p
Þ

if
ð1þ pÞfl

2
. fu

ffiffiffiffi

p
p
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Pr ðLIÞ ¼ dpFðfu

ffiffiffiffi

p
p
Þ þ ð1 2 dpÞF

ð1þ pÞfu

2

� �� 	

2 daF
ð1þ pÞfl

2

� �

2 ð1 2 daÞFðfl

ffiffiffiffi

p
p
Þ

� 	

if
ð1þ pÞfl

2
, fu

ffiffiffiffi

p
p

;

dpð1 2 daÞFðfu

ffiffiffiffi

p
p
Þ þ ð1 2 dpÞF

ð1þ pÞfu

2

� �� 	

2 dað1 2 dpÞF
ð1þ pÞfl

2

� �

þ ð1 2 daÞFðfl

ffiffiffiffi

p
p
Þ

� 	

if
ð1þ pÞfl

2
. fu

ffiffiffiffi

p
p

;

where F (·) refers the cumulative distribution function of normal variate ĉ with asymptotic

mean and variance are c and sĉ 2, respectively.

Theorem 1 is useful for applied work in that it provides a quite important and reasonably

simple empirical strategy for detecting behavioral dependence without any need for

additional information. All calculations are made here under the normality assumption that

is satisfied for reasonably large populations. Note that for some configuration of p 0ijs (as

defined in the introduction), the boundary constraints in the probability calculations may

become binding. In such cases, the conclusion from Theorem 1 would be approximate in

nature. Apart from such cases, the strategy will work well. A graphical comparative study

between the three probabilities computed in Theorem 1 is carried out in Subsection 3.2.

3. Simulation Study

3.1. Evaluation of Classification Rules

In this section, we perform an extensive simulation study for comparing the performances

of the proposed classification strategies. Let us consider ten simulated populations,

comprising three populations for each of the three absolute difference values, (0.1, 0.15,

0.20), between p1. and p.1 and one additional population with very high capture probabilities

( p1. ¼ 0.95, p.1 ¼ 0.85). Further, we also consider three values off, viz. 1.50, 0.60, 1.00, in

order to represent three situations of behavioral dependence, (i ) recapture proneness,

(ii ) recapture aversion, and (iii ) list-independence, respectively. These simulated

populations for each of three said f values together encompass all possible combinations

with true population size, N ¼ 1,000. The compositions of the simulated populations are

shown in Table 2. The true value of the parameter c, calculated using the given p1., p.1 andf,

is also presented corresponding to each of the ten simulated populations. Tables 3, 4 and 5

present the performance evaluation of the classification strategies based on Proposals 1, 2

and 3, respectively, developed in Section 2, in terms of correct classification rate (CCR) of

the underlying directional nature of f. CCR is presented in percentage (%) after computing

the number of correct classifications out of 5,000 replications.

From the simulation analysis we observed that p ¼ 1/3, 1/4 have overall better results

across the three proposals (1, 2 and 3) and three dependence situations (proneness,

aversion and list-independence). Hence, we make a suggestion for choosing p ¼ 1/3 or
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1/4 based on empirical performance. It is noted that the upper bound for Proposal 2 is same

as the lower bound for Proposal 3 and their union is the bounds for Proposal 1. Hence, we

first compare Proposals 2 and 3, which are based on disjoint intervals. By construction,

Proposal 2 (Proposal 3) goes against the recapture prone (averse) conclusions for

the populations. Thus, comparison on the basis of performances in case of truly list-

independent populations will be relatively unbiased. On the basis of empirical

performance, Proposal 2 is found to be better than Proposal 3. In addition, it is observed

across the simulated populations that Proposal 2 also performs better than Proposal 1.

Overall, we can conclude that Proposal 2 outperforms Proposal 1 which is indeed better

than Proposal 3. Choice of the middle values for p (e.g., 1/3, 1/4) are better than the

extreme values (e.g., 2/5, 1/5). Henceforth, for real data analysis, we prescribe the use of

Proposal 2 or 1 with p values in the range of {1/3, 1/4}.

While comparing the rules L, U and R over the chosen proposals and the values for p,

we see that rules R have a more balanced performance in terms of CCR than that of L and

U rules. Performance of rule R for the best choice of proposal (i.e., Proposal 2) would be

better understood through further analysis sketched in the next subsection.

3.2. Performance Study of Rule 2R

Graphical analysis of the probabilities computed based on the result in Theorem 1 for the

randomized classification Rule 2R is presented in Figure 1.

Here we consider the same combinations of ( p1., p.1), which are considered in Table 2

in Subsection 3.1 except the 10th combination (0.95, 0.85), with varying f values over the

domain (0.40, 2.00). In general, the performance of Rule 2R is seen to be quite good,

except for a few combinations of ( p1., p.1) values. Overall, we can see that our theoretical

intuition put forth in the discussion after Theorem 1 and the findings in Subsection 3.1 are

carried over here.

Table 2. Compositions of simulated populations with N ¼ 1,000.

Recapture prone Recapture averse Causally independent

f ¼ 1.50 f ¼ 0.60 f ¼ 1.00

p1. p.1 Population c Population c Population c*

0.50 0.60 P1 0.720 A1 0.450 I1 0.60

0.70 0.60 P2 0.667 A2 0.500 I2 0.60

0.70 0.80 P3 0.889 A3 0.667 I3 0.80

0.45 0.60 P4 0.735 A4 0.439 I4 0.60

0.70 0.55 P5 0.611 A5 0.458 I5 0.55

0.80 0.65 P6 0.696 A6 0.574 I6 0.65

0.45 0.65 P7 0.796 A7 0.476 I7 0.65

0.75 0.55 P8 0.600 A8 0.471 I8 0.55

0.85 0.65 P9 0.684 A9 0.591 I9 0.65

0.95 0.85 P10 0.864 A10 0.823 I9 0.85

*Under list-independence, that is, f ¼ 1, c ¼ p.1
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4. Real Data Illustration

In this section, we illustrate the classification strategies formulated under the two selected

proposals (i.e., Proposals 1 and 2) described in Section 2 through the application on three

real data sets from three different fields – demography, crime statistics and social sciences.

Firstly, we consider the Malawi death data obtained from a Population Change Survey

to estimate birth, death and migration rates conducted by the National Statistical Office in

Malawi between 1970 and 1972. Greenfield (1975) introduced this data set. Later, it has

also been used by Nour (1982) and Chatterjee and Mukherjee (2016c). Very large values

of ĉ for all the strata, except Lilongwe, clearly indicate recapture proneness. Thus, we

consider the data for Lilongwe and Other Urban Areas (see top panel of Table 6) for

comparative analysis of the proposed classification rules.

Secondly, we use Homicide data, which are analyzed by Eckberg (2000) to establish the

utility of dual enumeration methods for estimating the total number of unrecorded murders

in South Carolina, 1877–1878. This interesting work was meant for tracing the historic

trends in homicide based on the two sources alone and the author claimed that the popular
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Fig. 1. Graphical comparison of the probabilities of recapture proneness, recapture aversion & list-

independence under the Rule 2R, associated with the Proposal 2, with p ¼ 1/3 over different f values.

Continuous, dotted and longdash lines respectively refer the probabilities corresponding to recapture proneness,

recapture aversion and list-independence.

Table 6. Three real data sets in DRS format which are used for the classification analysis.

Count

List 1 List 2 Matched Estimate of c

Data Populations x1. x.1 x11 ĉ

Malawi death Lilongwe 324 216 192 0.593
Other Urban Areas 1960 2450 1645 0.839

Homicide* Zero-Two 29 102 23 0.793
Three-Five 56 74 42 0.750
Six 50 43 32 0.640

Handloom Ward No. 2 126 107 85 0.675
Ward No. 16 131 103 50 0.382

*Each of the three populations belong to this data set are named in terms of holding index score.
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ChandraSekar-Deming estimator would face a formidable undercount problem. This

happens due to a possible positive correlation between two data sources – (i ) South

Carolina Department of Archives and History and (ii ) News and Courier Reports. Dual

system data were available for all 33 counties in South Carolina. Following the proposal of

ChandraSekar and Deming (1949), all counties (except Charleston) are divided into three

homogeneous groups based on a 0–6 point index scale that measures the thoroughness of

county archives. For more details on the data source and index scaling, readers are referred

to Eckberg (2000, 5–9). Data in DRS form are presented in the middle panel of Table 6.

In addition to the above two data sets, we consider another data set on handloom workers.

This new data are from a survey aimed to estimate the undercount in the census of

handloom workers (master weavers and labours only) attached to the handloom industry

residing at Gangarampur in South Dinajpur district of the state West Bengal, India in 2013.

Handloom products have a rich tradition in this state and the handloom industry occupies

a place second only to agriculture in providing livelihood to the people. In the urban area

of Gangarampur, there are sixteen wards; two of these wards (Wards No. 2 and 16) are

selected for Post Enumeration Survey (PES) to evaluate the coverage in the original census

(SOSU 2014). Surprisingly, the nature of the data on these two wards are found to be

different in terms of recapture proportion. Since this counting task is meant for the benefit of

the workers attached to the handloom industry, a general thought is that the census and the

PES might be positively related. On the other hand, some people may consider that one time

enrollment is enough. So, if one is counted at the time of census, he/she may be reluctant

at the time of the PES and that implies f to be less than 1. Thus, in both of the possibilities,

the ChandraSekar-Deming estimator would not be appropriate. Surveyors reported that

workers in Ward No. 16, which is very close to the town center, might be somewhat

reluctant to enlist themselves a second time (i.e., at the time of the PES). Moreover, most of

them work outside (other districts) and usually come home during particular seasons. That

is why Ward No. 16 shows in very low matches compared to Ward No. 2. Moreover, the

beliefs of the experts of the Textile Directorate of the Government of West Bengal also

drive the idea that the ChandraSekar-Deming estimates (157 and 270 respectively) fail to

extract the sizes with precision. However, they expect that the ChandraSekar-Deming

method yields a slight undercount for Ward No. 2 and a high overcount for Ward No. 16.

The bottom panel of Table 6 presents the DRS data for these two wards.

Table 6 presents the list-wise counts and matched records for each of the three data sets

mentioned above. In addition, we also present values of the key statistic ĉ ¼ (x11/x1.) for

each data set in Table 6. Results on the directional classification for the above three data

sets are presented in Table 7. In addition, estimates of the probabilities associated with the

directional classifications found are presented for each of the seven real populations in

Table 7. These estimated probabilities can be treated as a measure of chance (or

uncertainty) behind the directional classifications found.

In the light of the findings from the selected strategies (under proposals 1 and 2 with

p ¼ (1/3, 1/4), the populations Lilongwe and Other Urban Areas are classified as list-

independent and recapture prone, respectively. The classification result for Lilongwe is

quite interesting, as it indicates a difference from the conventional assumption of positive

dependence in DRS on demographic application. All the populations under the Homicide

data set exhibit recapture proneness except for the holding index score 6, for which rules L
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find no dependence. For Ward No. 16 under the handloom data set, the strategies agree and

classify the ward as recapture averse. However, inference for the population in Ward No. 2

is in favor of recapture proneness. Indeed, in the conflicting cases, we recommend going

with the classification made by the randomized Rule 2R, as Proposal 2 along with

randomized rule (R) is found to be better in the simulation based comparative study

performed earlier. In the last row of Table 7, we present the overall classification status of

the population in each real data set and that is found to be identical with the inference from

Rule 2R.

It is to be noted that inference about the direction of possible behavioral dependence in

any data set drawn in literature may not match with the conclusions of the classification

strategies prescribed in this present article.

5. Conclusion

From the extensive literature on capture-recapture data analysis on human population, it is

quite clear that assumption of list-independence does not hold satisfactorily in many

instances. As far as homogeneous human population size estimation is concerned, two-

sample capture-recapture experiments are very common and the model Mtb is best suited.

However, this model seriously suffers from the non-identifiability problem and analyses in

the literature suggest that the availability of knowledge on the direction of behavioral

dependency could improve the inference to a great extent. Eliciting such information is

crucial in DRS. To address this issue, we develop several comparable strategies for

classification of the given population in terms of the direction of dependence (i.e., whether

the given population is recapture prone or averse) under a mild and realistic assumption.

Among the three proposals on bounds for unknown f, Proposal 2 is found to be better

suited. On the other hand, the classification strategy based on randomized technique (R) is

quite appealing for the development of more efficient inference in the context of Mtb-DRS.

Hence, the strategy, Rule 2R, is quite accurate except for particular situations with small

recapture probabilities. In real life applications, this strategy provides us with a useful tool

for classifying human populations.

With the knowledge inferred in this article on the direction of dependence in DRS,

model Mtb can be successfully analyzed in the Bayesian paradigm. For example,

Chatterjee and Mukherjee (2016c, 2018) have shown that availability of knowledge on the

direction of behavioral dependence helps to gain precision in the estimation of population

size. One can also analogously improve the Bayesian methodology proposed in Lee and

Chen (1998) and Lee et al. (2003) by choosing suitable priors using our strategies. Also,

inference on population size assuming any particular dependence type (i.e., recapture

prone or averse) can be improved based on bound or inequality. For example, in Greenfield

(1975) and Nour (1982), recapture proneness is assumed for demographic data. Their

assumption can be verified using our methodology. For both of these approaches, the

knowledge on the possible direction of dependence gained from the methods proposed in

our present article results in more precise inference. Extension of the proposed behavioral

classification strategies may be possible for more than two capture occasions.

Throughout the article, we assume that ordering of the two samples (or lists) in DRS are

known, that is, one list is completely prepared before the other. However in some cases,
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listing by two sources are either parallel or their ordering is not known. In such cases,

consider a typical situation where the number of recaptured individuals (x11) is small

compared to the number of one-time captured individuals, that is x10 or x01. Then, our

proposed classification results may differ if ordering of the lists is interchanged as

observed in the case of Homicide data, with holding index score Zero-Two. In this case,

reversal of ordering for the lists will lead to a conclusion of recapture aversion instead of

proneness. As per the definition of grouping, these data exhibit lack of thoroughness of the

county archives and hence, x11 is small compared to x10 or x01.

6. Appendix

6.1. Proof of Theorem 1

Firstly, Pr RPð Þ ¼ Pr XP ¼ 1ð Þ: Therfore;

Pr RPð Þ ¼ Pr
2ĉ

1þ p
. fu

� �

þ dpPr
2ĉ

1þ p
# fu , ĉp21=2

� �

¼ 1 2 F
1þ pð Þfu

2

� �

þ dp F
1þ pð Þfu

2

� �

2 F fup
1=2


 �

� 	

¼ 1 2 dpF fup
1=2


 �

þ 1 2 dp


 �

F
1þ pð Þfu

2

� �� 	

;

where F(x) denoted as the cumulative distribution function of the normal variate ĉ at x

such that ĉ has mean c and variance equals to s2
ĉ ¼ V ĉð Þ: This distribution for ĉ is

asymptotic. Thus, FðxÞ ¼ F x2c
sĉ

� 


, where F has its usual meaning, that is, cumulative

distribution function of a standard normal variate.

Secondly, Pr(RA) ¼ Pr(Xp ¼ 0, Xa ¼ 1). Therefore,

PrðRAÞ ¼ Pr ĉp21=2 , fl;Xp ¼ 0

 �

þ daPr
2ĉ

1þ p
# fl # ĉp21=2;Xp ¼ 0

� �

¼ Pr ĉp21=2 , fl; ĉp
21=2 # fu


 �

þ 1 2 dp


 �

Pr ĉp21=2 , fl;
2ĉ

1þ p
# fu , ĉp21=2

� �

þda 1 2 dp


 �

Pr
2ĉ

1þ p
# fl , ĉp21=2;

2ĉ

1þ p
# fu , ĉp21=2

� �

þdaPr
2ĉ

1þ p
# fl # ĉp21=2; ĉp21=2 # fu

� �

¼ Pr ĉp21=2 , fl


 �

þ 1 2 dp


 �

:0þ daPr flp
1=2 # ĉ # min

1þ pð Þfl

2
;fup

1=2

� �� 	

þda 1 2 dp


 �

Pr fup
1=2 , ĉ #

1þ pð Þfl

2

� �

:

If fl and fu are chosen such that 1þpð Þfl

2
, fup

1=2, therefore,

PrðRAÞ ¼ daF
1þ pð Þfl

2

� �

þ 1 2 dað ÞF flp
1=2

� 


:
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Lastly,

Pr LIð Þ ¼ Pr Xp ¼ 0; Xa ¼ 0

 �

¼ Pr Xp ¼ 0

 �

2 Pr Xp ¼ 0;Xa ¼ 1

 �

¼ dpF fup
1=2


 �

þ 1 2 dp


 �

F
1þ pð Þfu

2

� �� 	

2 daF
1þ pð Þfl

2

� �

þ 1 2 dað ÞF flp
1=2


 �

� 	

Again, if 1þpð Þfl

2
. fup

1=2 holds,

Pr RAð Þ ¼ F flp
1=2


 �

þ da F fup
1=2


 �

2 F flp
1=2


 �� �

þda 1 2 dp


 �

F
1þ pð Þfl

2

� �

2 F fup
1=2


 �

� 	

¼ 1 2 dað ÞF flp
1=2


 �

þ da 1 2 dp


 �

F
1þ pð Þfl

2

� �

þ dadpF fup
1=2


 �

and similarly,

Pr LIð Þ ¼ dp 1 2 dað ÞF fup
1=2


 �

þ 1 2 dp


 �

F
1þ pð Þfu

2

� �� 	

2 da 1 2 dp


 �

F
1þ pð Þfl

2

� �

þ 1 2 dað ÞF flp
1=2


 �

� 	

:

This completes the proof.

6.2. Mathematical Proofs and Justification on the Two Roots of f

The quadratic equation, corresponding to inequality (2), can be written as

f2 þ ufþ v ¼ 0; ðS1Þ

where u ¼ kx:12 pþ1ð Þx11

px1:
and v ¼ ĉ2p21. This quadratic equation (S1) has two roots, f0 and

f1, which satisfy

f0 þ f1 ¼ 2u ¼
pþ 1ð Þx11 2 kx:1

px1:
andf0f1 ¼ v ¼ ĉ 2p21:

The two roots f0 and f1 become real if and only if u2 2 4v $ 0. In order for both roots to

be strictly positive, further restriction f0 þ f1 . 0, equivalently u , 0, is needed, since

f0f1 ¼ v . 0 as x11 . 0. Thus, the inequality condition u2 24v $ 0 is equivalent to

(2u) $ 2
ffiffiffi

v
p

i.e., u # 2 2
ffiffiffi

v
p

. Now, the condition u # 2 2
ffiffiffi

v
p

means

kx:1 2 pþ 1ð Þx11 # 22x11

ffiffiffiffi

p
p
, k #

x11

x:1
1 2

ffiffiffiffi

p
p
 �2

ðS2Þ

since ĉ ¼ (x11/x1.).

Chatterjee and Mukherjee: Identifying Direction of Behavioral Dependence 45

Unauthentifiziert   | Heruntergeladen  23.03.20 10:36   UTC



Hence, from the above, it is clear that the two roots f0 and f1 are functions of the only

unknown k and they satisfy f0 # f # f1 in order to maintain the inequality (3). In

particular, equality in the above equation (S2) holds only when u2 ¼ 4v, or equivalently,

2uð Þ=2 ¼
ffiffiffi

v
p

or equivalently,
f0þf1ð Þ

2
¼

ffiffiffiffiffiffiffiffiffiffiffi

f0f1

p
holds and this A.M. ¼ G.M. condition

holds if and only if f0 ¼ f1 ¼ f ¼
ffiffiffi

v
p
¼ ĉp21=2: In addition, structurally k $ 0 holds

under the assumption of p $ p. Hence, note that the upper bound (S2) on the non-negative

term k is the necessary and sufficient condition for both the roots f0 and f1 to be positive

real-valued.

The two real positive roots, f0 and f1, of the Equation (S1) are

f0 ¼
1

2
2u 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 2 4v
p� 


andf1 ¼
1

2
2uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 2 4v
p� 


;

with the restrictions u , 0 and u2 2 4v $ 0, where u and v are stated in (S1). From the

above expressions of f0 and f1, we have the values of f0 and f1 corresponding to the

lower bound of k (i.e., k ¼ 0) are ĉ and ĉp 21 respectively. Similarly, when k attains its

upper bound (S2), both of f0 and f1 are equal to ĉp 21/2. This implies

ĉ # f0 # ĉp21=2 and ĉp21=2 # f1 # ĉp21: ðS3Þ

Now, let us examine the nature of the roots in terms of the unknown k.

df0

dk
¼

df0

du
:
du

dk
¼ 2

x:1
2px1:

1þ
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 2 4v
p

� �

:

Given the stated restrictions u , 0 and u 2 2 4v $ 0,

u2 2 4v , u2 )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 2 4v
p

, 2u) 1þ
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 2 4v
p

� �

, 0)
df0

dk
. 0;

since, x.1, x1.,p . 0. Thus, the smaller root, f0, is monotonically increasing in k. As the

product of the two roots is a constant, that is, independent of k, the other root, f1, is

monotonically decreasing. As we already found, the values of f0 and f1 corresponding to

the lower bound of k are ĉ and ĉp 21 respectively. Therefore, f0 (f1) increases (decreases)

to ĉp 21/2 as k increases to its upper bound in (S2) and this finding meets the result (S3).

This completes the justifications.
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The Joinpoint-Jump and Joinpoint-Comparability Ratio
Model for Trend Analysis with Applications to

Coding Changes in Health Statistics

Huann-Sheng Chen1, Sarah Zeichner2, Robert N. Anderson3, David K. Espey4,

Hyune-Ju Kim5, and Eric J. Feuer1

Analysis of trends in health data collected over time can be affected by instantaneous changes
in coding that cause sudden increases/decreases, or “jumps,” in data. Despite these sudden
changes, the underlying continuous trends can present valuable information related to the
changing risk profile of the population, the introduction of screening, new diagnostic
technologies, or other causes. The joinpoint model is a well-established methodology for
modeling trends over time using connected linear segments, usually on a logarithmic scale.
Joinpoint models that ignore data jumps due to coding changes may produce biased estimates
of trends. In this article, we introduce methods to incorporate a sudden discontinuous jump in
an otherwise continuous joinpoint model. The size of the jump is either estimated directly (the
Joinpoint-Jump model) or estimated using supplementary data (the Joinpoint-Comparability
Ratio model). Examples using ICD-9/ICD-10 cause of death coding changes, and coding
changes in the staging of cancer illustrate the use of these models.

Key words: Joinpoint model; international classification of diseases (ICD); trend analysis;
coding change; cancer staging system; comparability ratio.

1. Introduction

“Is the trend changing?” This question underlies trend analysis in the field of disease

prevention, control and surveillance. Data describing disease incidence, mortality and

other health series are reported over time. Data items in those series are often recorded or

classified based on certain types of coding systems, and sudden changes in code structure

or coding rules over time are not uncommon. For example, in 1999, the Tenth Revision of

the International Classification of Diseases (ICD-10) replaced the Ninth Revision (ICD-9)

for coding causes of death used for mortality statistics (Anderson et al. 2001). In another
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example, cancer staging algorithms change across time periods (Amin 2017). Newer

staging system are added by cancer registries to keep definitions consistent with the current

understanding of diseases. Such coding changes may cause discontinuous increases/

decreases, or “jumps,” in the data series, even though it may not affect the underlying trend.

In the past, the Joinpoint model, developed by the National Cancer Institute, has been

widely used to characterize and report trends in health statistics and other time data series

(Kim et al. 2000; Clegg et al. 2009). The model has log linear segments and has distinct

advantages over other models, such as the polynomial fitted model, and is easier to

interpret (Clegg et al. 2009). However, when there is a discontinuity or jump that occurs in

the data, the Joinpoint model could potentially result in a misleading interpretation of trend

changes, as the jump could be the result of a one-time external circumstance, which may

not be interpreted as a changing point in the data.

In some cases the size of the jump is known or can be estimated. In the case of ICD code

changes, a comparison of causes of death coded to both ICD-9 and ICD-10 was conducted.

The National Center for Health Statistics (NCHS) of the Centers for Disease Control and

Prevention (CDC) double coded 1996 death certificates using both the ICD-9 and ICD-10

algorithms and published “comparability ratios” and their standard errors (National Center

for Health Statistics 2009). The comparability ratios estimate the size of the jump in

mortality rates associated with the coding change. In this case, we propose a Joinpoint-

Comparability Ratio (JP-CR) method to accommodate the jumps, that is, converting the

data before the jump by the size of the jump and then applying the Joinpoint model to

the converted data. The standard error of the converted data can be adjusted by combining

the standard error of the CR and the standard error associated with the original data. This

approach may work well if the goal is to capture the trend of the time series data given that

the jump size is known or has been estimated based on an external study.

However, the requirement of knowing the jump size makes the analysis more difficult

because the size of the jump needs to be estimated, and in many cases, this may not be

feasible. Motivated by the need for trend analysis with a sudden jump where the size of the

jump is unknown, we propose another method called Joinpoint-Jump (JP-Jump) model. The

model minimizes the effect of the jumps on trend analysis. Unlike the JP-CR method, the JP-

Jump model simultaneously estimates the size of the jump, as well as the changes in trend.

The remainder of this article is organized as follows. Section 2 briefly reviews the Joinpoint

model and presents the JP-CR and JP-Jump models. In Section 3, we consider several

applications. In one application, the proposed models are applied to US mortality data where

there is a coding change from ICD-9 to ICD-10 starting in 1999. In another application, we apply

the proposed models to cancer incidence data to test the difference between two cancer staging

systems. Section 4 discusses practical considerations in choosing between the two models.

2. The Joinpoint, Joinpoint-Jump (JP-Jump) and Joinpoint-Comparability

Ratio (JP-CR) Models

2.1. The Joinpoint Model (JP) – A Brief Review

The Joinpoint model is a segmented linear regression model. Suppose that we observe

(x1,g1), : : : ,(xn, gn), gi is an age-adjusted cancer incidence/mortality rate at time xi and
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yi ¼ log(gi). The Joinpoint model, propsed by Kim et al. (2000), assumes

yi ¼ logðgiÞ ¼ a1 þ b1xi þ d1ðxi 2 t1Þ
þ þ : : :þ dkðxi 2 tkÞ

þ þ e i;

i ¼ 1; : : : ; n; ð1Þ

where ei are independent errors, the notation aþ ¼ a if a . 0, and aþ ¼ 0 otherwise. In

this model, the mean function of yi is linear segments connected at change-points

t1 , · · · , tk. The locations of change-points ti as well as the number of change-points

k are assumed to be unknown and need to be estimated from the data. Assuming the

number of change-points is given, say k ¼ K, the locations of K joinpoints, t1; : : : ; tK ,

are estimated by the grid search method described by Lerman (1980) or a continuous

fitting method proposed by Hudson (1966). The overall least squares estimates of the

regression coefficients are then obtained based on the estimated joinpoints. Once the

least squares fit is obtained for a model with k ¼ K, an iterative procedure is used to

determine whether addition of joinpoints significantly reduces the residual sum of

squares. The procedure iteratively tests the null hypothesis that there are K0 joinpoints

against the alternative hypothesis that there are K1 joinpoints where K1 . K0, and

usually begins with K0 and K1 respectively being the pre-specified minimum and

maximum number of joinpoints allowed. Due to the fact that classical asymptotic

theory does not work in this situation, a Monte Carlo permutation test is used to

determine the p-value of the test. First permute the residuals from fitting the model

under the null hypothesis. For each permutation, add the permutated residuals back to

the fitted values and refit the permutated data under the alternative hypothesis, and

obtain the F-statistics as a goodness-of-fit measure. The p-value of the test is then

calculated from the distribution of the goodness-of-fit statistics. If the null hypothesis

is rejected, then test H0 : k ¼ K0 þ 1 versus H1 : k ¼ K1; otherwise, test H0 : k ¼ K0 versus

H1 : k ¼ K121. Tests are repeatedly conducted until for some K, the testing of H0 : k ¼ K

versus H1 : k ¼ K þ 1 is performed. Because the procedure is based on multiple testing,

the significance level of each test is adjusted to maintain the overall level under a,

which is the probability of over-fitting the model. Instead of permutation test, model

selection methods based on the Bayes Information Criterion (BIC) or a modified BIC,

can work as faster alternatives.

2.2. The JP-Jump Model

We consider a model where a jump occurs at a known location s, and we allow s to be a

possible change-point. Denote the observed rate at the time xi as gi, i ¼ 1, : : : , n. The

jump location is incorporated into a joinpoint model by assuming

yi ¼ logðgiÞ ¼ a1 þ b1xi þ d1ðxi 2 t1Þ
þ þ · · ·þ dkðxi 2 tkÞ

þ þ l Iðxi $ sÞ þ e i; ð2Þ

where t1 , · · · , tk are unknown change-points, s is a known location of a jump, l

represents the jump size, e i are independent errors N(0, s2), and I(A) ¼ 1 if A is true and 0

otherwise. If j denotes the index value such that tj , s , tjþ1, this model can also be
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expressed as

Eð yijxiÞ ¼

a1 þ b1xi if t0 # xi # t1

..

. ..
.

aj þ bjxi if tj21 , xi # tj

ajþ1 þ bjþ1xi if tj , xi , s

ajþ1 þ lþ bjþ1xi if s # xi # tjþ1

ajþ2 þ lþ bjþ2xi if tjþ1 , xi # tjþ2

..

. ..
.

akþ1 þ lþ bkþ1xi if tk , xi # tkþ1

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

; ð3Þ

where t0 ¼ min{xi}, tkþ1 ¼ max{xi}, and am þ bmtm ¼ amþ 1 þ bmþ 1tm for

m ¼ 1, : : : , k. Equations (2) and (3) are equivalent when

al ¼ a1 2
Xl21

u¼1

dutu; l ¼ 2; : : : ; kþ 1;

bl ¼ b1 þ
Xl21

u¼1

du; l ¼ 2; : : : ; kþ 1:

To fit the model, at any possible locations of joinpoints (t1, : : : , tk) ¼ (t1, : : : ,

tk) ¼ t0, we obtain the least squares estimate of u ¼ (a1, b1, d1, : : : , dk, l) 0 as

ûðtÞ ¼ ðX
0

tXtÞ
21X

0

ty;

where y1 ¼ ( y1, : : : ,yn) 0, and

Xt ¼

1 x1 ðx1 2 t1Þ
þ · · · ðx1 2 tkÞ

þ 0

..

. ..
. ..

. ..
. ..

. ..
.

1 xj ðxj 2 t1Þ
þ · · · ðxj 2 tkÞ

þ 0

1 xjþ1 ðxjþ1 2 t1Þ
þ · · · ðxjþ1 2 tkÞ

þ 1

..

. ..
. ..

. ..
. ..

. ..
.

1 xn ðxn 2 t1Þ
þ · · · ðxn 2 tkÞ

þ 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

The number of change-points k can be determined by a Monte Carlo permutation test

and the locations of change-points ti are obtained by a grid search method. A grid search

finds the estimate of t ¼ (t1, : : : , tk) 0, denoted by t̂, by minimizing the residual sum of

squares RSS(t) over all possible choices of t. Given t̂, the overall least squares estimate is

calculated, denoted by ûðt̂Þ. After fitting the model and calculating the residual sum of

squares for the fitted model, the number of change-points can be either selected by using a

permutation procedure or BIC method.
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Instead of calculating the constrained standard error of û, the standard error is calculated

by unconstrained standard error estimate. For all the segments except the one that includes

the known change-point s, the standard error is calculated as in the regular Joinpoint

model. For the segment where s lies, say [xj1, : : : , xjm], E( yjx) ¼ ajþ 1 þ bjþ1xþ

lI(x $ s) for x [ ½xj1; : : : ; xjm�, the standard error estimates of ðâjþ1; b̂jþ1; l̂Þ, can be

calculated by using

½SEðâjþ1; b̂jþ1; l̂Þ�
2 ¼ ŝ2 X

0

½xj1; xjm�
X½xj1; xjm�

� �21

;

where

X½xj1; xjm� ¼

1 xj1 0

..

. ..
. ..

.

1 xj 0

1 xjþ1 1

..

. ..
. ..

.

1 xjm 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Like the regular Joinpoint model, this unconstrained standard error estimate tends to

perform better than the constrained standard error estimate, see Kim et al. (2008).

In the JP-Jump model, l, representing the size of the jump, is estimated simultaneously

with other parameters a1, : : : , akþ1 and b1, : : : , bkþ1. The variance of l̂ can be obtained

as well. To compare the rates after and before the jump, we consider the ratio of the after-

jump rate and the before-jump rate. We call it the model-based comparability ratio, which

can be estimated directly from the JP-Jump model. Specifically, let r denote the model-

based comparability ratio, calculated as

r ¼
exp ðEð yjx ¼ sþÞÞ

exp ðEð yjx ¼ s2ÞÞ
¼

exp ðajþ1 þ bjþ1xþ lÞ

exp ðajþ1 þ bjþ1xÞ
¼ el; ð4Þ

where x ¼ sþ and x ¼ s2 denote the right and left side limits of x at s. The model-based

comparability ratio r is estimated by r̂ ¼ exp ðl̂Þ, and the standard error of r̂ can be

estimated by using the delta method, which is

Varðr̂Þ < e l̂
� �2

Varðl̂Þ;

and SEðr̂Þ ¼ e l̂SEðl̂Þ. For any a [ ð0; 1Þ, the (1 –– a) £ 100% approximate confidence

interval for r can be constructed by ½r̂ 2 za=2SEðr̂Þ; r̂þ za=2SEðr̂Þ�, where za/2 denotes the

upper a/2-th percentile of the standard normal distribution.

2.3. The Joinpoint-Comparability Ratio Model (JP-CR)

For this method, we assume that the analyst is provided with a comparability ratio and its

variance from an external source. The ratio, denoted by C, represents a ratio of the case
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counts after the change to before the change. If C is 1, the total net count is not affected by the

code change, even if individual records may be impacted. If C is less than 1, fewer events are

classified to this cause under the new coding system compared to the previous system.

Conversely, if the ratio is greater than 1, more events are classified to this cause under

the new coding system than under the previous one.

Recall that the incidence /mortality rate is denoted by g. The comparability ratio method

specifically uses the following steps:

. Step 1. For data before the coding change, find the Comparability ratio-Modified rate,

gCM, by multiplying the original rate by the comparability ratio, that is,

gCM ¼ g £ C:

. Step 2. Combine the adjusted data before the coding change and the original data

after the coding change. Analyze the trend by applying the regular Joinpoint model to

the combined data.

. Step 3. Before graphing the results, convert the fitted rates prior to the coding change

derived from Step 2 (denoted by ĝCM), back to the original scale by dividing by the

comparability ratio, ĝ ¼ ĝ CM

C
.

3. Results

3.1. US Mortality With Code Changes From ICD-9 To ICD-10

The International Classification of Diseases is revised periodically to stay current of medical

knowledge and advances (Anderson et al. 2001). The most recent code changes occurred

between 1998 and 1999 when ICD-10 replaced ICD-9. The coding changes have impacts on

some of the major causes of death in the United States. Comparability ratios developed by

Anderson et al. (2001) are designed to quantify the impact of the coding change. Although

the first year with new code is 1999, the comparability ratios presented by Anderson et al.

are based on double-coding the same deaths occurring in 1996 by both ICD-9 and ICD-10.

For each cause of death, the comparability ratio, denoted by C, is calculated as

C ¼
DICD210

DICD29

;

where DICD-10 and DICD-9 are the number of deaths classified by ICD-10 and ICD-9

respectively. We demonstrate these coding changes using two examples, one with a large

comparability ratio (septicemia) and one with relatively small comparability ratio

(melanoma).

3.1.1. Septicemia Mortality With Code Changes From ICD-9 To ICD-10

The published comparability ratio for septicemia is 1.1949 (Anderson et al. 2001), which

represents nearly 20% more deaths according to the ICD-10 coding paradigm than that of

ICD-9. Under ICD-10, septicemia is selected as the underlying cause of death over

pneumonia when both are listed on the death certificate; septic shock, coded in ICD-9 in a

different category is coded as “Unspecified septicemia” in ICD-10. The mortality rates due

to septicemia from 1979 to 2010 for all races and both sexes along with the fitted trends
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based on the regular Joinpoint model (called JP-Standard model hereafter) are shown in

Figure 1. The JP-Standard model does not take into account the code change information

and the fitted line indicates there is a large upward trend from 1996 to 2000. The annual

percent change (APC) between 1996 and 2000 is 9.95% per year, which is statistically

significant at level 0.05. The discrepancy between the observed pattern and the fitted

model suggests that the JP-Standard model fails to capture the observed data when there is

a sudden change in data.

To account for the coding change, both JP-Jump and JP-CR models are applied to the

data. The coding change is placed at 1998.5 to represent that 1998 is coded using ICD-9,

and 1999 is coded using ICD-10. Figure 1 shows these two methods have similar results.

The location of the joinpoints in the two models are identical, except for the end of the

second segment, which ends at 1994 for the JP-Jump model and 1995 for the JP-CR

model. Both the JP-Jump and the JP-CR model capture an upward trend from 1994/1995

to 2002; but unlike the JP-Standard model, the upward trend only shows a modest increase.

The APC for the last segment (2002–2010 for both models), which is the most important
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JP−Jump Model: 1979−1986 APC = 11.46*, 1986−1994 APC = −1.64,
1994−2002 APC = 1.70*, 2002−2010 APC = −1.14*, CR Estimate = 1.2542 

JP−CR Model: 1979−1986 APC = 11.33*, 1986−1995 APC = −1.41*,
1995−2002 APC = 2.77*, 2002−2010 APC = −1.28*, CR Estimate = 1.1949 

JP−Standard Model: 1979−1986 APC = 11.40*, 1986−1996 APC = −1.52*,
1996−2000 APC = 9.95*, 2000−2010 APC = −0.77* 

Fig. 1. JP-Jump model, JP-CR model and JP-standard model of septicemia US mortality for all races and both

genders, 1979–2010.

Notes: There are three joinpoints for each model. The estimate of the comparability ratio from JP-Jump Model is

1.2542 with standard error ¼ 0.032. The published comparability ratio is 1.1949 with standard error ¼ 0.002. Both

estimated and published comparability ratio are statistically different from one at level 0.05. The symbol * is shown

if the annual percent change (APC) is significantly different from zero at level 0.05.
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segment, is nearly identical: 21.14% per year for the JP-Jump model and 21.28% per

year for the JP-CR model; both are statistically significant. The model-based

comparability ratio r̂ estimated from the JP-Jump model is 1.2542 with a standard error

(SE) of 0.032, compared with the published comparability ratio C (C ¼ 1.1949 with

SE ¼ 0.0042). Both the estimated and published comparability ratio are statistically

different from one at level 0.05.

3.1.2. Melanoma Mortality With Code Changes From ICD-9 To ICD-10

While some causes of death other than cancer have large ICD-9/ICD-10 coding changes,

most causes of death due to cancer tend to have relatively small comparability ratios –

most have comparability ratios hovering around 0.99 and 1.01 (Anderson et al. 2001), and

among the 52 cancer sites published in NCI’s Cancer Statistics Review (Noone et al.

2018), only ten sites have comparability ratios that fall outside of the [0.99, 1.01] range.

Until now, a common practice in cancer surveillance is to use the regular Joinpoint model

(JP-Standard) to fit the data. For the majority of cancers, this common practice works fine

due to the small comparability ratio. However, in a few cases it is possible that even a

relatively modest comparability ratio can change the overall conclusions about the trends.

Figure 2 shows the mortality due to melanoma for all races, both males and females

combined analyzed from 1992 to 2014 by the JP-Jump, JP-CR, and JP-Standard models.

The published ICD-9 to ICD-10 comparability ratio for melanoma is 0.9677, with

SE ¼ 0.0032 and 95% CI ¼ (0.9614, 0.9741). The JP-Standard model finds no joinpoint

and shows a flat trend with a non-significant APC of 20.06% per year. The JP-CR model

with the relevant comparability ratio (0.9677) finds a joinpoint in 2010 with a significant

rise of 0.30% per year prior to 2010 and a significant fall from 2010 to 2014 of 1.43% per

year. The JP-Jump Model estimates a similar comparability ratio of 0.9444 (SE ¼ 0.0116

and 95% CI ¼ (0.9218, 0.9671)) and finds a joinpoint at 2009 with a significant rise of

0.50% per year prior to the joinpoint, and a significant decline of 1.19% per year after the

joinpoint. Despite the small comparability ratio size, these model results are qualitatively

different when the coding change from ICD-9 to ICD-10 is taken into account; it produced

biased trends when the coding change is not accounted for (using the JP-Standard Model).

The JP-Jump model is able to pick up approximately the same modest jump as the JP-CR

model, which is estimated by using external data.

3.2. Cancer Staging: Summary Staging 2000 and SEER Historical Staging

Analysis of cancer data incidence trends requires consistent staging algorithms across time

periods. This can be difficult because staging algorithms change over time to reflect

changes in our understanding of disease and changes in prognosis for various subgroups

who may be benefitting from new targeted therapies. The National Cancer Institute’s

Surveillance Epidemiology and End Results (SEER) cancer registry program started in

1973, and has a series of nine registries covering approximately 10% of the US population

since 1975 (more registries have been added in later years). While there are various staging

systems in use, the SEER Historical Staging System has been consistent since the

program’s inception. Summary Staging 2000 is another staging system, but it can only

consistently code back to cases diagnosed in 1998. Both staging systems code cancers as
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“local”, “regional”, or “distant”. It is of interest to estimate a single trend using the older

Historical Staging from 1975 through 1997 and switch over to the more contemporary

Summary Staging 2000 in 1998 using the JP-Jump model or JP-CR model. Cases from

1998 onward have been coded using both staging systems, making it possible to compute

a comparability ratio.

Figure 3 plots the age-adjusted incidence rate for all races, female, breast cancer at the

“distant” stage. The Historical Staging series are plotted from 1975 to 2014 (the most

recent year currently available), while the Summary Staging series are plotted from 1998

to 2014. The large gap between these staging systems is due to inflammatory carcinoma

being changed from “distant” to “regional” disease, as the improving prognosis of this

cancer subtype. Despite this change in coding, incidence rate trends from the two coding

systems appear approximately parallel. In order to apply the JP-CR model, we first find

the ratios between the Summary Staging 2000 rates and the SEER Historical Staging

rates from 1998 to 2014. The mean of these ratios are CR ¼ 0.8059 and the variance of
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JP−Jump Model: 1992−2009 APC = 0.50*, 2009−2014 APC = −1.19*,
CR Estimate = 0.9444

 

JP−CR Model: 1992−2010 APC = 0.30*, 2010−2014 APC = −1.43*,
CR Estimate = 0.9677 

JP−Standard Model: 1992−2014 APC = −0.06

Fig. 2. JP-jump model, JP-CR model and JP-standard model of melanoma US mortality rates for all races and

both genders, 1992–2014.

Notes: There is one joinpoint for JP-Jump Model, one joinpoint for JP-CR Model, and no joinpoint for JP-

Standard Model. The estimate of the comparability ratio from JP-Jump Model is 0.9444 with standard

error ¼ 0.0116. The published comparability ratio is 0.9677 with standard error ¼ 0.0032. Both estimated and

published comparability ratio are statistically different from one at level 0.05. The symbol * is shown if the annual

percent change (APC) is significantly different from zero at level 0.05.
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CR ¼ 0.00056, which represents about 20% reduction of incidence rates in the “distant”

stage coded by the Summary Staging 2000 when compared to the Historical Staging.

Figure 4 consists of data from Historical Staging before 1998 and Summary Staging

2000 from 1998 forward. Both JP-Jump and JP-CR models are fitted to the data.

The estimated comparability ratio from the JP-Jump model is 0.7871, which is close to

the pre-determined CR ¼ 0.8059, and significantly different from one. The fitting

illustrates a continuing flat trend (APC close to 0, not statistically significant) between

1975 to 2002, a drop in 1998 in the incidence rate due to difference between the

Historical Staging and Summary Staging 2000 from 1998, and an increasing trend

starting from 2002.

For comparison, the fitted plot from JP-Standard model shows a downward trend

with APC ¼ 28.89% per year between 1996 and 1999, which covers the time point of

coding system change in 1998. Both the JP-Jump model and the JP-CR model capture

the real trends. The Summary Staging 2000 has APC ¼ 2.05% per year for the JP-CR

model and APC ¼ 2.09% per year for the JP-Jump model in 2002–2014 – both

statistically significant. A possible reason behind the upward trend of incidence rates
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Summary staging 2000
Historical staging

Fig. 3. Data of breast cancer incidence rates at distant stage for all races female. The historical staging series

has data from 1975 to 2014. Between 1998–2014, the summary staging 2000 series is plotted against the

historical staging.
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starting from 2002 could be due, at least in part, to improvements in diagnostic

technology, such as the broad use of pet scans since 2002. These more sensitive scans

can find sites of distant disease that would have not been apparent in earlier

technologies. The finding is consistent with the report of a statistically significant

increase in the incidence of breast cancer with distant staging for women aged 25–39

years (Johnson et al. 2013).

4. Discussion

In this article, we propose two approaches – the JP-Jump and JP-CR models – to model

trends in data when there is a coding change. There are several practical issues to consider

when selecting the most suitable model.
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JP−Jump Model: 1975−2002 APC = 0.01, 2002−2014 APC = 2.09*, CR Estimate = 0.7871
JP−CR Model: 1975−2002 APC = −0.09, 2002−2014 APC = 2.05*, CR Estimate = 0.8059
JP−Standard Model: 1975−1996 APC = 0.06, 1996−1999 APC = −8.89, 1999−2014 APC = 1.84*

Fig. 4. JP-jump model, JP-CR model and JP-standard model of breast incidence rates for all races female

at distant stage using historical staging between 1975–1997 and summary staging 2000 between 1998–2014.

Notes: There is one joinpoint for JP-Jump Model, one joinpoint for JP-CR Model, and two joinpoints for

JP-Standard Model. The estimate of the comparability ratio from JP-Jump Model is 0.7871 with standard

error ¼ 0.0279, while the comparability ratio calculated from original data is 0.8059, with standard

error ¼ 0.0237. Both estimated and calculated from original data comparability ratio are statistically different

from one at level 0.05. The symbol * is shown if the annual percent change (APC) is significantly different

from zero at level 0.05.
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To analyze trend data when a coding change occurs, assuming a comparability ratio

based on double coding using the new and old codes is available, any one of the three

models (JP-Jump, JP-CR, or JP-Standard model) may be applicable. In many cases, one

may find that all three models produce virtually identical results, especially when the CR

from the double coding is small (e.g., between 0.99 and 1.01), denoting little effect of the

coding change. If no CR is available, then only the JP-Jump model or the JP-Standard

model are appropriate. Which method to use in practice often depends on several factors,

such as size of the data cohort, and size and variability of the CR ratio.

In comparing the three methods, the estimates of trends from the JP-Standard model can

be biased when coding changes are not taken into account, even if the jumps are modest.

The first two methods can yield similar results, but the JP-Jump model has advantages over

the JP-CR model because there is no requirement to know the size of the jump prior to

applying the model. Even if double coding is available and the ratio between the two codes

can be estimated, the JP-CR model may not be suitable for practical use in cases where the

statistical variability of the CR is high or the accuracy or applicability of the estimate is

questionable. Sampling error or small numbers may result in unstable CRs. Also,

demographic and geographic variation in the CR may make the applicability of a CR for

all races, or for all states, problematic when analyzing data by demographic groups or

states. In contrast, the JP-Jump model has advantages because it is always estimated

directly using the data series of interest, that is, it can adapt data to estimate the size of

jump and the trend simultaneously, for each subgroup or for the whole group.

However, like the regular Joinpoint model, the JP-Jump model is sensitive to the data

and the location of the joinpoints, and results should be interpreted with caution. Estimates

of jump sizes, particularly when close to a joinpoint, might be confounded with the slopes

before and after the joinpoint itself. Furthermore, the underlying data variability may make

estimation of a small or modest jump size impossible. For small subpopulations (e.g.,

Asian/Pacific Islander, American Indian/Alaska Native, rare cancer sites, or small

geographic areas), such situations may occur. In the JP-Jump model, one can check that

the jump is statistically different from zero. We note that in cases where the jump size is

not statistically significant, the JP-CR model may be the better choice, and that even with

statistical significance one should be wary of the data variability as compared to data set

size when assessing results of the JP-Jump model. Overall, we suggest applying both

models to data sets to consider the best fit for particular scenarios. In many cases where

the estimates are similar, the JP-Jump model may be preferred due to its specificity per

data set.

The JP-Jump model has a similar form to the regular Joinpoint model. The model fitting

and inference on the parameters are derived by modification from those of the regular

Joinpoint model. Note that the regular Joinpoint model has a continuous mean function,

while the mean function of the JP-Jump model is continuous only at places other than the

jump location. Additionally, we assume in the JP-Jump model that the location of the jump

is known, and only one such jump is allowed. A direct extension to the JP-Jump model is

to allow more than one known jump in response to multiple coding changes over time. The

implementation of such a model is straightforward, although with more than one coding

change one has to be especially careful about the issue of confounding between the APC of

segments and the size of the jump.
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In the JP-Jump model (Equation (2)), the errors e i are assumed to be independent

N(0, s 2). Just like the regular Joinpoint model, these assumptions can be relaxed to allow

correlated errors and non-constant variance. The model fitting and inference procedures

can be extended from the regular Joinpoint model as well.

In summary, trend data with a sudden jump occurs in many situations, particularly in

health data, where coding systems and practices change over time. Analyses using the

regular Joinpoint model that ignore these jumps could produce misleading conclusions,

as shown in the melanoma mortality example. The proposed methods in this article

incorporate a sudden discontinuous jump in an otherwise continuous joinpoint model. In

particular, the JP-Jump model can estimate the magnitude of the jump, while at the same

time can find the change-points of the continuous trend. The methods provide a useful tool

for trend analysis.
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Statistical Challenges in Combining Survey and Auxiliary
Data to Produce Official Statistics

Andreea L. Erciulescu1, Nathan B. Cruze2, and Balgobin Nandram3

Combining survey and auxiliary data to produce official statistics is gaining interest at federal
agencies and among policy makers due to its efficiency. Recent studies have shown the
practicality of small area estimation modeling approaches in the context of integrating data
from multiple sources to improve estimation at fine levels of aggregation. In this article,
agricultural predictions are constructed using a hierarchical Bayes subarea-level model, fit
to data available from different sources. Auxiliary data are initially used to complement the
survey data and define the prediction space, and then to define covariates for the model.
Finally, not-in-sample predictions are constructed using the model output, and benchmarking
constraints are imposed on the final set of in-sample and not-in-sample predictions. Unlike
most of the studies discussing not-in-sample prediction, this article illustrates a method that
uses the data available from multiple sources to define the prediction space. As a consequence,
the resulting framework provides a larger set of nationwide predictions as candidate for
official statistics, and extrapolation is not of concern. Challenges in developing the methods to
combine different data sources are discussed in the context of planted acreage prediction.

Key words: Administrative data; benchmarking; incomplete data; not-in-sample prediction;
small area estimation.

1. Introduction

Survey summary statistics at disaggregated levels may not be fit for use as official statistics

because the limited amount of information available may result in estimates with high

levels of uncertainty. With an increase in available data from auxiliary sources, an increase

in needs for official statistics at detailed levels of aggregation and a decrease in allocated

budgets, federal agencies have an increased interest in using models in the estimation

process. In this article, we consider novel ways of using administrative data in the process

of constructing official statistics. Specifically, administrative data are used to complement

the survey data and define the set of domains for which predictions are needed. Then,
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models that integrate survey and administrative data are used to construct predictions for

domains with survey sample sizes as small as zero. This work builds on a series of research

studies conducted at the United States Department of Agriculture’s (USDA’s) National

Agricultural Statistics Service (NASS) to innovate the current methods of setting official

statistics for acreage, production and yield at state and substate levels of aggregation. We

consider data collected by the USDA’s NASS using a probability sample and auxiliary

data from other sources, to produce end-of-season county-level and agricultural statistics

district-level predictions for planted acreage, where an agricultural statistics district

(hereafter, denoted by district) is defined as a group of contiguous counties within a state.

Area-level and subarea-level models are excellent reproducible tools that combine

survey data and auxiliary data to produce reliable estimates for areas where survey

estimates are available. In the area-level model, introduced by Fay and Herriot in 1979

(FH), the survey estimates, ûk, are modeled using the sampling model,

ûkjðuk; ŝ
2
k Þ

ind, Nðuk; ŝ
2
k Þ;

where ŝ 2
k are the estimated sampling variances and k (k ¼ 1, : : : , m) is an index for the

small areas. The small area parameters of interest uk are estimated using a linking model,

ukjðb;s
2
u Þ

ind, Nðz 0kb;s
2
u Þ; ð1Þ

where zk are area-level covariates with p components, including an intercept, and ðb;s 2
u Þ

is a vector of nuisance parameters. A rich literature is available for the FH model and its

extensions, using both frequentist and Bayesian methods. In a hierarchical Bayes analysis,

prior distributions are assigned to ðb;s 2
u Þ.

As an extension to the FH model, Fuller and Goyeneche (1998) introduced a subarea-

level model (FG) to account for a grouping structure of the subareas into areas. The survey

estimates at the subarea level, ûij, are modeled using the sampling model,

ûijjðuij; ŝ
2
ij Þ

ind, Nðuij; ŝ
2
ij Þ;

where ŝ 2
ij are the estimated sampling variances, j ( j ¼ 1, : : : , nc

i ) is an index for the

subareas, i (i ¼ 1, : : : , m) is an index for the areas, and nc ¼
Pm

i¼1nc
i is the total number of

subareas. The parameter of interest is the subarea mean uij, which is estimated using a

hierarchical linking model,

uijjðb;s
2
u ; viÞ ind, Nðx 0ijbþ vi;s

2
u Þ;

vijs
2
v

ind, Nð0;s 2
v Þ;

ð2Þ

where xij are subarea-level covariates with p components, including an intercept, and

ðb;s 2
u ;s

2
v Þ is a vector of nuisance parameters. Torabi and Rao (2014) studied the FG

model in a frequentist framework and Kim et al. (2018) extended the linking model in

Torabi and Rao (2014) to allow for a hierarchical level for parameters b and to remove

distributional assumptions in the first hierarchical level. Erciulescu et al. (2018, 2019)

studied the FG model using a hierarchical Bayes framework, adopting prior distributions

for ðb;s 2
u ;s

2
v Þ.
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In the area-level (subarea-level) sampling models, it is assumed that ûkðûijÞ and ŝ 2
k ðŝ

2
ij Þ

are valid estimates available from the survey summary, that is the estimates exist and are in

the parameter space (positive total acreage estimates and positive sampling variances).

However, for the not-in-sample subareas (domains with missing survey data), inference

conducted relies on the linking model’s specification. Given (1), a typical choice of

estimator for the not-in-sample areas is the synthetic estimator z0kb, see Rao and Molina

(2015) for more information on regression synthetic estimation. While one choice for a not-

in-sample subarea estimator, given (2), is the synthetic estimator x 0ijb, a better estimator is

the composite estimator x 0ijbþ vi (note the contribution of both the subarea-level auxiliary

data and the area-level random effect). In a Bayesian approach, the predictions are drawn

from the assumed linking model (1) or (2), for area-level or subarea-level, respectively.

Building on the work of Erciulescu et al. (2019), we combine survey and auxiliary data and

use a subarea-level model to construct planted acreage predictions for a set of counties defined

by the union of all the available data sources. Statistical challenges and breakthroughs in

combining data from multiple sources to produce official statistics are discussed throughout

the paper. In particular, we identify a common geographic level and time point to combine

data from a probability survey with nonprobability data from three administrative sources, the

latter lacking uncertainty measures. As in Erciulescu et al. (2019), we treat the auxiliary data

as fixed and free of error, but details on potential error sources in these data are available in

Erciulescu et al. (2019). Note that Erciulescu et al. (2019) investigated these sources only for

predictive power, and used only one at a time in developing the models (to avoid

multicollinearity problems). Also, the authors tackled prediction for harvested acreage only

for counties with both sample and administrative data available. In this article, we integrate all

the data to identify the set of counties with planting activity for a specific crop (or the

prediction space), in a given crop season, and to construct a covariate with good predictive

power and observations available for all the counties in the prediction space. Challenges in

multistage, nationwide prediction for counties with sample sizes as small as zero (not the case

in Erciulescu et al. 2019) are addressed using hierarchical Bayes subarea-level models.

Modeling strategies are developed to deal with incomplete data and benchmarking

methods are implemented to overcome the challenge of attaining consistency among

predictions at nested levels of aggregation. Whereas Erciulescu et al. (2019) developed

and compared models for direct estimates scaled by the sample sizes, with a hierarchy for

sampling variances and different benchmarking methods, here we adopted the model for

the direct estimates, with fixed sampling variances and the ratio adjustment, as a practical

method with good performance that allows for prediction for subareas with sample sizes of

just one or even zero where suggested by auxiliary information. This outcome was not

possible under the model specification pursued in Erciulescu et al. (2019). Moreover, due

to the extended prediction space, the possible over-adjustment due to benchmarking is less

of a concern for NASS than it was for Erciulescu et al. (2019). As a result, a crop-specific

framework of producing predictions is presented, with the potential to increase the number

of official statistics constructed using current methodology.

In summary, the major contributions of this article are as follows:

. integration of all the available data to define the prediction space, as well as a

covariate with good predictive power;
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. modeling strategies to deal with incomplete administrative data and missing at

random (MAR) assumption;

. not-in-sample prediction;

. reduction in over-adjustment due to benchmarking; and

. increase in the number of official statistics, given a common criterion.

In Section 2, we introduce different data sources and present a method that combines

survey data and administrative data to identify and predict planted acreage for in-sample

and not-in-sample subareas of interest for a certain crop, that is, county-level corn, as in

the case study illustrated here. In Section 3, modeling strategies addressing different

scenarios of available data and the corresponding derived predictors are presented. In

Section 4, we present nationwide prediction results for 2015 corn planted acreage,

including model efficiency and different contributions of administrative data to produce

official statistics. A discussion is provided in Section 5. Additional results on corn,

soybean, sorghum and winter wheat are presented in the Appendix (Section 6).

2. Data for Modeling End-of-Season Crop Acreage

County-level survey estimates may be improved using auxiliary information and small area

model-based procedures, especially for counties with small sample sizes. Estimation

challenges are driven by the needs for multi-stage (county, district, state), nationwide,

estimates, constructed using a small amount of survey data. In this section, we describe the

sources of data considered to produce small area model predictions for end-of-season crop

planted acreage for corn in 2015. Next, we introduce a method that combines survey data and

administrative data to identify the 2015 in-sample and not-in-sample counties of interest for

corn planted acreage prediction. Finally, we investigate the potential for using auxiliary data as

covariates in hierarchical models. The NASS survey data and the auxiliary data available from

other USDA agencies on corn planted acreage are combined at the county level for each state.

2.1. NASS Survey Data

The probability sample of interest in this study is the pooled sample from the quarterly

crops Agricultural Production Surveys (USDA NASS APS 2018) and their supplement,

the County Agricultural Production Surveys (USDA NASS CAPS 2018), and will be

denoted hereafter by CAPS. Due to the updates to the list sampling frame and the survey

questionnaires, and to the year-to-year changes in planting activity, the set of subareas to

be estimated for a given year-commodity combination is not predefined. For example,

each survey response includes information on the entire operation (farm or ranch), and for

all the sampled commodities with activity in the given season. As a result, the number of

known operations in a county may change over time, the number of sampled operations

may vary from year to year, and each of the operations may vary the type of crops grown

annually. See Appendix A in National Academies of Sciences, Engineering, and Medicine

(2017) for more details on NASS’s survey design and data collection.

County-level and district-level survey estimates and associated variance estimates are

available from the NASS’s CAPS summary. The district-level survey data are derived

directly from the county-level survey data and, hence, only the county-level data will be
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used for modeling. The district-level survey data will be used for comparing model

predictions to the survey estimates. In the 2015 crop season, NASS sampled 36 states for

corn. The 36 states were comprised of 2,837 counties, and NASS produced survey

estimates for 2,426 in-sample counties. Survey estimates are not available for the

remaining 411 counties; we refer to these counties as not-in-sample with respect to corn. A

nationwide map of the end-of-season positive county-level planted acreage survey

estimates available for corn in 2015 is shown in Figure 1. The 12 states that were not

sampled for corn in 2015 are represented as blank states with a black dot. The counties

with zero planted acreage predictions and not-in-sample counties for corn in 2015 are

represented in white. Since the range of planted acreages in counties with available sample

data is state-dependent and can vary from tens to hundreds of thousands of acres, the

county-level map in Figure 1 depicts estimates on the log(10) scale. Dark areas correspond

to high acreage intensity regions, in particular the Midwestern corn belt states.

As a result of the NASS survey and publication cycle, state-level planted acreage values

are prepublished and considered as fixed targets in the substate-level estimation process.

The sum of the county-level survey estimates in a state does not necessarily equal the

prepublished state-level value, the latter being the result of an expert assessment of

multiple sources of data (including, but not limited to the survey data). Hence, one of the

challenges encountered is to attain consistency among estimates constructed for nested

levels. To overcome this challenge, we study a benchmarking adjustment applied to the

substate-level predictions, for the county-to-district-to-state agreement to hold. More

details on the benchmarking adjustment we utilize are presented in Subsection 3.3.

The number of counties and districts vary across the states and across commodities. For

2015 corn, the number of counties within districts ranges from 1 to 32, with a median of 8

and the number of districts within state ranges from 3 to 15, with a median of 9. Because

the source of survey data for this study is the survey summary at the county level and

district level, we denote the sample size by the number of positive records used to

construct the survey summary; a positive record refers to a survey record for which

0
1
2
3
4
5
6

log10(acres)

States not sampled
Not sampled for
corn county
estimates in 2015

County−level survey estimates: corn, 2015

••

•• ••••
•

•

•

•

•

Fig. 1. Nationwide map of the end-of-season positive county-level planted acreage survey estimates available

for corn in 2015 from the NASS CAPS summary, with all non-zero estimates on the log(10) scale.
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positive acreage was reported. The county sample size differs from state to state and

commodity to commodity. For corn, the county sample sizes range from 1 to 191, with a

median of 18 and the district sample sizes range from 1 to 993, with a median of 206; the

sample size ranges for Illinois are illustrated on the x-axes in Figure 2.

The estimated coefficients of variation (CVs) for the survey estimates increase as the

county sample sizes decrease, and their ranges also differ from state to state and

commodity to commodity. For 2015 corn, the CVs of the county-level survey estimates

range from 0.07% to 107.66%, with a median of 31.94%, and the CVs of the district-level

survey estimates range from 3.27% to 100.70%, with a median of 10.67%. Figure 2 shows

the inverse relationship between the CVs of the 2015 corn county-level planted acreages

survey estimates in Illinois and the corresponding sample sizes. Similar patterns are

observed in other states, and for other commodities.

2.2. Auxiliary Data

We explore auxiliary data, available from three USDA agencies: NASS, the Farm Service

Agency (FSA) and the Risk Management Agency (RMA). FSA administers US farm

programs, such as county-level revenue loss protections (USDA FSA 2019). RMA

oversees the Federal Crop Insurance Corporation, which provides crop insurance to

participating farmers and agricultural entities (USDA RMA 2019). For this, FSA and

RMA collect data from farmers participating in such programs. NASS produces the

Cropland Data Layer (USDA NASS CDL 2018), a crop-specific land cover product that

uses satellite and FSA ground-reference data to classify crop types in the continental

United States (Boryan 2011; USDA NASS 2016a).

The levels and time of availability, and potential sources of error vary by data source

(FSA, RMA, NASS), geography and commodity. Combining data from multiple sources

and assessing its quality and usability is a challenging effort, often not mentioned in small

area studies. For example, the CAPS sample data are collected on farms or ranches that the

County-level survey summary, Illinois
102 counties

District-level survey summary, Illinois
9 districts
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Fig. 2. Plots of CVs of the 2015 survey county-level and district-level estimates of planted acreage of corn in

Illinois against corresponding sample sizes.
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respondents operate and participation in the FSA and RMA programs is popular, but not

compulsory; farmers who choose to participate in either agency’s support programs supply

data to the FSA and RMA administrative offices voluntarily. However, the definition of

farm or ranch and the spatial unit used differ among the three data sources: NASS, FSA

and RMA (National Academies of Sciences, Engineering, and Medicine 2017, 96–97).

Linking data at a fine scale has been of interest to NASS, but final solutions have yet to be

developed. The administrative data of interest for this study are the self-reported corn

planted acreage values supplied to FSA and RMA and the acreage values derived from

pixels classified as corn, aggregated at the county level and comprising the nonprobability

sample data under consideration.

Quantifying the quality of nonprobability sample data has been of interest to many

government agencies, but conclusive studies have yet to be published. Parsons (1996) evaluated

the quality of FSA acreage totals with respect to coverage. Kennedy et al. (2016) evaluated

nonprobability surveys and assumed that the nonprobability samples were drawn as simple

random samples from the population and constructed pseudo-weights when constructing

domain estimates and associated measures of uncertainty. While we acknowledge potential

error sources in the aggregated data, in this study we will assume the nonprobability county-

level values from FSA, RMA and CDL as fixed and free of error. In Table 1, we report a

summary of the number of counties with data available on corn planted acreage in 2015 from at

least one source. Note that the sets of counties with data available from either of the four sources

are not mutually exclusive, as depicted in the Venn diagram in Figure 3. After accounting for

the 2,726 counties with corn planted acreage identified from the CDL, additional planted

acreage activity is identified in only 22 (¼ 11 þ 3 þ 6 þ 0 þ 1 þ 1 þ 0) counties from

the CAPS, FSA and RMA (see Figure 3). Hence, our goal is to construct 2015 corn predictions

for the total of 2,748 counties. The number of counties with corn planting activity differs across

years, states, commodities and data sources.

The county-level quantity of interest is the total planted acreage and the values available

from the three sources (FSA, RMA, CDL) of auxiliary data are measurements of the same

county-level quantity, that is corn total planted acreage. It is known that all three sources

may suffer from downward biases (see Cruze et al. 2019 for a literature review of

geography and remote sensing studies). As an attempt to avoid the possible downward bias

and obtain a covariate with good predictive power for total county-level acreage, we

combine the three sources to construct one set of values indicating the maximum number

of available corn planted acreages, reported by volunteers or remotely classified. Let

Admin PL denote the constructed variable as such. If all FSA, RMA and CDL values are

available, then the maximum value is considered. If only two of the values are available,

Table 1. Counties, in sampled states, with corn planting activity, 2015.

Data source (USDA) Number of counties

NASS CAPS 2426

FSA 2398
RMA 2230
NASS CDL 2726
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the maximum value is considered. If only one of the values is available, then that value

is considered. To investigate the additional contributions of the CDL data, we will also

consider an Admin PL variable, as derived from FSA and RMA data only, and present

results in Section 4.

2.3. Borrow Information from Multiple Data Sources

As expected, nationwide analysis indicates strong linear relationships between the survey

estimates and the administrative data for all the 36 states. For each sampled state, a simple

regression model was fit to the survey estimates, using intercept and FSA, RMA, CDL or

Admin PL as predictor. Summaries of R2 values and estimated slope coefficients b̂, for all

the states, are reported in Table 2 (25%, 50%, 75% quantiles).

In Figure 4 we display the linear fit between the survey estimates and the derived

administrative values, Admin PL, and in Figure 5 we display the linear fits between the

survey estimates and the values available from each of the three auxiliary sources, FSA,

RMA and CDL, respectively. As a result of this analysis, Admin PL will be included as a

covariate in the model described in the next section.

3. Modeling Strategies

The proposed model for a given state is a subarea-level model, where the area represents

the district, the subarea represents the county and the subarea-level survey variances are

treated as fixed and known. Of interest is prediction of planted acreage at the county and

district levels. Prediction is conducted state by state and commodity by commodity, for all

counties within states identified to have planted acreage activity in the given crop season.

3.1. Hierarchical Bayes Model

Let i ¼ 1, : : : , m be an index for the m districts in the state under consideration;

j ¼ 1, : : : , nc
i , be an index for the nc

i counties in district i; and nij be the sample size of

the j th county in the ith district. The total number of counties in the state is
Pm

i¼1nc
i ¼ nc

and the state sample size is
Pm

i¼1

Pnc
i

j¼1nij ¼ n.

Let ûij be the (total planted acreage) survey estimate for county i in district j and ŝ 2
ij be

the corresponding estimated survey variance. For now, assume that county-level covariate

NASS
CAPS

NASS
CDL

RMAFSA

11 238

2181

99

1

6

1301

0

451

310

3 1

Fig. 3. Counties, in sampled states, with corn planting activity, 2015.
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values xij are available; a discussion on the availability of such covariates is provided later.

Illustrated for one state, one commodity and one parameter, the hierarchical Bayes

subarea-level model is

ûijjðuij; ŝ
2
ij ; viÞ ind, Nðuij; ŝ

2
ij Þ; ð3Þ

uijjðvi;b;s
2
u Þ

ind, Nðx 0ijbþ vi;s
2
u Þ; ð4Þ

vijs
2
v

ind, Nð0;s 2
v Þ: ð5Þ

The parameters ðb;s 2
u ;s

2
v Þ are assumed independent a priori, for which noninforma-

tive, proper priors are adopted. The least squares estimates of b are obtained from fitting

a simple linear model for the county-level survey estimates against the county-level

auxiliary information, and then used as fixed and known parameters in the prior

distribution for b. In particular, we adopt a multivariate normal prior distribution for b,

with mean and variance denoted by the least squares estimate for the mean and the least

squares estimate for the variance, multiplied by 103, respectively. By assigning a large

Survey vs combined administrative data, Illinois
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Admin PL

Survey Estimate=2177+0.915*Admin PL
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Su
rv

ey
 e

st
im

at
es

Fig. 4. Plot of survey estimates against derived administrative data values of planted acreage of corn

(maximum value from available administrative sources) overlaid with best simple linear regression line.
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Fig. 5. Plots of survey estimates against administrative data values of planted acreage of corn available from

the FSA, RMA, and CDL, respectively, overlaid with data-specific best simple linear regression lines.
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prior variance, we adopt a diffuse prior for b. The prior distributions for the model

variance components s 2
u and s 2

v are Uniform(0, 108) and Uniform(0, 108), respectively.

The model (3, 4, 5) borrows information from all the counties in a district and from all

the districts in the state, while combining auxiliary information available at the subarea

level, xij. The result model predictions are composite predictions, denoted by the weighted

average of the subarea survey estimate and the best fitted values, after accounting for the

area effect. That is, for a county j, in district i, the posterior mean is a predictor composed

of the county-level survey estimator and a composite predictor of county-level synthetic

predictor and a district-level effect predictor. The derivation is provided below.

Combining (3) and (4) using Bayes’ theorem, we obtain the distribution of uij given the

data and the nuisance parameters,

uijjðvi;b;s
2
u ;s

2
v ; ûij; ŝ

2
ij Þ

ind, Nðgijûij þ ð1 2 gijÞðx
0
ijbþ viÞ; ð1 2 gijÞs

2
u Þ; ð6Þ

where gij ¼
s 2

u

ŝ 2
ijþs

2
u

.

Integrating out uij from (3) and (4), we obtain the conditional distribution of ûij,

ûijjðvi;b;s
2
u ;s

2
v ; ŝ

2
ij Þ

ind, Nðx 0ijbþ vi; ŝ
2
ijs

2
u Þ: ð7Þ

Now, combining (5) with (7) using Bayes’ theorem again, we obtain the conditional

distribution of vi,

vijðb;s
2
u ;s

2
v ; ûi; ŝ

2
i Þ

ind, Nðgiðû
�g
i 2�x

g 0

i bÞ; ð1 2 giÞs
2
v Þ; ð8Þ

where gi: ¼
Pnc

i

j¼1gij, gi ¼
s 2

u

s 2
vþs

2
u ðgi:Þ

21, û
�g
i ¼ ðgi:Þ

21
Pnc

i

j¼1gijûij, �x
g
i ¼ ðgi:Þ

21
Pnc

i

j¼1gijxij, ûi

the vector of ûijs and ŝ 2
i is the vector of ŝ 2

ij s.

By the conditional mean formula in (6) and (8), it follows that the posterior mean of uij,

given the data and the nuisance parameters, is

Eðuijjb;s
2
u ;s

2
v ; ûij; ŝ

2
ij Þ ¼ x0ij

~bþ ~giðû
�~g
i 2 �x~

g 0

i
~bÞ þ ~gij ûij 2 x 0ij

~b 2 ~giðû
�~g
i 2 �x~

g 0

i
~bÞ

� �

; ð9Þ

where ~gij ¼
~s 2
u

~s 2
uþŝ

2
u

, ~gi: ¼
Pnc

i

j¼1 ~gij, ~gi ¼
~s 2
v

~s 2
vþŝ

2
u ð ~gi:Þ

21, û�
~g
i ¼ ð ~gi:Þ

21
Pnc

i

j¼1 ~gijûij, �x~
g
i ¼ ð ~gi:Þ

21

Pnc
i

j¼1 ~gijxij, and ~vi ¼ ~giðû
�~g
i 2 �x~

g 0

i
~bÞ. The estimated variance parameters ŝ 2

u and ŝ 2
v are

constructed as the posterior means for these parameters, that is Eðs 2
u jûij; ŝ

2
ij ;b;s

2
v ; uijÞ and

Eðs 2
v jûij; ŝ

2
ij ;b;s

2
u ; uijÞ, respectively.

Note that the posterior mean can be further rewritten as

~uij ¼ x0ij
~bþ ~giðû

�~g
i 2 �x~

g 0

i
~bÞ þ ~gij ûij 2 x 0ij

~b 2 ~giðû
�~g
i 2 �x~

g 0

i
~bÞ

� �

¼ ~gijûij þ ð1 2 ~gijÞ x 0ij
~bþ ~vi

n o
: ð10Þ

Using Equation (10), note the district-level contribution to the county-level not-in-

sample predictions, vi; for an area-level model, this term would be missing in Equation

(10). On the other hand, Equation (10) may be rewritten as

~uij ¼ ~gijûij þ ð1 2 ~gijÞ x
0
ij
~bþ ð1 2 ~gijÞ ~giðû

�~g
i 2 �x~

g 0

i
~bÞ; ð11Þ
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where ~gij, ~gi:, ~gi, û
�~g
i and �x~

g 0

i are defined as for (10). The subarea-level and area-level

components to the subarea-level posterior mean are clearly identified in Equation (11).

A discussion on the choice of county-level covariate values xij is provided in the next

subsection, as it depends on the availability of the data. When available, the county-level

covariate values, xij, are Admin PL values constructed as described above, and the model is

denoted by M. For comparison, a model with no covariates and a model with Admin PL

constructed using only the FSA and the RMA data are also fit, and denoted by M0 and M1,

respectively. In addition, the comparison of models M and M1 may be of interest to the agency

because the current NASS process of setting official statistics uses FSA and RMA data, but it

does not use CDL data directly; see Cruze et al. (2019) for a detailed description of the process.

3.2. Incomplete Data

Complete sets of data are needed to define the counties with corn planted acreage activity

and for model defined in (3), (4), and (5) to be fitted. One other challenge in combining

data from multiple sources is the incomplete availability of the data. For this, we develop

modeling strategies to account for three cases of available information for a given county j,

in district i:

1. ðûij; ŝ
2
ij Þ are available, but xij is missing,

2. ðûij; ŝ
2
ij ; xijÞ are available, and

3. ðûij; ŝ
2
ij Þ are missing, but xij is available.

The counties for which data are missing in all of the data sources considered, ðûij; ŝ
2
ij ; xijÞ,

are excluded from the prediction set, because there is not enough evidence to conclude that

planting activity took place for the specific crop, in the specific crop season. Not-in-sample

predictions for these additional counties may be constructed using the methods for the third

case above, after imputing covariate values xij (for example, using the average values

available for other counties in the same division or state). However, not having any data to

indicate county-level planting activity may lead to severe extrapolation and under-

adjustments in the benchmarking step. For the cases with missing data in some of the

sources, but available in others, we assume the missing at random (MAR) mechanism.

The first step in the modeling strategies is to impute the missing covariate values xij, for

county j in district i, where survey estimates ðûij; ŝ
2
ij Þ are available. For this, we use the xij

values available for the most similar counties in the state. Similarity is defined using the

absolute-value norm applied to the available survey estimates,

xij ˆ xij 0 j j
0 ¼ arg mink jûik 2 ûijj

� �
;

over all counties k with survey and auxiliary data available. The resulting set of counties nc

with survey and auxiliary data ðûij; ŝ
2
ij ; xijÞ available denotes all the counties with corn

planting activity for the study.

After imputation, the models are fit to the nc counties for which ðûij; ŝ
2
ij ; xijÞ are

available, using R JAGS (see Plummer et al. 2018), and posterior distributions are

constructed using MCMC simulation. To estimate the nuisance parameters and the

parameters of interest for the county-level total acreages, we use 3 chains, each of 10,000

Monte Carlo samples, 1,000 burn-in samples and thinned every nine samples.
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Convergence diagnostics are conducted for selected states. The convergence is monitored

using trace plots, the multiple potential scale reduction factors (values less than 1.1) and

the Geweke test of stationarity for each chain (Gelman and Rubin 1992; Geweke 1992).

Also, once the simulated chains have mixed, we construct the effective number of

independent simulation draws to monitor simulation accuracy.

Using the chains of iterates obtained from the model fit, we construct posterior

summaries from the posterior distributions of the nuisance parameters br, ðs 2
u Þ

r, ðs 2
v Þ

r, the

county-level parameters of interest u r
ij and district-level parameters of interest

u r
i :¼

Pnc
i

j¼1u
r
ij, where r ¼ 1, : : : , R, and R denotes the total MCMC iterates, after burn-

in and thinning, equal to 3,000 in the application study.

In the last step in the modeling strategies, the model output from the complete data fit is

used to predict for counties where ðûij; ŝ
2
ij Þ is missing but xij is available. For this,

ur
ij

n o

r¼1; : : : ; R
are drawn from the linking model (4, 5),

u r
ijjðv

t
i;b

r; ðs 2
u Þ

rÞ ind, Nðx 0ijb
r þ vr

i ; ðs
2
u Þ

rÞ:

3.3. Consistency Among Nested Levels

As discussed in the Section 1, NASS publishes the state-level value of corn planted

acreage before estimation is conducted at the substate levels. To overcome the challenge

of attaining consistency among predictions constructed for nested levels, we consider

an external benchmarking adjustment that is timely and practically usable. A detailed

discussion of classic benchmarking adjustments is given in Rao and Molina (2015).

Studies on different benchmarking adjustments to crop acreage prediction are discussed in

Erciulescu et al. (2019). In this section, we illustrate a benchmarking adjustment applied to

the model predictions constructed under the different data availability cases, so that the

county-level predictions aggregate to the district-level predictions and the district-level

predictions aggregate to the prepublished state-level value.

Raking provides a suitable benchmarking adjustment to ensure consistency of substate

predictions with state targets. For this study, we use the extension of the classic ratio

adjustment given in Erciulescu et al. (2019), and we apply the constraint at the (MCMC)

iteration level. This type of benchmarking adjustment is not adopted as part of the prior

information or the model, but it facilitates its application to the set of in-sample and not-in-

sample counties, in a small amount of time. For this, let the state-level target be denoted by

a. Then the relation

Xnc*

i; j

~u
B

ij ¼ a; ð12Þ

needs to be satisfied, where nc* is the total number of counties in the state and ~u
B

ij is the

final model prediction for county j and district i. Note that nc* ¼ nc þ ðnc* 2 ncÞ, where nc

is the number of in-sample counties and ðnc* 2 ncÞ is the number of not-in-sample

counties. The ratio adjustment is applied at the MCMC iteration level as follows

uB
ij;r :¼ uij;r £ a £

Xm

k¼1

Xn
c*
k

l¼1

ukl;r

0

@

1

A

21

; ð13Þ
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where uB
ij;r is the benchmarking-adjusted iteration, for r ¼ 1, : : : , R. Final county-level

and district-level posterior summaries are constructed using the county-level iterates uB
ij;r

and district-level iterates uB
i;r :¼

Pnc*
i

j¼1u
B
ij;r. For example, the resulting posterior means

(variances) are constructed as Monte Carlo means (variances) of iterates. The county-level

and district-level posterior means satisfy the multi-level benchmaking to state-level target

a; note that nc*
i is the total number of counties in district i.

From (13), note the importance of correctly specifying the set of counties to be

estimated, since a smaller (larger) than the truth number of counties would result in an

over-adjustment (under-adjustment) in the predictions.

4. Results

In this section, nationwide prediction results are presented for 2015 corn planted acreage,

including a comparison of different models, model efficiency and different contributions

of administrative data, serving towards the production of official statistics.

4.1. Model Comparison

Planted acreage data from the four sources summarized in Table 1 are used to define the set of

counties to be estimated. For models fit and prediction, we define the set of counties with

complete data after implementing the first step in the modeling strategies enumerated in

Subsection 3.2. As previously mentioned, we consider three models for comparison: M0, the

model fit to the survey data and no covariate; M1, the model fit to the survey data with one

covariate derived from FSA and RMA data (directly and imputed, when applicable); and M,

the model fit to the survey data with one covariate derived from FSA, RMA and CDL data
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Fig. 6. Deviance information criterion (DIC) for models M0, M1, and M, by state.

Journal of Official Statistics76

Unauthentifiziert   | Heruntergeladen  23.03.20 10:37   UTC



(directly and imputed, when applicable). Note that the survey data modeled in all M0, M1 and

M is the same, only the covariate data differ. Also note that various data sources are combined

to construct one covariate (models M1 and M), therefore avoiding multicollinearity issues (as

is the case when multiple covariates would correspond to the data sources).

The goodness of fit for models M0, M1 and M, fit state by state, is evaluated using the

Deviance Information Criterion (DIC) and results are presented in Figure 6. The x-axis in

Figure 6 illustrates the two-digit Federal Information Processing Standards (FIPS) codes

for the 36 states, sampled for corn in 2015. Model comparison is conducted for each state,

and not between states. The goodness of fit increases when auxiliary information is

incorporated in the model, the best fit being when the Admin PL is defined using FSA,

RMA and CDL. Models M1 and M result in similar performance; however, there are other

benefits of using the CDL, as discussed in Section 5.

Models M0, M1 and M are further compared with respect to the contribution of

auxiliary data to the final model predictions. Three-number summaries (25%, 50%, 75%

quantiles) of the estimated factors ~gij (%) and ~gi (%) defined for (10), are constructed over

all the 36 states for which the models are fit and illustrated in Tables 3 and 4. Again, model

predictions constructed using M1 and M have similar features. The auxiliary data and their

relationship with the survey estimates receive larger weights in the final predictions under

model M compared to model M0.

4.2. Increased Number of County-Level Estimates

Of great interest is the contribution of administrative data to increasing the number of

county-level estimates. A nationwide map of the 2015 corn positive planted acreage county-

level model predictions on the log10 scale, using model M, is illustrated in Figure 7. Model

predictions are produced for 2,627 counties, of which 2,420 are in-sample counties and 207

are not-in-sample counties. Additionally, 121 model predictions were set to zero, because

they corresponded to negative model predictions. Darker areas correspond to higher intensity

regions. Not-in-sample predictions are mostly produced for counties located in non-major

corn producing states and with small acreage amounts (the maximum not-in-sample model

Table 3. Summary of estimated factors ~gij (%).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Model M0 None 60.66 85.69 98.01
Model M1 FSA and RMA 2.67 11.41 44.92
Model M FSA, RMA and CDL 2.42 10.25 40.94

Table 4. Summary of estimated factors ~gi (%).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Model M0 None 85.37 92.25 95.48
Model M1 FSA and RMA 46.04 62.13 77.36
Model M FSA, RMA and CDL 47.90 66.35 82.54
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prediction is approximately 60% the median of the in-sample model predictions) and large

CVs. In contrast, recall that survey estimates are available for 2,426 counties, as illustrated in

Figure 1, and under model M1, 2,486 model predictions are produced.

4.3. Model Efficiency

Model efficiency comparisons are conducted for the set of counties where both a survey

estimate and a model prediction are available. Compared to the survey estimates, the SEs

and CVs of the model predictions are lower for most counties and districts. In Figure 8, we

illustrate the reduction in CVs for the 2015 county-level estimates of corn planted acreage

in Illinois, under model M.

In Tables 5 and 7, we illustrate nationwide results (25%, 50%, 75% quantiles),

comparing the county-level survey SEs (CVs) to the model SEs (CVs) for models M1 and

M. In Tables 6 and 8 we illustrate nationwide results (25%, 50%, 75% quantiles),
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Fig. 7. Nationwide map of model-M, positive, predictions of county-level planted acreage of corn in 2015, on

the log10 scale; 121 negatively-valued model predictions are set to zero.

0 20 40 60 80
0

20

40

60

80

100

Sample size

C
V

 (%
)

Survey Expansion
Model M Estimate

300 350 400 450 500 550 600 650
3

4

5

6

7

8

9

10
County-level summary: 102 counties of Illinois District-level summary: 9 districts of Illinois

Sample size

C
V

 (%
)

Survey Expansion
Model M Estimate
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comparing the district-level survey SEs (CVs) to the model SEs (CVs) for models M1 and

M. Comparing a model’s performance versus a survey’s performance based on precision

(relative precision), we observe an increase in precision/relative precision in the range

34–70% (32–72%) in most of the county-level SE (CV) and in the range 27–57%

(48–54%) in most of the district-level SE (CV), with slight improvement at the county

level for model M versus model M1. We do not see an overall increase in precision at the

district level for model M versus model M1 because the districts are composed of both in-

sample and not-in-sample counties, and more predictions for not-in-sample counties are

constructed under the two different models (M and M1, respectively).

The three-number summaries in Tables 5–8 do not reflect the relative efficiency at the

domain (county or district) level. So, we report additional results in Figure 9, in the first

row for 2,420 counties with positive survey estimates and model predictions, and in the

second row for the corresponding 272 districts (which may include additional model

predictions); counties or districts with relative efficiency values greater than 3 are removed

to facilitate visualization. The relative SE (CV) is the ratio of the model prediction

standard error (coefficient of variation) to the survey estimate standard error (coefficient

of variation). Values larger than one for the county-level relative SE are due to the

benchmarking adjustments and values larger than one for the district-level relative SE are

due to the not-in-sample predictions and to the benchmarking adjustments.

5. Discussion

In this article, we illustrated the contributions of administrative data to produce

agricultural official statistics. The methodology developed was illustrated using corn

planted acreage, and the results for 2015 were presented. As an external validation

exercise, models with specification M1 were fit to data from other years (2014, 2015, and

2016), and for commodities (corn, soybean, and sorghum). Blending survey and

administrative data, we produce model county-level and district-level predictions for a set

of counties predefined using in-sample data available from the survey summary and

not-in-sample data available from administrative sources. The number of positive model

Table 5. Summaries of standard errors of county-level survey estimates and model predictions (acres)

Counties with available survey estimates.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 640.90 2719.00 9494.00
Model M1 FSA, RMA 429.40 1233.00 2850.00
Model M FSA, RMA and CDL 429.30 1166.00 2839.00

Table 6. Summaries of standard errors of district-level survey estimates and model predictions (acres).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 4681.00 12220.00 36400.00
Model M1 FSA, RMA 2597.00 6121.00 15200.00
Model M FSA, RMA and CDL 2958.00 6470.00 15310.00
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predictions is larger than the number of available survey estimates. As another external

validation exercise, we compared the model predictions and the corresponding official

values, for the counties and districts where both were available, using metrics such as

median absolute difference, median absolute relative difference and credible interval

coverage. In general, results indicated close agreement between the model predictions and

the official values (constructed under the current NASS process).

Our first contribution is a novel use of administrative data to determine the set of subareas

with crop-specific planting activity. We encourage similar investigations for other small

area estimation applications where small domain characteristics are diverse within the large

domains and not-in-sample predictions are of interest, such as agricultural applications

(i.e., county-level cash rental rate estimation makes sense only for counties where at least

one cash rental contract exists), health applications (i.e., youth smoking prevalence

estimation make sense only for domains where at least one youth smoker actually exists) or

education applications (i.e., estimation of Native American children aged 5–17 in poverty

makes sense only for domains where at least one Native American child aged 5–17 lives).

In order to construct the prediction space, we assume that the data sources considered

exhaust the information available on planting activities, for a specific crop, in a specific

year. However, exploration of additional sources of data is of interest. When available,

such additional information (state-specific, commodity-specific and time-specific) may be

used to redefine the set of subareas for which model predictions are to be constructed and

to redefine the set of covariates. Also, we acknowledge, but have to ignore the possible

errors in administrative planting acreage values. One extension to deal with the possible

downward bias in FSA, RMA, and CDL would be to adjust the model to

ûijjuij; kij
ind, Nðkijuij; ŝ

2
ij Þ;

kij
ind, Uniformð1; a0Þ; uijjvi;b;s

2
u

ind, Nðx 0ijbþ vi;s
2
u Þ;

vijs
2
v

ind, Nð0;s 2
v Þ;

with the same priors adopted for the parameters ðb;s 2
u ;s

2
v Þ, a multiplicative offset kij and

a prespecified constant a0, say between 1 and 1.1.

Table 7. Summaries of CVs (%) of county-level survey estimates and model predictions

Counties with available survey estimates.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 21.08 31.91 55.42
Model M1 FSA, RMA 5.97 12.60 38.74
Model M FSA, RMA and CDL 5.90 11.84 37.92

Table 8. Summaries of CV(%) of district-level survey estimates and model predictions.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 7.03 10.50 16.04
Model M1 FSA, RMA 3.19 4.58 8.19
Model M FSA, RMA and CDL 3.22 4.73 8.50
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For the methodology illustrated, we presented the implicit subarea-level weights associated

with the different components of the final prediction. The contribution of administrative data

to final predictions was evaluated using the parameter gij. Model specifications, using a

covariate derived from FSA and RMA data alone (M1), or from FSA, RMA and CDL data

(M) are compared. Model M is slightly more efficient than model M1; however, it is important

to note that, under model M1, 110 county-level Admin PL values were imputed, while under

model M, only 11 county-level Admin PL values were imputed. Alternative strategies for

imputation of missing auxiliary values are of interest for future research.

As a consequence of the model specification, in particular the normality assumption in the

linking model, predictions are set to zero in some counties because the posterior means were

negative. While we acknowledge that other choices of distributions may be considered, for

example lognormal (or preferably generalized gamma distribution, lognormal being a special

case), we recognize the simplicity of the current specification, especially with respect to

prediction and benchmarking at multiple levels of interest. Under a non-normal distribution,

the model predictions would need to be back-transformed. This additional operation would

have to be performed at the lowest level of aggregation (for our application, the county), and

followed by benchmarking adjustments and aggregations to higher levels of interest.

The models were applied separately, for each state, in order to follow with the current

NASS process of constructing official statistics; results are communicated to each state

individually, and final dissemination follows. One may extend the model to using a three-fold

model by including an additional random effect corresponding to the states, and by using the
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Fig. 9. Histograms of relative standard errors and relative CVs at the county level and district level, model

versus survey. Relative efficiency values greater than 3 are removed to facilitate visualization.
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nation-wide data. On the other hand, careful validation may be conducted at the state-level

and specific auxiliary data, in addition to the ones considered here, may be incorporated.

Increasing the number of counties with planted acreage predictions is another important

contribution. For corn in 2015, the largest number of not-in-sample predictions happens to

be in Texas: 42 out of 184 counties, accounting for approximately 0.7% of the total planted

acreage. See the Appendix (Section 6) for additional results on soybean, sorghum and

winter wheat. Hence, benchmarking only the set of counties where survey estimates are

available would have resulted in over-adjusting the predictions. While the proportion of

total acreage accounted for by the not-in-sample counties is small, the predictions play an

important role in setting predictions for other variables of interest, such as harvested

acreage, production and yield.

Finally, a major contribution of this paper is the operational framework presented, as it

applies to any small area estimation application, from data preparation and challenges in

dealing with specific features and incompleteness, to constructing a pool of predictions as

candidates for official statistics. Addressing challenges associated with the publication

process is an ongoing area of interest. The current NASS publication standard is based on the

survey summary and on relative properties of the final estimates (the official statistics

determined by NASS), for acreage and production; see the National Academies of Sciences,

Engineering, and Medicine (2017, 117) for more details. For this application study, we

investigate a hypothetical CV-based assessment, consistent with the publication standards

at other government agencies (Marker 2015 reported CV-based assessments used by various

government agencies). Using a 30% threshold for the county-level CVs across the nation

leads to 1,694 candidate county-level planted acreage predictions for publication of corn in

2015; see Figure 10 in the Appendix (Section 6). In contrast, in 2015, NASS published

estimates of corn for 1,433 counties, which are available in NASS QuickStats (USDA NASS

2016b). Moreover, in Equation (10), we provided the closed-form expression for the model

predictions. Since they are composite predictions of various sources, the nationwide set of

model predictions is a candidate for official publication. However, the challenge in

constructing fit-for-use official statistics is the need for a publication standard that would

permit publication of model predictions. While the current publication standard may be

adopted for the model predictions, it would not make use of other properties of the model

predictions, such as standard errors or credible intervals. The current NASS publication

standard is being revised; see Cruze et al. (2018) for recent research on this topic.

6. Appendix: Increased Number of Reliable Estimates for Other Commodities

For corn and soybean in 2015, the largest numbers of not-in-sample predictions are,

respectively, 42 and 70 out of 184 and 122 counties, accounting for approximately,

respectively, 0.7% and 11.83% of the total planted acreage in Texas. The largest numbers

of not-in-sample predictions for sorghum and winter wheat in 2015 are, respectively, 28

and 38 out of 73 and 154 counties, accounting for approximately, respectively, 5.23% and

12.47% of the total planted acreage in Mississippi and Georgia, respectively.

The county-level maps in Figures 10–13 depict positive survey (CAPS) estimates,

official values and model (M) predictions on the log10 scale, for corn, soybean, sorghum

and winter wheat, respectively. Dark areas correspond to high intensity regions.
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  1,433 official values

  2,426 survey estimates; 1,125 have CVs ≤ 30%

  2,627 model predictions; 1,694 have CVs ≤ 30%

 –  Texas: largest number of not-in-sample predictions, 42 out of 184 counties,
     accounting for     0.7% of planted acreage in the state

 –  121 zero predictions

Fig. 10. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of corn in 2015, on the log10 scale.
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–  Texas: largest number of not-in-sample predictions, 70 out of 122 counties,
    accounting for    11.83% of planted acreage in the state
–  173 zero predictions

• 2,224 model predictions; 1,472 have CVs ≤ 30%

• 1,306 official values

• 2,012 survey estimates; 1,046 have CVs ≤ 30%

Fig. 11. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of soybean in 2015, on the log10 scale.
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            –  Mississippi: largest number of not-in-sample predictions, 28 out of 73 counties,
     accounting for      5.23% of planted acreage in the state

 –  89 zero predictions

• 218 official values

• 922 model predictions; 390 have CVs ≤ 30%
• 754 survey estimates; 135 have CVs ≤ 30%

Fig. 12. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of sorghum in 2015, on the log10 scale.
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Country-level model predictions: winter wheat, 2015

• 1,049 official values

–  64 zero predictions

• 2,191 survey estimates; 697 have CVs ≤ 30%

• 2,417 model predictions; 1,321 have CVs ≤ 30%

–  Georgia: largest number of not-in-sample predictions, 38 out of 154 counties,
    accounting for     12.47% of planted acreage in the state

Fig. 13. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of winter wheat in 2015, on the log10 scale.
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A Probabilistic Procedure for Anonymisation,
for Assessing the Risk of Re-identification and

for the Analysis of Perturbed Data Sets

Harvey Goldstein1 and Natalie Shlomo2

The requirement to anonymise data sets that are to be released for secondary analysis should
be balanced by the need to allow their analysis to provide efficient and consistent parameter
estimates. The proposal in this article is to integrate the process of anonymisation and data
analysis. The first stage uses the addition of random noise with known distributional
properties to some or all variables in a released (already pseudonymised) data set, in which
the values of some identifying and sensitive variables for data subjects of interest are also
available to an external ‘attacker’ who wishes to identify those data subjects in order to
interrogate their records in the data set. The second stage of the analysis consists of specifying
the model of interest so that parameter estimation accounts for the added noise. Where the
characteristics of the noise are made available to the analyst by the data provider, we propose
a new method that allows a valid analysis. This is formally a measurement error model and we
describe a Bayesian MCMC algorithm that recovers consistent estimates of the true model
parameters. A new method for handling categorical data is presented. The article shows how
an appropriate noise distribution can be determined.

Key words: Additive noise; anonymisation; measurement error; record linkage.

1. Introduction

Providers of data sets for research purposes are typically confronted by a tension between

making available useful fit-for-purpose data that retains the fine grain with which the data

were obtained, and altering the data sufficiently so that, even without obvious

identification information such as name, birth date and address location, an ‘intruder’ or

‘attacker’ cannot easily obtain the identity of any given data subject within the data set.

A review of procedures for anonymisation of such public use data sets is given by

Willenborg and De Waal (2001) and Hundepool et al. (2012) and references therein. For

microdata, the disclosure risk concerned is the risk of re-identification. This occurs if an

attacker has knowledge about a particular data subject in the microdata and can make an

identification by linking that information to the microdata through a set of identifying

variables. On the basis of a re-identification, attribute disclosure follows, where
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information can be learnt about the data subject from the remaining variables in the

microdata. To protect against these types of disclosures, we can either protect the

identifying variables in the microdata, thus avoiding the risk of re-identification, or protect

the sensitive variables, so that even if a re-identification occurs, no new information can be

learnt. Often, a combination of both approaches is used to protect the microdata against

disclosures. The identifying variables in microdata from social surveys are typically

categorical, for example age, sex, place of residence. The identifying variables in

microdata from business surveys can be both categorical and continuous, for example

industry code and the number of employees.

In this article, we develop an approach that allows us to quantify the disclosure risk

when data are perturbed, while at the same time it allows data analysts to fit models that

respect the fine grain of the original data. The general idea is to use the addition of random

noise to some or all variables in a data set. in which the values of those variables for

individuals of interest are also available to an external attacker who wishes to identify

those individuals so that they can interrogate their full records in the data set. The idea is

that this avoids identification by an attacker via the linking of patterns based on the values

of such variables. The noise addition can be carried out on the categorical and continuous

identifying variables. Noise generated this way can be removed at the analysis stage if

its characteristics are known, and requires disclosure by the statistical agency of the

distribution parameters generating the noise. This leads to consistent model parameter

estimates, although it will entail a loss of efficiency. In contrast, the usual method of

anonymisation, by coarsening the data such as grouping or k-anonymity, would not allow

the retrieval of the required model parameter estimates.

There have been many articles that discuss additive random noise as a disclosure control

method, see, for example Tendick (1991), Duncan and Mukherjee (2000) and Brand

(2002), and references therein. The basic concept is also discussed in some detail by Fuller

(1993) and by Winkler (1998). Fuller (1993) points out that the optimum approach is one

in which the random noise is added independently for each variable in the data set, and we

shall also make this assumption. He treats the case of normal measurement errors and true

data that have a multivariate normal distribution (also used as an approximation for

discrete data). His method of constructing the perturbed data is designed to provide almost

unbiased inferences for linear models and he discusses some of the difficulties for non-

linear and non-additive models. For a risk measure, Fuller (1993) derives a probability that

any given record in the released data can be identified as the ‘correct’ one based upon a

subset of the variable values that are known to the attacker. In this present article, we

propose a similar approach and define a new metric, the h-index, based on the rank

distance between the released data and the subset of the variable values known to the

attacker.

Another approach for additive random noise is to add correlated random noise (Kim

1986; Little 1993; Ting et al. 2008; Shlomo 2010). Here, the noise that is added is a linear

function of the variables to be perturbed. This preserves sufficient statistics in the form of

means and covariance matrices, without requiring knowledge of the precise parameter

values used to generate the noise, in contrast to Fuller’s procedure. The main drawback is

that it is restricted to models that can be fitted using sufficient statistics, such as linear

regression, and thus excludes, for example, generalised linear models and multilevel
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models. It also does not allow diagnostics based on residuals, since the production of

residual estimates requires knowledge of the noise parameters. Our approach allows for

multilevel, generalised linear and non-linear models to be fitted to noise-added data within

a more general measurement error modelling framework than that of Fuller (2006), and

requires knowledge of the parameters used to generate the noise.

Releasing parameters used to generate the noise is common practice in cryptography

literature in computer science in order to be able to decode encryptions, although it is

rarely done by statistical agencies. Cox et al. (2011) discuss the need for transparency,

whereby a statistical agency releases information about the disclosure control processes

used to transform the original data to the masked released data. They distinguish between

legitimate users and attackers and advocate controlled release of the parameters used to

generate the noise so that legitimate users can carry out statistical inferences. Hence, we

will assume here that the parameters for generating noise are known, either released to the

data analyst or are in the public domain as is the case for the computer science additive

noise approach of Differential Privacy (Dwork 2006). In practice, the noise parameters

may also be known to an attacker and in Section 3 we demonstrate that this information

does not lead to increased disclosure, thus supporting the argument for their release. It has

long been recognized by statistical agencies and data custodians that there is always a

trade-off between reducing disclosure risk through statistical disclosure control methods

and preserving the analytical properties of the data (Winkler 1998). However, if stochastic

perturbation methods are used to anonymise the data, then, as we demonstrate, the

statistical analysis is able to account for both the measurement errors and the substantive

model of interest. The greater the degree of noise that is added, the lower the statistical

efficiency in terms of larger confidence interval estimates for parameters.

Section 2 discusses the technique of anonymisation by adding random noise, thus

inducing measurement errors into statistical models, and how the disclosure risk can be

quantified through the h-index. Section 3 presents a simulation study on the disclosure

risk assessment under the proposed approach. Section 4 describes how the anonymisation

by adding random noise can be applied to categorical variables. Section 5 discusses the

measurement error model used to retrieve the fine grain of the data to yield consistent

parameter estimates, with a more detailed description in the Appendix (Section 10),

where the proposed approach is shown to apply generally to complex models including

non-linear and multilevel models. Section 6 provides a simulation to demonstrate the

measurement error model and Section 7 presents example analyses. Section 8 contrasts

the techniques developed in this article with other common approaches of

anonymisation, disclosure risk assessment and statistical analysis. Section 9 closes

with a discussion.

2. Additive Random Noise

Consider a subset of q variables, y, which can include both identifying and sensitive

variables in the data, that are to undergo a statistical disclosure control method. We may

also have other variables, say x, that are available to the data analyst, but that may not

undergo a statistical disclosure control method. In an extreme case, such variables may not

exist, so that effectively the subset q is the complete set of available variables.
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We deal first with the case of a set of continuously distributed variables assumed to be

multivariate normal (MVN). We introduce random noise m to the subset q of variables in

the observed data and, for simplicity, we shall consider the special case in which these

variables are independent. We have

z¼ yþm; y , MVN m;V
� �

; m , MVN 0;Vm

� �
; z , MVN m;Vþs 2

mI
� �

; Vm diagonal:

The value of Vm will determine the strength of the resistance to attack. In the appendix,

we will introduce a more general notation. We note that the assumption of normality for

the random noise (measurement errors) is arbitrary, but it is convenient since it allows us

to make use of standard results based on multivariate normality.

The attacker scenario is based on the following assumptions:

1. the attacker has knowledge of the perturbation technique of additive random noise

being used;

2. the attacker has a copy of the perturbed data set and has a set of the true values for a

data subject known to be in the data set. Without loss of generality, we assume that

the attacker has the full set of q variables, denoted as y*, that they intend to match

against records in the data set in order to identify a record that matches exactly the

data they possess. If this can be done, then the attacker will be able to access any

remaining variable values that have not been perturbed associated with the identified

record;

3. the original values y are themselves measured without error, although our procedure

can be extended to that case straightforwardly; and

4. in the worst case scenario, for each set of y* belonging to the attacker, there does

correspond a single record in the data set and that the original values before

perturbation are the true values. From the attacker’s perspective, the best case

scenario is one in which all their y* variables also have their true values, and we shall

assume that this is the case in our simulations and substantive example. In other

words, we ignore the case in which naturally occurring measurement errors are

present.

The variables of concern are referred to as identifiers. In fact, these may comprise all

released variables, but the data provider may consider that some variables have little

disclosive potential and chooses not to perturb them or to do so only with small amounts of

noise. In deriving the following formulae, we may treat all variables in the same way.

Some may have noise distributions with changing variance, or even zero variance.

We now form a measure of the distance between the attacker’s data y* and all possible

values of z in each record in the perturbed data set and rank these distances. We shall then

briefly consider how an attacker might be able to improve their chance of detecting the

desired record.

A general distance measure can be written in the form

D* / z 2 y*
� �T

W z 2 y*
� �

ð1Þ

where in the case of independence, we have the Euclidean distance for each record i in the
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dataset of size n as follows:

D*
i ¼

Xq

j¼1

zij 2 y*
j

� �2

; Di ¼
Xq

j¼1

yij 2 y*
j

� �2

; i ¼ 1; : : : ; n ð2Þ

For a given attacker record we form r*
i ¼ rank D*

i

� �
, and ri ¼ rank Dið Þ, and let i* be the

value of i for r*
i ¼ 1, that is the closest record for the attacker in terms of the distance

measure. We define h ¼ ri * 2 1 which is the difference in ranks between the record

identified by the attacker and the rank of the actual closest record, and we refer to it as the

h-rank disclosure index for y*, or simply as the h-index. Thus if h ¼ 0 we have the correct

match. We note that it is convenient to define our h-index in terms of ranks. It may also be

useful to consider the distance measures themselves since these may not, in fact, vary

much among the lowest ranked records. However, such information would be somewhat

disclosive if available to an attacker and hence not suitable for public release.

We now consider each record, with its true values, in the data set in turn, treating this as

y* and forming h to give a distribution of values of h across the sample. We define E hð Þ

with respect to this distribution, namely the mean value over the sample. Therefore, we

need to determine s 2
m such that E hð Þ is large enough (for example taking the value of 3,

which coincides with the minimum threshold rule of 3 often used at statistical agencies) to

create sufficient unreliability in determining the correct record, thus making the attack not

worthwhile for an attacker. In practice, it may be more useful to require

pr h , p
� �

, e

where a suitable choice might be, say, p ¼ 3, e ¼ 0.1. The range of parameters will

ultimately be determined by a policy decision within the statistical agency. In our

simulations and examples, we will study the full distribution of h and in particular

pr(h ¼ 0).

The distribution of h will, in general, be a function of y*. For example, if y* is a

multivariate ‘outlier’ the attacker is more likely to find the correct match. In the simulation

presented in Section 3, we will examine the performance of the procedure with respect to

values of percentiles of D. We will not consider the case where we have missing data,

except to note that this will contribute to the unreliability of the matching process. In fact,

data values may be missing in any given data set, so that our computations in that respect

represent a ‘best’ case scenario.

In principle, an attacker who has access to the noise parameters may be able to utilise

this to improve their attack strategy by making use of this information.

Thus, with knowledge of Vm rather than utilising z, the attacker could obtain more

precision since they would be able to estimate

z* ¼ E yjz
� �

¼ cov zð Þð Þ21cov y
� �

£ z ð3Þ

The attacker can calculate cov zð Þ from the set of perturbed data that they possess and can

obtain an estimate of cov y
� �

by subtracting Vm.

Thus, in the case of independent random noise for normal variables, a simple procedure

would be to use z*
j ¼ zjRj for variable j, where Rj ¼ s 2

y= s 2
m þ s 2

y

� �
is the ‘reliability’ of
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the observed variable. We will investigate any advantage to the attacker that the use of (3)

might have in the simulation presented in Section 3.

In summary, the best the attacker can do is to find that set of perturbed records that is

closest to their own (unperturbed) record that they wish to match. Hence, the use of the

h-index ascertains whether the attacker will be able to identify the correct matching record.

The value of h needs to be computed by the data provider. Even if the data analyst and the

attacker were the same person, the knowledge of the noise parameters and tools available

to the analyst would be of no advantage in their role as attacker, as will be shown in

Section 3. The attacker may also, in general, have access to h-values since these may be

available in the public domain. Indeed, knowledge of these may often be sufficient to deter

a potential attacker from undertaking the attack.

3. A Simulation for Quantifying Disclosure Risk

The purpose of this simulation is to investigate how disclosure risk varies with how far the

attacker’s record is from the centroid of the distribution of true values across all records,

and how any additional information about the joint distribution of variables might be

useful to the attacker.

We generate a series of 1,000 simulated data sets, each with 1,000 records, and each being

generated with a mean vector of zero, q ¼ 5 and s 2
m ¼ 0:1 and V has all variances ¼ 1

and covariances ¼ 0.25. This value of q is chosen since it will typically represent the

number of variables that may be available to an attacker under disclosure risk scenarios

(Elliot and Dale 1999), but we have varied this number below.

For each true value record known to an attacker, we generate Di as in (2). We choose

9 true value records representing approximately deciles of the distribution of Di, to define

suitable attacker records y*. These records are then used to compute the distribution for the

h-index as described in Section 2. The distribution of the h-index varies by decile with

greater precision of attack at extreme values and we show results for different deciles. The

choice of standardised variates simplifies the computations somewhat.

Routines are written in MATLAB. Based on 1,000 simulations we obtain the following

results in Table 1 for the cumulative distributions.

From the viewpoint of the attacker, in more than 43% of the cases for any of these

deciles and more than 58% in the middle of the distribution, the nearest record is not the

true one. For the 10th decile pr h . 3ð Þ ¼ 0:25, pr h , 2ð Þ ¼ 0:63 and pr h . 5ð Þ ¼ 0:19:

For the median an attacker has a harder time with pr h . 5ð Þ ¼ 0:29:Depending, of course,

on the degree of disclosure risk that can be tolerated, it could be argued that this is

adequate to make an attack too unreliable to be worthwhile, and this would be a matter for

careful consideration by the data provider.

For the weighted distance case in (1) where W ¼ V, we obtain essentially similar

results. We have also run the simulation with larger sample sizes and we find that at the

lowest decile for a greater sample size of 10,000, pr h . 3ð Þ ¼ 0:60 and pr h . 5ð Þ ¼ 0:54:

We now look at a range of values for V and s 2
m and different sample sizes. We study

just the case for the lowest decile, as defined above, in which we believe that an individual

with more extreme values presents a target that is more favourable to an attacker. We

present results for pr h . 5ð Þ and for two different sample sizes in Table 2.
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We see that even with the smaller sample size of 1,000 and moderate proportions of

noise (10% of the variance of the true values), we have reasonably high probabilities of h

exceeding a value of 5 and small probabilities that the nearest record is the correct one.

We now study what effect the use of (3) has, that is, when the attacker makes use of

information about the parameters of the noise distribution.

Table 3 shows, for h ¼ 0; 1; : : : ; 5, and for the 10th to the 50th percentiles, the

percentage distributions of h when knowledge of the noise parameters is used as described

in (3) under the same simulation conditions as Table 1. In other words, rather than working

with the observed (perturbed) values z, the attacker uses z* as defined in (3). Comparing

with Table 1, we generally see small increases in the cumulative probability that an

attacker selects a record close to the correct one.

We would expect that the probability of the attacker selecting a record close to the

correct one will increase with the number of distinct identifiers used. Thus, for example, if

there are 10 identifiers and we simulate with the same value for V as before, we now need

a noise parameter Vm ¼ 0.34 rather than Vm ¼ 0.1 to obtain approximately the same

values for the distribution of h. This suggests that careful consideration needs to be given

to the likely number of identifiers available to the attacker. We have also varied the size of

the covariances from 0.1 to 0.5. However, this only has a small effect on the distribution of

h, with a decrease in the covariance associated with a slightly higher risk of disclosure. For

example, for the 5th percentile the pr h ¼ 0ð Þ is 0.47 for a covariance of 0.5, as opposed to

0.53 with a covariance of 0.1 as in Table 1.

Table 1. Cumulative percentage distribution for h for deciles of the distribution of Di.

Decile

h 10 20 30 40 50 60 70 80 90

0 52.2 49.4 43.9 41.3 41.7 43.5 40.5 47.0 56.2
1 62.9 60.7 56.1 53.1 53.1 54.3 53.0 58.3 67.3
2 70.0 65.3 62.0 61.2 60.8 61.8 60.9 64.7 73.8
3 74.7 70.2 68.6 66.0 65.8 66.6 65.8 70.3 77.9
4 78.5 74.4 72.8 70.1 68.7 70.0 69.6 73.8 81.8
5 80.8 77.5 76.5 72.7 71.5 72.1 72.8 76.8 84.3
6 83.1 79.9 78.1 74.3 74.1 74.8 75.5 78.7 86.2
7 84.4 82.4 80.6 76.5 76.1 76.2 78.0 81.2 87.3
8 85.9 83.9 81.7 78.7 78.2 77.8 80.0 83.9 88.9
9 87.7 84.9 83.5 79.5 79.4 80.2 81.8 84.9 90.7
10 89.1 86.4 85.0 81.1 81.2 81.8 83.2 86.6 91.9
11 90.1 87.1 85.4 82.4 83.5 83.2 84.1 87.4 92.9
12 91.1 88.3 86.1 83.8 84.6 84.7 85.3 88.2 93.9
13 91.9 88.8 87.1 85.3 85.6 85.8 86.6 89.1 94.3
14 93.0 89.3 87.8 86.5 86.1 86.6 87.5 90.0 95.0
15 94.2 90.1 88.1 87.4 86.6 87.4 88.0 90.2 95.1
16 94.9 91.1 88.8 88.0 87.5 87.9 88.5 90.9 95.1
17 95.2 91.7 89.3 88.8 88.5 88.5 89.5 91.4 95.6
18 95.7 91.9 89.8 90.0 89.6 89.1 90.1 91.8 95.9
19 96.5 92.6 90.3 90.9 90.0 89.9 90.5 92.4 96.6
20þ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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4. Treatment of Categorical Variables

Consider for simplicity, a series of q independent binary identifying variables. We assume

that one of the categories is small, for example, p ¼ pr y ¼ 1
� �

¼ 0:1. Thus, if q ¼ 3, with

pi ¼ 0.1, i ¼ 1, : : : , 3 then the most favourable vector for an attacker y*, is yi ¼ 1

A

i.

Suppose now we introduce a simple misclassification, where for each ijyi ¼ 0

independently, we randomly assign yi ¼ 1 with probability 0.1. Thus, for each binary

variable we now have pr zi ¼ 1ð Þ ¼ 0:19. The probability that all three variables have

value 1, that is, pr zi ¼ 1ð Þ;

A

i ¼ 0.193 ¼ 0.007, whereas pr yi ¼ 1
� �

,

A

i ¼ 0.13 ¼ 0.001.

Table 2. Lowest decile estimates for h.

pr(h . 5) for combinations of V and s 2
m where V always has unit diagonal elements

and equal off-diagonal elements (given by columns) are shown.

Sample size ¼ 1000

s 2
m. 0.1 0.2 0.3 0.4 0.5

0.1 0.15 0.16 0.19 0.23 0.24

0.2 0.45 0.43 0.46 0.50 0.54

0.3 0.58 0.63 0.63 0.65 0.70

0.4 0.73 0.74 0.74 0.76 0.77

Sample size ¼ 5,000

s 2
m. 0.1 0.2 0.3 0.4 0.5

0.1 0.41 0.48 0.48 0.50 0.55

0.2 0.72 0.71 0.75 0.77 0.80

0.3 0.84 0.84 0.87 0.88 0.89

0.4 0.90 0.90 0.92 0.90 0.93

pr(h ¼ 0). For combinations of V and s 2
m where V always has unit diagonal elements

and equal off-diagonal elements (given by columns) are shown.

Sample size ¼ 1,000

s 2
m. 0.1 0.2 0.3 0.4 0.5

0.1 0.56 0.54 0.53 0.49 0.45

0.2 0.27 0.27 0.24 0.23 0.18

0.3 0.16 0.13 0.15 0.12 0.09

0.4 0.10 0.09 0.10 0.08 0.07

Table 3. Cumulative percentage distribution of h for deciles of the distribution of Di where noise parameters

are known and expected values of identifiers with noise are used.

Decile

h 10 20 30 40 50

0 54.7 48.7 44.3 41.3 45.4
1 67.1 61.8 54.5 55.6 57.0
2 73.1 68.2 62.8 64.1 63.7
3 78.6 72.4 66.7 69.3 68.4
4 81.9 75.3 70.6 73.1 72.4
5 84.5 79.3 73.7 75.4 74.9
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Thus, of those identified only 15% are correctly identified. Such procedures for categorical

variables have been implemented in the PRAM method (Gouweleeuw et al. 1998).

For multicategory, including ordered and unordered variables, we can alternatively

consider the following novel procedure. Coding the categories j ¼ 1; : : : ; pf g we

independently add to the true category code, random noise as follows:

mj , N 0;s 2
m

� �
; 1 # mj # p ð4Þ

This results in a truncated normal distribution and the variable enters the calculation of

the distance (2) in the same way as the continuous variables. The purpose of the truncation

is to avoid easy detection for the extreme category codes. We note that for this procedure,

we may still use the h-index as a distance measure based on the observed values with

added noise. The attacker is interested in ascertaining the correct code for a categorical

variable so that it will be appropriate to utilise a measure based on the distance between the

observed value assigned to a categorical variable and its true code.

We could also generalise (4) to allow different variances for each category. We note that

the noise is simply added to the category codes 1; : : : ; pf g, irrespective of whether this is

an ordered or unordered variable. The MCMC steps described in Section 5 and in the

appendix show how we can then draw from the posterior distribution of the true

(unknown) category codes. To avoid the potential objection that it may be confusing to

release categorical variables (with added noise) as continuously distributed, we also

describe in the appendix how a rounding of the noise-added values to integer values

can also be used, although this will result in less efficient estimates. The advantage of

this procedure is that it is completely general and has the simplicity that we can deal

with all variables in the model estimation, whether continuous or categorical, in a

similar fashion.

5. Fitting Models with Known Noise or Measurement Error

In common with other approaches (Fuller 2006), we adopt a model-based approach for

fitting data with measurement error, and more specifically, we adopt a Bayesian approach.

Bayesian procedures for fitting models with measurement errors have been proposed early

in the literature (see Richardson and Gilks 1993) and these have been further developed to

fit multilevel data structures and allow models that include interaction and power terms.

The noise that is added in our procedure has the characteristics of measurement error and

can be treated as such. An outline of a general algorithm with details specific to data

anonymisation is given in the appendix, and further details of the estimation algorithm

can be found in Goldstein et al. (2017). Other methods for estimation of models with

measurement errors are also available, such as the simulation-extrapolation method,

SIMEX (Delaigle and Hall 2008) and moment-based estimators described by Fuller

(2006), and these can also be used. The Bayesian model procedure that we describe has the

advantage that it is a fully specified probabilistic model that is readily generalised

to handle complex data structures, including multilevel and generalised linear models

without approximations, with straightforward computation of interval estimates. We

assume uniform priors for all the model parameters to be estimated.
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Full estimation details are given in the appendix, and can be summarised as follows.

For ease of exposition, we assume a single level linear model with just a single predictor

variable that has added noise. The case of several predictors with independent added noise,

the case where we have a generalised linear model, and the multilevel case follow

straightforwardly. Here, we assume multivariate normality for the noise and discuss

the modifications needed to fit generalised linear models and multilevel models in

the appendix.

We define the true values of the variable with added noise as X1 and those variables

without added noise as X2, and X ¼ X1 X2½ � where X2 is known. We note that our

procedure is fully general and includes the case where X2 is null and all variables are

perturbed.

We define the joint model – the noise or measurement error model (MEM) in two parts,

(5a) and (5b) and the model of interest (MOI) (5c):

x1 ¼ X1 þ g1 ð5aÞ

X1 ¼ XT
2aþ g2 ð5bÞ

Y ¼ Xbþ e ð5cÞ

where g1 , N
�
0;s 2

g1

�
, g2 , N

�
0;s 2

g2

�
, e , N 0;s 2

e

� �
.

Thus, (5a) defines a simple additive measurement error model, in which the observed

value consists of an independent random variable added to the unknown true value.

Equation (5b) expresses the relationship between the true values for those variables

measured with error and those measured without error, here assumed to be linear, and (5c)

is the substantive model of interest expressed in terms of true values. This is a standard

formulation and further details can be found in Goldstein et al. (2017). Instead of additive

measurement error as in (5a) we could develop our procedure in terms of multiplicative

measurement error (Hwang 1986), for example writing x1 ¼ X1eg1 . This is further

discussed by Goldstein et al. (2017) and may be useful for certain non-normally distributed

variables. We note that the MOI (5c) may contain functions of the X1, such as interaction

or power terms. Lower case variables define observed and upper case true values, and we

assume the residual terms in (5a) – (5c) are independent.

The appendix details the MCMC steps required to fit this model. In brief, this involves

the following steps:

1) update the true values using a Metropolis step, conditionally on the current values of

the other parameters;

2) update the a parameters using a Gibbs step, conditionally on current values of the

other parameters;

3) update the b parameters using a Gibbs step, conditionally on current values of the

other parameters; and

4) update the variance and covariance parameters, conditionally on current values of the

other parameters.

In the appendix, we also discuss the following extensions and the difficulties associated

with them. Where we have added noise in the response variable, the general effect of
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correcting these is to shrink the estimate of the residual variance and hence inflate the

standard errors for the parameters. Where the response is categorical, notably binary, a

further step in the algorithm is involved. In the appendix, we also discuss how to deal with

variables that have been treated with other SDC techniques, for example truncation to

handle large outliers, and how to handle perturbed categorical variables that are rounded to

the nearest integer value.

Where the original variables are also subject to other measurement errors with known

distributions, the fitted model will be based on the total measurement error. We also note

that our proposed approach could be adapted to the case of sampling from a finite

population without assuming a distribution for y, which would require modification of the

estimation of the parameters of the underlying ‘true’ model. However, we do not pursue

this and leave it for future work.

After fitting a suitable model as described above, the original variable scales and

relationships are fully recovered, albeit with a loss of efficiency. With very large data

sets, this may not be an important issue. The loss of efficiency, in terms of interval

estimates or standard errors associated with parameter estimates, can be estimated for

any proposed model to be fitted to the perturbed data, given the noise parameters. Thus,

for example, in the simple regression case where independent normal noise with a

common variance s 2
m has been added to the set of predictors X, we can use, as a

simple overall measure for the relative efficiency, the determinantal ratio

X T X
�� ��= X T X þ ns 2

m

�� ��� �
where X includes those with and those without measurement

errors and n is the sample size. The data provider would be able to supply such estimates.

However, perhaps of more use will be estimates of the inflation of standard errors, for

some typical models, associated with individual parameters. These could be provided

alongside the released data, or possibly requested from the data provider by a data

analyst, with respect to any given fitted model. We illustrate the effects on standard

errors in our example analysis in Section 7.

6. A Simulation of a Measurement Error Model

We carry out a simple simulation from the following model in order to illustrate that we

can readily recover the signal from noisy data for both a binary and continuous predictor.

The model we simulate from is given by

yi ¼ b0 þ b1x1i þ b2x2i þ ei; ei , Nð0; 1Þ; b0 ¼ b1 ¼ b2 ¼ 1 ð6Þ

x1

x*
2

 !

, N
0

0

 !

;
1 0:5

0:5 1

 ! !

; x2 ¼ 0 if x*
2 # 0; x2 ¼ 1 if x*

2 . 0:

Independent noise with variance s 2
m ¼ 0:2 is added to x1, x2. We carry out two sets of

100 simulations with 1,000 records. The results are given in Table 4.

We see negligible bias, no more than 0.5% for the adjusted estimates and in all cases the

95% confidence interval overlaps the true value.
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7. Example Analyses

Our first example illustrates the use of a measurement error model for two-level data,

where we have added noise and used the procedures in the appendix to estimate the true

model parameters. The data will be referred to as the Tutorial data set (Goldstein et al.

1993). The response is a normalised examination score taken at age 16 by 4,059 students in

65 schools in Inner London. The predictor variables are a standardised reading test score

taken at age 11 x1ð Þ before pupils attended their secondary school, and the binary variable

gender (x2). The true model of interest is a 2-level random intercept model as follows:

yij ¼ b0 þ b1X1ij þ b2X2ij þ uj þ eij; uj , N 0;s 2
u

� �
; eij , N 0;s 2

e

� �
ð7Þ

The subscript i indexes students and j schools. This is thus a simple ‘random intercept’

model (Goldstein 2011). To illustrate our procedure, we first perturb the true variable

values by adding normally distributed noise with mean 0 and variance s 2
m ¼ 0:2

independently to the reading score and gender. For gender, perturbed values less than 0 are

set to 0 and values greater than 1 are set to 1. The purpose of this first example is to show

how adjusting for the added noise produces consistent estimates rather than to explore a

range of values against disclosure risks.

Table 5 shows the results from fitting the model before adding noise, fitting the model

with added noise but without adjusting for measurement error, and fitting the model

adjusting for measurement error. We have used the known parameters of the noise

addition to the two covariates in the analysis and the response variable is not perturbed.

We implement the Bayesian estimation procedures described in the appendix with uniform

priors for the parameters.

Table 4. Estimates from addition of noise (standard errors in brackets*). MCMC burn in ¼ 500

iterations ¼ 500. Simulations from model (6) sample size ¼ 1,000, number of simulations ¼ 100.

Parameter
Simulation
parameters

Noisy data no
adjustment

Noisy data
adjusted

Noisy data
adjusted % bias

bo 1.0 0.974 (0.004) 0.997 (0.003) 20.3
b1 1.0 0.887 (0.002) 1.004 (0.003) 0.4
b2 1.0 1.051 (0.005) 1.003 (0.005) 0.3
s 2

e 1.0 1.0 1.0 0

*The standard error estimates are the standard deviations computed from the MCMC chains.

Table 5. Tutorial data set. Estimates from addition of noise (standard errors in brackets). MCMC burn in ¼ 500

iterations ¼ 500. Standard errors in brackets using MCMC chain standard deviation estimates. Normal noise

variance 0.2.

Parameter Original model Noisy data no adjustment Noisy data adjusted

bo 20.097 (0.050) 20.082 (0.044) 20.093 (0.042)
b1 0.559 (0.013) 0.460 (0.012) 0.549 (0.014)
b2 0.174 (0.033) 0.109 (0.030) 0.155 (0.035)
s 2

u 0.097 (0.021) 0.102 (0.022) 0.100 (0.020)

s 2
e 0.563 (0.013) 0.614 (0.013) 0.562 (0.014)
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We note that the adjusted estimates are close to those using the original data, whereas

ignoring the measurement error produces estimates with considerable biases.

Our second example uses a data set from a 1982 survey of the sugar cane farm industry

in Queensland, Australia that was used in Chambers and Dunstan (1986). It illustrates both

the measurement error model and the computation of the h-index for disclosiveness, and

suggests how these can be integrated into the release of such data. In order to compare our

approach for compensating for the measurement error in our analyses with the case of

adding correlated random noise that preserves sufficient statistics, we use a linear

regression model. We note that under more complex models, such as generalised linear

models and multilevel models, the correlated additive random noise approach would not

provide valid results.

The model of interest has the sugar cane yield receipt as response ( y) and predictors are

region (x1, Northern ¼ 1, Southern ¼ 0), sugar cane harvest (x2, continuous in tonnes) and

cost (x3, in Australian dollars). There are 333 farms in the data set with no missing data.

The model to be fitted is the linear regression model

yi ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ ei ei , N 0;s 2
e

� �
ð8Þ

We have added noise to the data in two different ways:

. Correlated Gaussian noise as described in Shlomo and De Waal (2008) and

summarised here:

Generate multivariate random noise: 11; : : : ; 1q

� �
, MVN m 0;S

� �
where

m 0 ¼ 12d1ð Þ
d2

m1; : : : ;
12d1ð Þ

d2
mq

� �
, d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d2
� �q

and d2 ¼
ffiffiffiffiffi
d2
p

and d [ 0; 1
� 	

is

the perturbation parameter determined by the statistical agency. The vector m and

matrix S are the original mean and covariance matrix of the data. Then, for each

separate variable, calculate the linear combination as follows: zj ¼ d1yj þ d21j ;

j ¼ 1; : : : ; q
� �

;

. Independent Gaussian noise is added to each variable as described in Section 2.

In both cases, we add two levels of noise: the variance of the noise distribution is 0.05

and 0.17 times the variance of the corresponding variance of the true values for each

variable.

First, we present the results of fitting (8) to each of the noisy data sets in Tables 6a and

6b. Then, we present the results of computations on disclosiveness in Tables 7a and 7b.

We note that for correlated noise, the model is simply fitted to the observed data after a

single draw and the reported standard errors are those obtained analytically from the model

fit. For independent additive noise, we use the procedures described in the appendix where

reported standard errors are obtained empirically using the standard deviations resulting

from the MCMC chains. Table 6a is based on the case where noise is added to the

predictors only, and Table 6b is based on the case where noise is added to both the

predictors and the response variable.

In Table 6a, we see the negative effect of releasing a draw of correlated noise to users

without providing the parameters of the noise distribution when only the predictor

variables intended for the statistical modelling have added correlated random noise. Users

will obtain biased estimates with very large standard errors. This is not the case in
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Table 6b, in which all variables, including the response variable, have correlated noise

added to them. In that case, we obtain similar parameter estimates and standard errors to

the model run on the original true data. Given that it is generally unknown what types of

analysis will be carried out on the released perturbed data, it is essential that users obtain

the noise parameters and be able to analyse the data under measurement errors using the

procedures described in the appendix. We see in Tables 6a and 6b that under our proposed

procedures we obtain unbiased parameter estimates, taking into account the measurement

error regardless of which variables have been perturbed. We also see some considerably

increased standard errors as greater amounts of noise are added. For example, under the

17% option for the variance, the variance of the noise for the response variable was set at

411, which is nearly three times the true residual variance as estimated in Tables 6a and 6b.

This governs the size of the standard errors. Even when the variances are chosen at the 5%

option, we still see an increase in the standard errors.

Table 7a presents the values of the h-index for individual records chosen to represent

both the centre and extremes of the data distribution for different amounts of random

noise on the correlated noise addition on all four variables (predictors and response

variable): receipts, region, harvest, and costs. Similarly, Table 7b presents the inde-

pendently added random noise. To avoid skewness in these variables, the distances

were calculated on standardised variables, although given the nature of this data, some

skewness remains.

From both Tables 7a and 7b, it is clear that in terms of their multivariate distance

from the data centroid, the h-index values show a high level of disclosure protection for

both the 5% and 17% variance options except for the far right tail due to the skewness of

the data in the sugar farms data set. In the latter case, the data provider may well decide

Table 7a. Sugar cane data. Values of h-index for records at different multivariate distance percentiles. Random

correlated noise addition on all variables as percentage of true variances.

Distance
percentile

h-index 5% of
true variance

h-index 17% of
true variance

pr(h ¼ 0) 5% of
true variance

pr(h ¼ 0) 17% of
true variance

5 11.2 23.2 0.11 0.04
10 17.2 29.8 0.05 0.05
50 17.5 37.9 0.08 0.04
90 2.7 10.7 0.43 0.17
95 0.0 0.5 0.98 0.78

Table 7b. Sugar cane data. Values of h-index for records at different multivariate distance percentiles. Random

independent noise addition on all variables as percentage of true variances.

Distance
percentile

h-index 5% of
true variance

h-index 17% of
true variance

pr(h ¼ 0) 5% of
true variance

pr(h ¼ 0) 17% of
true variance

5 7.0 16.0 0.12 0.06
10 12.6 23.0 0.07 0.04
50 12.7 27.8 0.08 0.03
90 1.7 6.8 0.38 0.15
95 0.0 0.2 1.00 0.89
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to group (truncate) the very large values, as we describe in the discussion below.

Comparing correlated random noise addition in Table 7a with the independent random

noise addition in Table 7b, we see quite similar results for pr h ¼ 0ð Þ, although the value

of h overall does tend to be greater for the correlated noise. The 17% variance option

offers greater disclosure protection than the 5% variance option, as expected. However,

this may still not be satisfactory and the data provider would then have a choice of

increasing the amount of added noise, adopting a truncation procedure to reduce the

skewness, or making the noise variance a monotonically increasing function of the true

value, that is, adding more noise as the true value increases. These options will be

pursued in future research.

This example demonstrates the importance of considering both the disclosure aspects

and the issue of model parameter bias in the data release in order to provide an appropriate

balance between disclosure risk and data utility.

8. Similarity to Other Methods

Standard procedures for anonymisation are typically based on a distinction that is made

between primary individual identifiers such as name and birth date, quasi-identifiers such

as age, gender and ethnic group, and sensitive identifiers such as disease diagnostic

categories that may have disclosive values. The primary identifiers are typically removed

from the data. The coarsening technique of k-anonymity and extensions such as l-diversity

and t-closeness consider two stages. In the first stage, the values for the quasi-identifiers

are coarsened to the extent that in the final data set there are at least k records that have

identical identifier values for any given set of identifier values (a k-anonymity data cell). In

the second stage, the simplest form of l-diversity requires that for any quasi-identifier there

is at least l distinct value for each k-anonymity data cell. For t-closeness, the difference

(using a suitable measure) between the distribution of the l values in the data cell and the

distribution in the whole sample should not exceed a threshold t. These techniques may

also lead to the suppression of certain variable values to ensure the required anonymity

level (see, for example, the Statistical Disclosure control package (SdcMicro 2019)). One

of the drawbacks of such methods is that they may remove or degrade too much of the

identifying data that is of importance to the data analyst.

We make no distinction between identifying or sensitive variables that may be available

to an attacker, and all variables could be incorporated in the distance computation in (1)

or (2) if needed. Our proposed method is essentially probabilistic rather than one that

guarantees a given level of anonymity, as in the standard k-anonymisation methods. The

key element, however, is that from the data analyst’s viewpoint there is no data coarsening

with potentially enhanced quality for the inferences. Our approach is applicable to all

statistical models, in particular the family of generalised linear models, for which

measurement error methods can be applied to compensate for errors in the data. In

addition, established procedures for diagnostics can also be utilised since the estimation,

as described in Section 5 and in the appendix, provides the necessary parameters for the

model of interest.

Other approaches that focus on estimating the risk of re-identification of a data subject

withnoise-added data, are found in Winkler (1998), based on probabilistic record linkage
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and in Reiter and Mitra (2009), and Shlomo and Skinner (2010) on using probabilistic

modelling to estimate a probability of re-identification whilst accounting for the

perturbation. Reiter and Mitra (2009) also account for attacker knowledge. These

procedures estimate a probability of a correct match. The probabilistic modelling

estimates the probability of a correct match based on distributional assumptions of the

data, while the probabilistic record linkage estimates the probability of a correct match

using a naı̈ve Bayes approach that is similar to the h-index based on a distance metric.

Probabilistic modelling relies heavily on assumptions and, at best, we may obtain an

unbiased estimate for the total number of high-risk records rather than a risk measure for

an individual record. Winkler (1998), in particular, concluded that even moderate amounts

of additive noise, where some of the analytical properties of the data are preserved, may

still have considerable disclosure risks.

Arima and Polettini (2019) propose a method for inference under perturbed data that has

similarities to our own as described in Section 5. They develop it in the context of small

area estimation, in which the predictor variables have been masked using the post-

randomisation method (PRAM) (Gouweleeuw et al. 1998). They apply a Bayesian

algorithm to the data measured at the aggregate small area level, where categorical data are

approximated by a multivariate normal distribution and the adequacy of the approximation

is a function of the number of individual records within an area. Our own procedure

primarily operates at the level of individual records and does not involve such

approximations, although it can also be used to deal with data aggregated to higher levels.

Woo and Slavkovic (2014) also discuss adjustments to logistic regression with variables

subjected to PRAM.

Adding noise is similar in some ways to the “fully synthetic” data approach, in which

data is generated from a series of predictive distributions (Rubin 1993; Reiter 2005). This

approach relies on the structure of the synthetic data corresponding sufficiently closely to

the structure of the real data, so that valid analyses are possible, and thus involves an

additional set of considerations (Reiter 2005). Our procedure does not rely at all on the use

of synthetic data. Nevertheless, if a partially synthetic data set is released our procedure

could be applied in that setting.

9. Discussion

In our simulation in Section 3, we have shown that the disclosure protection provided by

additive random noise addition increases with sample size and therefore, disclosure risk

will generally be of concern for sample surveys with relatively small sample sizes. For

example, we see that with a sample size of only 1,000, in the case most favourable to an

attacker that we have explored in our simulation, the probability that the nearest record is

the correct record is less than half. If an attacker has access to the noise parameters and

utilises this information to obtain an estimate of the covariance matrix for the true values,

our simulation suggests that there is only a small increase in the probability of selecting the

correct record, and that this is of little practical importance. If the number of identifiers

available to the attacker increases, then this can enhance the chance of a successful attack.

We have shown that we require rather larger amounts of noise as the number of identifiers

available to the attacker increases, so that a realistic assessment is needed on the number of
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identifiers that may be available to an attacker, and this is an area for further exploration.

On the basis of our simulation, it appears that the disclosure risks are relatively insensitive

to correlations between the identifiers. However, we would caution that our simulations

are limited and based on an assumption of multivariate normality. Further research needs

to explore more general cases and we would suggest that one responsibility of a data

provider is to provide estimates for disclosure probabilities for their own data based on the

distributions observed in the data.

Our results are based on the assumption that the attacker has exact knowledge of who

is in the data set and a particular individual’s exact data values. In the absence of any

other information available to the attacker, this is a worst case scenario and indeed in a

sampling context, response knowledge is not assumed known, especially for microdata

arising from social surveys. Therefore, disclosure risks may be considerably less than our

reported findings. If an attacker has some random data points from the population, they

will first have to check if the target data subject is in the data set and that depends on the

sampling fraction, which is generally small. For business surveys with large sampling

fractions and take-all strata, these assumptions may not be relevant. Often, a data

attacker will have no pre-existing individual data and may focus on trawling the data set

to discover an ‘interesting’ record, for example an individual or business with an unusual

combination of values. Having identified such a data subject, they may then attempt to

identify the real entity in the population using other variables in the data record. Our

procedure is also relevant to such an attack so long as the noise has been applied to the

variables in question.

For the extremes of the distribution it would be useful for disclosure purposes to apply

measurement errors with larger variances. For example, if noise is added to a variable such

as income, we might wish to make the variance parameter of the noise distribution a

function of income itself; for example by adding noise generated with smaller variances

in lower quintiles of the original income variable and then increasing the variance of the

noise for upper quintiles. Such a function could be non-linear or a step function, in which

all true value greater than a specified (absolute) value have additional noise added.

Nevertheless, the release of the information describing such a functional relationship will

generally be informative for individual records and so, such information could be

disclosed only to the accredited data analyst. In terms of the measurement error algorithm

described in Section 5 and in the appendix, the value of the variance would simply need to

be updated at each MCMC iteration, together with the estimated current value for the true

value of the variable. This is an area of further research to be pursued.

There is an interesting contrast with the k-anonymity criterion that is often used as a

measure of disclosiveness. If we have 2-anonymity, this implies that an attacker is able to

identify two individual records matching their own information, so that choosing either of

them at random means that there is a probability of 0.5 that it is the correct one. The

h-index, however, only yields a single individual with a probability of about 0.5 and, thus,

provides less information to the attacker than in the case of 2-anonymity. Indeed, an

attacker may be quite content with the information that they can access 2 or perhaps even 5

records containing the one that is sought. By contrast, with the h-index procedure, in our

most favourable case, the probability of the sought-for individual being one of the two

nearest, is just under 70% and one of the five nearest just over 80%. Thus, it could be
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argued that this is sufficient to deter an attacker and hence suitable in terms of protecting

against disclosure. In practice, careful attention needs to be paid to the amount of noise

required to satisfy disclosure concerns and this is an area for further research.

The generality of our procedure for compensating for measurement error described in

Section 5 and in the appendix is that it makes no assumptions about the final model to be

fitted and can be a generalised linear model or a multilevel model with some or all of the

variables perturbed, and the procedure allows a full range of exploratory analyses. A

particular advantage of our procedure is that, when fitting a model of interest, we will

obtain chains of imputed ‘true’ values that can be used for general model checking and

data display purposes: for example the means of these can be plotted to study their ( joint)

distributions. Likewise, in contrast to previous work, it does not assume any particular

distribution for the true values, at least for those used as covariates in the substantive

model of interest. Nevertheless, when data are being anonymised for release it is important

that both the disclosure risk and the consistency of subsequent parameter estimation are

considered. This will principally be the responsibility of the data provider, who will need

to balance the requirements of confidentiality with the needs of data analysts. We consider

that our proposal provides a suitable framework for doing this, as we illustrate in our

second example in Section 7.

Our procedure can be contrasted with procedures based on the production of fully

synthetic data simulated from estimates of the structure of the real data where exploratory

analyses are recommended prior to the choice of a small number of models to be fitted to

the real data within a secure environment. Such procedures not only rely on good estimates

of the real data structure, they also rely on exploratory analyses converging on the

appropriate set of final models, and this is by no means guaranteed. We note, however, that

in some cases where we wish only to fit a linear regression model, a more tailored

procedure such as that using correlated noise (Shlomo 2010) may provide superior

estimates. It would be possible, in principle, to develop our procedure for those cases in

which the correlated noise procedure is used. However, we have not pursued this, since, as

we point out, a general procedure that can be used with any subsequent analysis model is

generally preferable. With our proposed procedure, exploratory analyses would generally

be carried out using the measurement error methods proposed in Section 5.

For a response variable with added noise, the situation is more complex. However, for

normally distributed responses, we can carry out an analysis using the observed values to

obtain consistent estimates. In this case, we can obtain a consistent estimate for the

residual variance by subtracting the (known) variance for the measurement errors in the

response from the final estimated residual variance. The drawback, as illustrated in our

second example in Section 7 on the sugar cane farms data set, is that where the proportion

of variance explained is high, this will lead to large standard errors. In this case, we can

either add less noise to any variables that a given data analyst wishes to use as response

variables, or no noise at all. In our example, this has little effect on the disclosiveness and

therefore, in practice will often be acceptable. For categorical response variables, as with

continuous response variables, when data are released it may be acceptable to provide any

variable(s) to be treated as a response variable with its true values or with just a small

amount of added noise. Where a categorical response variable has added noise, it is

rounded to the nearest category value, for example 0 or 1 in the case of binary data, and
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these values are then used as responses as described in the appendix. Since, in general,

different data analysts may wish to treat different variables as response variables, this

implies that there should be a close liaison between the data provider and the analyst so

that appropriate amounts of noise can be attached to each variable.

In some cases, we can reduce disclosure risk by first transforming one or more variables.

This will often arise with skewed distributions with long tails where, for example, a

logarithmic transformation will create fewer extreme values. In such cases, the noise will

be added to the transformed variable. In an analysis where the original variable is required

in the model of interest, then for the likelihood term associated with the model of interest,

the back-transformed value of the proposed value will be used. This is also described in the

appendix.

A key issue, of course, is the requirement that the data provider supplies to the data

analyst the necessary parameters used to generate the noise. Since the degree of privacy

established needs to be published and the degree of privacy established is a function of

these parameters, in a weak sense aspects of the noise will become publicly available.

This, however, is not seriously disclosive since a guarantee of h-level disclosure is only

weakly informative about the noise parameter values themselves. Furthermore, we have

also shown in Table 3 that even where the attacker has access to the noise parameters this

does not materially improve the probability of disclosure. Thus, a sensible precaution is to

release the noise information only to accredited data analysts under secure conditions and

avoid the release to an external malicious attacker. It is also worth mentioning that an

attacker who has access to h-values may be deterred from attempting an attack when they

realise the low chances of succeeding.

Whilst our proposed procedure for additive noise described in Section 2 can provide

general protection against attacks, a data provider may wish to guard against specific

aspects of disclosiveness in the data, such as the presence of one or two very large outliers,

where the use of truncation on the perturbed data may be adequate. As long as the rules

used by the data provider are made available, the analyst typically will be able to take

account of these additional constraints in the analysis. As discussed in the appendix, it is

possible to incorporate judicious groupings of data values within the estimation algorithm,

and this allows the data provider some freedom in deciding where to coarsen particular

data ranges. Further research will explore such possibilities, and in particular investigate

the trade-off between increased security and reduced efficiency.

The protection method of perturbing a few variables in released data and other common

approaches such as truncation and grouping that we have presented here are all standard

statistical disclosure control (SDC) methods implemented by statistical agencies

(Willenborg and De Waal 2001; Hundepool et al. 2012 and references therein). The

computer science definition of Differential Privacy (DP) also assumes a worst case

scenario that the attacker knows who is in the data set and does not take into account any

protection afforded by sampling. The perturbation mechanism in the DP setting is also

additive random noise where the noise is generated using, for example, the Laplace

distribution and the parameters of the noise distribution depend on a privacy budget and

the ‘sensitivity’ defined as the maximum distance of two neighbouring data sets that differ

by only one data subject. For more details on DP, (see Dwork 2006; Dwork and Roth

2014). However, DP is related to output perturbation where every query is perturbed and
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it is less relevant in our case, where we release microdata with only a few variables

perturbed, coarsened or truncated as is the norm in SDC practices at statistical agencies.

One advantage of the DP framework is that the noise distribution does not need to be secret

and can be freely released, thus removing one potential threat. However, this does not

appear to be an insurmountable problem in our proposed approach, as we have shown in

the simulation in Section 3. See Charest (2010) and Rinott et al. (2018) for examples of

statistical inference under DP.

Data sets are often supplied with weights that may incorporate aspects of sample design

or bias correction procedures. This poses particular problems for our procedure described

in Section 5 and the appendix, as it does in general for models utilising Bayesian methods.

In a recent paper, Goldstein et al. (2018) showed how weights could be incorporated in a

Bayesian model for handling missing data. Goldstein et al. (2017) extend the model for

missing data to handle measurement errors, and the procedures for handling weights given

by Goldstein et al. (2018) can be extended in a straightforward fashion to this extended

model. It should also be noted that the ability of the extended model to handle both

measurement errors and missing data allows our procedures to deal with the case where

there are missing values.

There are practical considerations to be taken into account if our procedures are to be

implemented. Not least of these is the need to provide easy-to-use software to perform the

appropriate analysis on the noisy data and accompanying training materials. The software

routines written in MATLAB (2017), used for the present article, are not optimised for

either speed or user accessibility. They are, however, available by request from the first

author.

Finally, as we pointed out in the introduction in Section 1, it is important to recognise

that there is always a trade-off between reducing disclosure risk and increasing the

complexity and efficiency of any resulting analysis. The more noise that is added, the

lower the statistical efficiency. In practice, the balance between disclosure risk and

analytical efficiency can be tailored to individual data users through a secure environment

and the implementation of automatic procedures for noise dataset generation according to

given specifications of disclosure risk and statistical estimation efficiency. The safer the

environment of the data analyst, in general the less noise will be needed, and likewise the

level of noise could be tailored to the sensitivity of the data.

10. Appendix: Random Noise Addition and Model Estimation with

Measurement Errors

The following exposition is for a single level linear model with a single predictor variable

that contains noise (measurement error) with known parameters. The case of several

predictors with added noise, the case where we have a generalised linear model and the

multilevel case follow straightforwardly. We assume multivariate normality for the added

noise and where we have categorical or count variables or continuous variables for which a

normalising transformation exists (Goldstein et al. 2009). Then the appropriate extra steps

are inserted into the MCMC algorithm to enable a random draw from the underlying normal

distributions. The following estimation steps are based on those described by Goldstein

et al. (2017). We assume uniform priors for all the model parameters described below.
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Define the true values of the variable with measurement error (noise) as X1 and those

without measurement error as X2, and X ¼ X1 X2½ �.

Define the joint model – the measurement error model (MEM) in two parts, (1a) and

(1b) and the model of interest (MOI) (1c) – see derivation below.

x1 ¼ X1 þ g1 ðA1aÞ

X1 ¼ XT
2aþ g2 ðA1bÞ

Y ¼ Xbþ e ðA1cÞ

For the priors we have

p að Þ / 1

p b
� �
/ 1

p dð Þ / 1

s 22
g1

, gamma e ; e
� �

s 22
g2

, gamma e ; e
� �

s 22
e , gamma e ; e

� �

where n is the sample size, e ¼ 0.001, the g1i,g2i, ei are obtained by subtraction, and

g1 , N
�
0;s 2

g1

�
, g2 , N

�
0;s 2

g2

�
, e , N 0;s 2

e

� �
. We note that the MOI (A1c) may contain

functions of the X1, such as interaction or power terms. Lower case variables define

observed and upper case true values, and we assume the residual terms in (A1a)-(A1c)

are independent. A Metropolis step for the true value is used for record i, where a new

value is proposed. If we denote this by X1i, the joint log likelihood for (A1a), (A1b)

and (A1c) is

2 1:5log2pþ log sg1
sg2

se

� �
þ

0:5 x1i 2X1ið Þ2

s 2
g1

þ
0:5 XT

1i 2XT
2ia

� �2

s 2
g2

þ
0:5 y~i

� �2

s 2
e

( )

ðA2Þ

where ỹi ¼ yi 2 Xib and only the final three terms in (A2) are required in the Metropolis

step.

For a proposal distribution we can use

p X1jx1

� �
, N x1R;R 1 2 Rð Þs 2

x1

� �
ðA3Þ

where R is the reliability¼ var X1ð Þ
var x1ð Þ

. Model (A1) is similar to the formulation by Richardson

and Gilks (1993) where they have a ‘gold standard’ validation sample that provides the

information contained in (A1a). In the present case, of course, the values of the noise

variances are known to the data analyst. The remaining steps for the parameters in the

model of interest are standard and can be found in Goldstein et al. (2017).
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We can readily extend this model to the case where we have multilevel data with

random effects following the exposition in Goldstein et al. (2017).

For the case where we have more than one variable with measurement error, we can

propose the set of values defined independently for each variable or look at the joint

proposal distribution in the case where correlated noise has been used, namely

X1jx1

� �
, MVN X1V

21
x1
VX1

;VX1
2 VX1

V21
x1
VX1

� �
; although the use of correlated noise

generally would seem to be unnecessary and serves only to complicate the analysis.

Further details can be found in Goldstein et al. (2017).

For discrete variables where we have misclassification errors, there is an analogous

procedure (Goldstein and Browne 2016), but this becomes complicated when there are

multiple categories. Instead, we introduce a novel procedure as follows.

For the discrete variables in X1 in (A1a), we now have the set of category codes

(0, : : : , p 2 1), as discussed in Section 5. Associated with such a variable we will have

p 2 1 dummy variables D1. The proposal distribution for the Metropolis step is

conveniently chosen as the observed distribution across the categories, based on choosing

the nearest integer, or alternatively the ‘true’ distribution could be made available by the

data provider for use as the proposal distribution. The log-likelihood contribution is then

given by one of the following, depending on the observed value mij

2{0:5log2pþ log smð Þ þ
0:5 mij 2 j*
� �2

s 2
m

} if 0 , mij , p 2 1

log


 ð0

21

f f
� �

df

�
; f , N j*;s 2

m

� �
if mij # 0

log


 ð1

p21

f f
� �

df

�
; f , N j*;s 2

m

� �
if mij $ p 2 1

where j* is the proposed value and mij is the observed ‘noisy’ value truncated at zero and

p 2 1.

In some cases we may wish to present perturbed categorical data to a data analyst only

as a set of discrete values, for example as the nearest integer to the ‘noisy’ value. Thus, for

example for a perturbed value in the range 21; 1:5
� �

we would report the value as 1 and

generally as j if it is in the interval j 2 0:5; jþ 0:5
� �

. For the likelihood contribution for a

proposed value j* we now have the likelihood contributions

ð0:5

21

f f
� �

df if mij ¼ 0

ðmijþ0:5

mij20:5

f f
� �

df if 0 , mij , p 2 1
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ð1

p21:5

f f
� �

df if mij ¼ p 2 1

For each proposed category for variable X1 we will have a corresponding entry of ‘1’ for

the dummy variable in the model of interest, that is, in D1. This set of dummy variables

will enter the MOI as predictors with the response vector corresponding to (A1b), where

the default link function is the multivariate probit as described in Goldstein et al. (2009).

If we wish to allow actual measurement errors for continuous predictors, as well as the

imposed anonymisation categorical measurement errors, it will be convenient to propose

true values for the former in a separate step, conditional on all the current categorical

predictor values. Where we have imposed anonymisation measurement errors for

continuous variables, as well as actual measurement errors, we may simply add the

variances for the former to the corresponding diagonal terms of the actual measurement

error covariance matrix.

Standard errors as quoted in the tables are the standard deviations computed from the

MCMC chains in the usual way.

As mentioned in Section 5, in some cases we may have additional constraints on the

data values. For example, if the perturbed value x1 is constrained to be no larger than a

chosen value, we may have

if ðx1 . C1Þ; set x1 ¼ C1

where the value C1 does not occur in the dataset. Then, whenever x1 ¼ C1, we would

sample a value from the upper tail of the normal distribution defined by the current values

from (A1b) and use this in the Metropolis step. Likewise, where we apply truncation to a

continuous response variable, an extra step will be introduced into the algorithm that

samples from the tail area of the normal distribution conditional on current parameter

values. A similar procedure could be used more generally where a grouping of values takes

place. However, care will be needed to ensure that there is not too much loss of efficiency

associated with this.

For a response variable with added noise, the situation is more complex, but for

normally distributed responses we can carry out an analysis using the observed values to

obtain consistent estimates of the fixed coefficients. We can obtain a consistent estimate

for the residual variance by using the observed variance during the chain sampling and

subtracting the (known) variance for the measurement error in the response, say s 2
d; from

the final estimated residual variance. As we show in our example, this may result in a large

increase in the standard errors when the measurement error variance is large relative to the

residual variance. When data are released, it may be acceptable to provide any variable(s)

to be treated as a response with the true values or just a small amount of noise, and as we

show in our example in Section 8, this may not be too disclosive.

For categorical responses with misclassification or measurement errors, a further

modification is required. Thus, for example, in the case of a binary response where

normally distributed noise has been added as in (4), if we choose, as above, to round the

observed value to the nearest integer (0, 1), denoted by yi, then for the likelihood for the
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model of interest we can write

d1 ¼ Pr obs ¼ 1jtrue ¼ 0
� �

¼

ð1

0:5

fd tð ÞdtÞ; Pr obs ¼ 1jtrue ¼ 1
� �

¼ 1 2

ð1

0:5

fd tð ÞdtÞ

and this leads to

Pr yi ¼ 1jXb
� �

¼ d1 þ 1 2 2d1ð Þ

ð1

2Xb

f tð Þdt; fd , N 0;s 2
d

� �
ðA4Þ

Thus for the b parameters, since s 2
d is known, we will have a Metropolis step for each

one in turn using the observed (0, 1) values, subject to d1 þ 1 2 2d1ð Þ
Ð1

2Xb
f tð Þdt , 1.

Routines to implement the models described in this appendix have been written in

MATLAB (2017) and details can be obtained from the first author.

11. References

Arima, S. and S. Polettini. 2019. “A Unit Level Small Area Model with Misclassified

Covariates.” Journal of the Royal Statistical Society, Series A. Early View: DOI:

https://doi.org/10.1111/rssa.12468.

Brand, R. 2002. Microdata Protection Through Noise Addition. In Inference control in

statistical databases, 97–116. Berlin, Heidelberg: Springer.

Chambers, R.L. and R. Dunstan. 1986. “Estimating Distribution Functions from Survey

Data.” Biometrika 73: 597–604. DOI: https://doi.org/10.2307/2336524.

Charest, A.-S. 2010. “How Can we Analyse Differentially-private Synthetic Datasets?”

Journal of Privacy and Confidentiality 2: 21–33. DOI: https://doi.org/10.29012/

jpc.v2i2.589.

Cox, L., A.F. Karr, and S.K. Kinney. 2011. “Risk-Utility Paradigms for Statistical

Disclosure Limitation: How to Think, But Not How to Act.” International Statistical

Review 79(2): 160–183. DOI: https://doi.org/10.1111/j.1751-5823.2011.00140.x.

Delaigle, A. and P. Hall. 2008. “Using SIMEX for Smoothing-Parameter Choice in Errors-

in-Variables Problems.” Journal of the American Statistical Association 103(481):

280–287.

Duncan, G.T. and S. Mukherjee. 2000. “Optimal Disclosure Limitation Strategy in

Statistical Databases: Deterring Tracker Attacks Through Additive Noise.” Journal of

the American Statistical Association 95(451): 720–729.

Dwork, C. 2006. “Differential Privacy.” In ICALP 2006, edited by M. Bugliesi, B. Preneel,

V. Sassone, and I. Wegener, 4052: 1–12. Lecture Notes in Computer Science.

Heidelberg: Springer.

Dwork, C. and A. Roth. 2014. “The Algorithmic Foundations of Differential Privacy.”

Foundations and Trends in Theoretical Computer Science 9: 211–407. DOI:

https://doi.org/10.1561/0400000042.

Elliot, M.J. and A. Dale. 1999. “Scenarios of attach: the data intruder’s perspective on

statistical disclosure risk.” Netherlands Official Statistics 14: 6–10. Available at:

https://www.researchgate.net/profile/Ton_De_Waal/publication/255565237_Exact_

Goldstein and Shlomo: Analysis of Perturbed Data Sets 113

Unauthentifiziert   | Heruntergeladen  23.03.20 10:38   UTC

https://doi.org/10.1111/rssa.12468
https://doi.org/10.2307/2336524
https://doi.org/10.29012/jpc.v2i2.589
https://doi.org/10.29012/jpc.v2i2.589
https://doi.org/10.1111/j.1751-5823.2011.00140.x
https://doi.org/10.1561/0400000042
https://www.researchgate.net/profile/Ton_De_Waal/publication/255565237_Exact_disclosure_in_a_super-table/links/0c960539450114582d000000.pdf#page=6


disclosure_in_a_super-table/links/0c960539450114582d000000.pdf#page=6 (accessed

February 2020).

Fuller, W.A. 1993. “Masking procedures for microdata disclosure limitation.” Journal of

Official Statistics 9: 383–406. Available at: https://www.scb.se/contentassets/

ca21efb41fee47d293bbee5bf7be7fb3/masking-procedures-for-microdata-disclosure-

limitation.pdf (accessed February 2020).

Fuller, W.A. 2006. Measurement error models. Chichester: John Wiley and Sons.

Goldstein, H. 2011. Multilevel Statistical Models. Chichester: Wiley.

Goldstein, H. and W. Browne. 2016. “Multilevel models: current developments”. Wiley

Online Library. Available at: www.wileyonlinelibrary.com/ref/stats.

Goldstein, H., W.J. Browne, and C. Charlton. 2017. “An MCMC procedure for handling

measurement and misclassification errors alongside missing data in multilevel multi-

variate generalised linear models with an application to a study of Australian youth.” Journal

of Applied Statistics. DOI: https://doi.org/10.1080/02664763.2017.1322558.

Goldstein, H., J. Carpenter, and M. Kenward. 2018. “Bayesian models for weighted data

with missing values: a bootstrap approach.” Journal of the Royal Statistical Society,

Series C. DOI: https://doi.org/10.1111/rssc.12259.

Goldstein, H., J. Carpenter, M. Kenward, and K. Levin. 2009. “Multilevel models with

multivariate mixed response types.” Statistical Modelling 9(3): 173–197. DOI:

https://doi.org/10.1177/1471082X0800900301.

Goldstein, H., J. Rasbash, M. Yang, G. Woodhouse, H. Pan, D. Nuttall, and S. Thomas.

1993. “A Multilevel Analysis of School Examination Results.” Oxford Review of

Education 19(4): 425–433.

Gouweleeuw, J., P. Kooiman, L.C.R.J. Willenborg, and P.P. de Wolf. 1998. “Post

Randomisation for Statistical Disclosure Control: Theory and Implementation.”

Journal of Official Statistics 14: 463–478. Available at: https://pdfs.semanticscholar.

org/cd28/1be11657b944b74169b8fe35dddb91d558e8.pdf (accessed February 2020).

Hundepool, A., J. Domingo-Ferrer, L. Francono, S. Giessing, E. Schulte-Nordholt, K.

Spicer, and P.P. de Wolf. 2012. Statistical Disclosure Control. Wiley Series in Survey

Methodology. Chichester: John Wiley and Sons.

Hwang, J.T. 1986. “Multiplicative Errors-in-Variables Models with Applications to

Recent Data” Released by the U.S. Department of Energy. Journal of the American

Statistical Association 81(395): 680–688. DOI: https://doi.org/10.1080/01621459.

1986.10478321.

Kim, J.J. 1986. A Method for Limiting Disclosure in Micro-data Based on Random Noise

and Transformation. ASA Proceedings of the Section on SRM: 370–374. Available at:

http://www.asasrms.org/Proceedings/papers/1986_069.pdf (accessed February 2020).

Little, R.J.A. 1993. “Statistical analysis of masked data.” Journal Official Statistics 9:

407–426. Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf

7be7fb3/statistical-analysis-of-masked-data.pdf (accessed February 2020).

MATLAB. 2017. Available at: https://www.mathworks.com/products/matlab.html

(accessed October 2017).

Reiter, J.P. 2005. “Releasing Multiply Imputed, Synthetic Public-Use Microdata: An

Illustration and Empirical Study.” Journal of the Royal Statistical Society, Series A

168(1): 185–205. DOI: https://doi.org/10.1111/j.1467-985X.2004.00343.x.

Journal of Official Statistics114

Unauthentifiziert   | Heruntergeladen  23.03.20 10:38   UTC

https://www.researchgate.net/profile/Ton_De_Waal/publication/255565237_Exact_disclosure_in_a_super-table/links/0c960539450114582d000000.pdf#page=6
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/masking-procedures-for-microdata-disclosure-limitation.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/masking-procedures-for-microdata-disclosure-limitation.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/masking-procedures-for-microdata-disclosure-limitation.pdf
http://www.wileyonlinelibrary.com/ref/stats
https://doi.org/10.1080/02664763.2017.1322558
https://doi.org/10.1111/rssc.12259
https://doi.org/10.1177/1471082X0800900301
https://pdfs.semanticscholar.org/cd28/1be11657b944b74169b8fe35dddb91d558e8.pdf
https://pdfs.semanticscholar.org/cd28/1be11657b944b74169b8fe35dddb91d558e8.pdf
https://doi.org/10.1080/01621459.1986.10478321
https://doi.org/10.1080/01621459.1986.10478321
http://www.asasrms.org/Proceedings/papers/1986_069.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/statistical-analysis-of-masked-data.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/statistical-analysis-of-masked-data.pdf
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1111/j.1467-985X.2004.00343.x


Reiter, J.P. and R. Mitra. 2009. “Estimating Risks of Identification Disclosure in

Partially Synthetic Data.” Journal of Privacy and Confidentiality 1(1): 99–110.

DOI: https://doi.org/10.29012/jpc.v1i1.567.

Richardson, S. and W.R. Gilks. 1993. “Conditional independence models for

epidemiological studies with covariate measurement error.” Statistics in Medicine 12:

1703–1722. DOI: https://doi.org/10.1002/sim.4780121806.

Rinott, Y., C. O’Keefe, N. Shlomo, and C. Skinner. 2018. “Confidentiality and Differential

Privacy in the Dissemination of Frequency Tables.” Statistical Sciences 33(3):

358–385. DOI: https://doi.org/10.1214/17-STS641.

Rubin, D.B. 1993. “Discussion Statistical Disclosure Limitation.” Journal of Official

Statistics 9: 461–468. Available at: https://www.scb.se/contentassets/ca21efb41-

fee47d293bbee5bf7be7fb3/discussion-statistical-disclosure-limitation2.pdf (accessed

February 2020).

SdcMicro. 2019. Available at: http://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf.

Shlomo, N. 2010. “Measurement Error and Statistical Disclosure Control.” In PSD 2010:

Privacy in Statistical Databases, edited by J. Domingo-Ferrer and E. Magkos, 6344:

118–126. Springer LNCS. DOI: https://doi.org/10.1007/978-3-642-15838-4_11.

Shlomo, N. and T. de Waal. 2008. “Protection of Micro-data Subject to Edit Constraints

Against Statistical Disclosure.” Journal of Official Statistics 24(2): 1–26. Available at:

https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/protection-

of-micro-data-subject-to-edit-constraints-against-statistical-disclosure.pdf (accessed

February 2020).

Shlomo, N. and C.J. Skinner. 2010. “Assessing the Protection Provided by

Misclassification-Based Disclosure Limitation Methods for Survey Microdata.” Annals

of Applied Statistics 4(3): 1291–1310. DOI: https://doi.org/10.1214/09-AOAS317.

Tendick, P. 1991. “Optimal Noise Addition for Preserving Confidentiality in Multivariate

Data.” Journal of Statistical Planning and Inference 27(3): 341–353. DOI: https://

doi.org/10.1016/0378-3758(91)90047-I.

Ting, D., S. Fienberg, and M. Trottini. 2008. “Random orthogonal matrix masking

methodology for microdata release.” International Journal on Information and

Computer Security 2(1): 86–105. DOI: https://doi.org/10.1504/IJICS.2008.016823.

Willenborg, L. and T. de Waal. 2001. “Elements of Statistical Disclosure Control in

Practice.” Lecture Notes in Statistics, 155. New York: Springer-Verlag.

Winkler, W.E. 1998. “Re-identification Methods for Evaluating the Confidentiality of

Analytically Valid Microdata.” Research in Official Statistics 1: 87–104. Available at:

https://www.census.gov/srd/papers/pdf/rrs2005-09.pdf.

Woo, Y.M.J. and A. Slavkovic. 2014. “Generalized Linear Models with Variables Subject

to Post Randomization Method.” Italian Journal of Applied Statistics 24(1): 29–56.

Available at: http://sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/2%20Woo%20

pg%20(1).pdf (accessed February 2020).

Received May 2018

Revised July 2019

Accepted August 2019

Goldstein and Shlomo: Analysis of Perturbed Data Sets 115

Unauthentifiziert   | Heruntergeladen  23.03.20 10:38   UTC

https://doi.org/10.29012/jpc.v1i1.567
https://doi.org/10.1002/sim.4780121806
https://doi.org/10.1214/17-STS641
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/discussion-statistical-disclosure-limitation2.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/discussion-statistical-disclosure-limitation2.pdf
http://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
https://doi.org/10.1007/978-3-642-15838-4_11
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/protection-of-micro-data-subject-to-edit-constraints-against-statistical-disclosure.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/protection-of-micro-data-subject-to-edit-constraints-against-statistical-disclosure.pdf
https://doi.org/10.1214/09-AOAS317
https://doi.org/10.1016/0378-3758(91)90047-I
https://doi.org/10.1016/0378-3758(91)90047-I
https://doi.org/10.1504/IJICS.2008.016823
https://www.census.gov/srd/papers/pdf/rrs2005-09.pdf
http://sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/2%20Woo%20pg%20(1).pdf
http://sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/2%20Woo%20pg%20(1).pdf


Can Interviewer Evaluations Predict Short-Term and
Long-Term Participation in Telephone Panels?

Oliver Lipps1 and Marieke Voorpostel1

Interviewers often assess after the interview the respondent’s ability and reluctance to
participate. Prior research has shown that this evaluation is associated with next-wave
response behavior in face-to-face surveys. Our study adds to this research by looking at this
association in telephone surveys, where an interviewer typically has less information on
which to base an assessment. We looked at next-wave participation, non-contact and refusal,
as well as longer-term participation patterns. We found that interviewers were better able to
anticipate refusal than non-contact relative to participation, especially in the next wave, but
also in the longer term. Our findings confirm that interviewer evaluations – in particular of the
respondent’s reluctance to participate – can help predict response at later waves, also after
controlling for commonly used predictors of survey nonresponse. In addition to helping to
predict nonresponse in the short term, interviewer evaluations provide useful information for a
long-term perspective as well, which may be used to improve nonresponse adjustment and in
responsive designs in longitudinal surveys.

Key words: Attrition; postsurvey adjustment; longitudinal weights.

1. Introduction

It is of central importance in longitudinal surveys that respondents participate repeatedly.

Only by collecting multiple observations can we assess change over time accurately.

Hence, a large body of literature has examined the causes of attrition, as well as strategies

to prevent and correct for it (e.g., Couper and Ofstedal 2009; Lipps 2012a; Schonlau

et al. 2010). One strategy to improve our understanding of what guides continued

participation that has received only little research attention is the use of assessments that

interviewers provide after completing an interview. Such assessments consist of questions

at the end of the questionnaire that address the interviewer’s impression of the

respondent’s willingness to participate and the quality of the responses. The few studies

that use interviewer evaluations to predict later-wave response are mostly based on data

from face-to-face interviews (but see Barrett et al. 2006, for a combined telephone and

face-to-face approach). They indicate that negative assessments of the interviews and the

respondents are associated with subsequent nonresponse in face-to-face surveys (e.g.,

Plewis et al. 2017).

The extent to which interviewers’ evaluations predict subsequent participation in

longitudinal household studies conducted by telephone remains unknown. One could
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argue that in the absence of face-to-face contact, telephone interviewers have less

information on which to base their evaluations. On the other hand, face-to-face contact

with the respondent may also increase the use of stereotypes, decreasing the validity of

such evaluations. Our study is the first to assess the relationship between interviewer

evaluations and subsequent participation in a longitudinal household panel conducted by

telephone.

Interviewer evaluations are useful not only to improve our understanding of what

determines (repeated) survey participation, but also to correct for nonresponse. Variables

based on the interviewers’ assessments of the responsiveness and carefulness of the

respondents are rarely included in longitudinal weights, although they have the potential to

improve nonresponse adjustments (Peytchev and Olson 2007). In addition, with increasing

possibilities for responsive and adaptive design procedures (Groves and Heeringa 2006;

Chun et al. 2017; Schouten et al. 2017; Wagner 2008), being able to determine which

respondents are more likely to drop out has great potential benefits in terms of spending

more resources on these respondents and better tailoring fieldwork efforts to keep them

in the longitudinal study. Consequently, we distinguished between nonresponse due to

non-contact and due to refusal when looking at next-wave participation, which is an

informative distinction for responsive design procedures.

Another contribution this study makes is that we extended our focus from only looking

at short-term (wave-to-wave) participation to also including longer-term participation

patterns. Attrition studies so far have exclusively examined the predictive quality of

interviewer evaluations on response at the next wave (Kalton et al. 1990; Plewis et al.

2017; Watson and Wooden 2004). Yet, as longitudinal surveys increasingly include online

questionnaires in their designs, interviewer evaluations collected at every wave become

less standard. It then becomes useful to have insight in the extent to which interviewer

evaluations are able to predict subsequent response patterns, on top of other commonly

used predictors.

2. Background

There is a long history of collecting interviewer evaluations and observations in survey

research (Feldman et al. 1951). These assessments generally aim to capture two aspects: the

interviewer’s assessment of the current or future reluctance of the respondent to participate

(responsiveness), and the interviewer’s assessment of the ability of the respondent to

complete the survey task, which includes the quality of the responses (carefulness).

Interviewer evaluations of the respondent’s carefulness help to assess the quality of the

responses provided. Barrett and colleagues (Barrett et al. 2006) found that interviewers’

perceptions of respondents’ performance were valid indicators of item nonresponse and

frequency of “don’t know” answers in a survey of persons with mental and physical

disabilities. However, Kirchner et al. (2017) pointed out that this association is not

surprising, as interviewers base their evaluations among other things on item nonresponse

during the interview. Kaminska et al. (2010) used interviewer evaluations to measure

respondents’ reluctance and cognitive ability in the European Social Survey. They showed

that reluctance was associated with satisficing, but that this relationship was explained by

lower cognitive ability. Peytchev and Olson (2007) demonstrated for the US National
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Election Study that inclusion of interviewer assessments improved nonresponse

adjustments.

A second strength of interviewer evaluations of both responsiveness and carefulness

is that they help to predict (continued) survey participation. In cross-sectional studies,

interviewer evaluations have been used to predict final participation after each contact

(Eckman et al. 2013). The aim of such contact-based evaluations is an ad hoc tailoring to

accommodate sample members’ possible concerns, which may change across contacts. A

number of studies using longitudinal surveys have shown that interviewers’ evaluations of

respondents are predictive of cooperation at the next wave of data collection, in addition

to commonly used predictors. A recent study by Plewis et al. (2017) used interviewer

evaluations at the fourth wave of the UK Millenium Cohort Study to predict response

behavior in the subsequent wave, which took place four years later. They found that the

interviewer’s assessment of the likelihood that the respondent would participate in the

future, the difficulty the respondent had answering the questions, the enjoyment of and

cooperation during the interview all predicted both non-contact and refusal in the next

wave. Moreover, they found that dropout of such “difficult” respondents caused bias,

suggesting that in order to reduce nonresponse bias, there is benefit to directing additional

resources toward keeping such respondents in the panel (Plewis et al. 2017). Kalton et al.

(1990) found for the American Changing Lives study that interviewer ratings of the

respondent’s understanding of the questions, cooperation and the enjoyment of the

interview were positively associated with participation in the second wave. Lepkowski

and Couper (2002) confirmed this for the National Election Studies. In their study

examining sample attrition between the first two waves of the Household, Income and

Labour Dynamics in Australia (HILDA), Watson and Wooden (2004) found that the

interviewer’s evaluation of the respondent’s cooperativeness, suspicion of the study, and

required assistance to complete the interview were all associated with attrition in the

second wave. In a study using 14 waves of the HILDA panel, Perez and Baffour (2018)

showed that the interviewer’s evaluation of the respondent’s suspicion of the study,

question understanding, and the respondent’s cooperativeness were all associated with

personal characteristics that were precursors of panel attrition.

To our knowledge, only two studies, both conducted using the British Household Panel

Survey (BHPS), assessed the extent to which interviewers’ evaluations are predictive of

participation in the longer term. Uhrig (2008) showed that the interviewer’s judgement of

poor cooperation of the respondent affected both later wave refusal and non-contact,

although his models only controlled for interview characteristics and fieldwork operations,

and not for any other predictors of nonresponse. Laurie et al. (1999) showed that poor

cooperation by the respondent as reported by the interviewer in the first wave was

associated with nonresponse at the fourth wave. These findings indicate that interviewer

evaluations have predictive power that goes beyond participation in the next wave.

Research findings so far have shown that interviewers’ evaluations in face-to-face

surveys help predict later response behavior in longitudinal studies, even if commonly used

predictors are taken into account. This means that if interviewers’ evaluations correlate

with the survey variable, they have the potential to improve nonresponse adjustments and

need to be included in appropriate models. We examined whether we find this association

also in telephone panel surveys. Compared with face-to-face surveys, interviewers in
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telephone surveys have less information on which to base their evaluations. There is a

higher level of anonymity in telephone surveys (Block and Erskine 2012). Telephone

interviewers are not in the home of the respondent, cannot engage in nonverbal

communication and their interviews tend to be of a shorter duration, limiting the total time

of interaction with the respondent. For our study we might expect, on the one hand, that as a

result it would be harder for interviewers to evaluate respondents, limiting predictive power

of such evaluations. On the other hand, there may also be less noise in the evaluations, as

there is less information (e.g., on the home or physical appearance of the respondent) that

may lead to the development of stereotypes. Kirchner et al. (2017) assessed the validity

of interviewer evaluations in telephone surveys. They based their expectations on the

continuum model of impression formation, which suggests that impressions initially are

formed based on observed characteristics (stereotyping), but that one can move beyond this

way of processing by using actual behavior to update these pre-existing notions. They

found no evidence of stereotyping. Rather, interviewers based their assessments on the

quality of the data provided and on other behavior of the respondent. In general confirming

the validity of assessments that interviewers are able to make in telephone interviews.

In this study, we first explored the bivariate relationship between interviewer

evaluations and participation patterns to see if there was indeed a longer-term association.

Then we controlled for a rich set of predictors of nonresponse to see if these relationships

persist. Next, we analyzed interviewer evaluation predictive power on participation in the

next wave in the same way. We expected the interviewer to be better able to predict

participation at the next wave than in the long term. Nevertheless, we expected the

interviewer evaluation to have a nonzero longer-term predictive power. In addition, we

expected that interviewers are better at anticipating subsequent refusal than non-contact

(Uhrig 2008; Plewis et al. 2017; Lipps 2012a).

We assessed the contribution that interviewer evaluations make above other commonly

used predictors. If, after controlling for such predictors, interviewer evaluations do not

have any explanatory power, there is no need to collect such data for the purpose of

predicting participation. In line with most previous studies, we took into account

commonly used socio-demographic characteristics, as well as the likelihood that the

household would move. These covariates are commonly included in studies linking

interviewer evaluations to longitudinal survey participation. Our study controlled for

a number of additional variables not included in previous studies that also capture

the respondent’s survey language competence, engagement, characteristics of the

participation history (i.e., number of waves in the panel) and indicators of response quality

(i.e., proportion of “don’t know” answers). Finally, we also added measures of the social

engagement of the respondent (Groves et al. 2009).

3. Data and Methods

3.1. Data

We used data from the Swiss Household Panel (SHP) (Tillmann et al. 2016). The SHP

is an ongoing large-scale, nationwide, annual, centralized computer-assisted telephone

interview (CATI) panel survey that started in 1999 with a sample of 5,074 households and
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added a refreshment sample in 2004, consisting of 2,538 households. Both samples were

randomly drawn from the telephone register and cover the Swiss residential population. A

second refreshment sample, drawn at random from the Swiss population register, started in

2013, consisting of 3,989 households. Households were contacted via landline and mobile

numbers. Households that split up or moved remain in the study as long as they reside in

Switzerland. New household members are included in the study. In addition, households

that refused in a certain wave are re-approached for a number of waves in an effort to keep

them in the sample. Each year, the household reference person is asked to first complete

the household roster using a grid questionnaire. All listed household members of at least

14 years old are then approached to complete individual questionnaires. As household

members could only participate if the household reference person participated, we focused

only on participation at the household level, measured by whether the household reference

person completed the grid questionnaire. Interviewer evaluations are available for all

individual interviews in every wave since 2004. Upon completion of each individual

questionnaire, the interviewer answers a number of questions on the impression the

interviewer had of the respondent and the interview.

We have two different analytical samples (for details, see Subsection 3.5, Methods): a

sample to investigate the predictive power of the interviewer evaluations for long-term

participation patterns (Sample 1), and a sample to investigate the predictive power of the

interviewer evaluations for wave-to-wave response (Sample 2). For the long-term model

based on Sample 1, we used data on subsequent participation from all household reference

persons who completed an individual questionnaire in 2004 (N ¼ 4,394). For the short-

term model (Sample 2), we use all households for which we have at least one interviewer

evaluation, which implies that the reference person completed an individual questionnaire

at least once between 2004 and 2016. We then looked at participation in the next wave,

including data from 2005 to 2017. We disregarded observations in which a household

became ineligible (left the country, all members institutionalized or deceased) or was

no longer approached for other reasons (no valid landline or mobile telephone number

available, written refusal, not contactable or refusal for several waves in a row) and were

left with 10,336 households and 61,844 observations. After dropping observations with

any missing values on one of the covariates, 60,298 observations (from 10,185

households) remained in our short-term analytical Sample (2). The distributions of the

participation patterns and the interviewer evaluations differed only slightly between the

full sample and the analytical sample (where observations with any missing covariates

were dropped). For example, while the next wave grid is completed by 92.9% of the

households in the full sample, this is the case for 93.1% in the analytical sample. For the

interviewer evaluation variables, the biggest relative difference occurs for ‘easy to

convince the sample member’, which is true of 96.3% in the full sample and 96.6% in the

analytical sample. We thus abstain from imputing missing covariates.

3.2. Dependent Variables

We used household-level information on participation to construct the categories of our

dependent variables. Participation in the survey implied that the household reference

person completed the grid questionnaire in a given wave. Non-participation was either
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the result of non-contact or refusal at the household level. The distinction between

these two states is often not clear-cut, as noncontact can be a form of hidden refusal

(Stoop 2005). We coded the outcome in a given wave as refusal when the final

disposition code was refusal. Whether or not to assign to refusal or noncontact is less

clear when an interviewer managed to make contact with the household, the household

reference person did not give a hard refusal, but the interview had not taken place by

the end of the six-month fieldwork period. We decided to code these cases as a final

non-contact (about half of all final non-contacts) because the contact with the

household could have been with another household member. In addition, the outcome

was coded as final non-contact if the household had a valid telephone number (landline

or mobile number), but the interviewer could not establish any contact with the

household. We cannot completely rule out the possibility that some non-contacts were

hidden refusals, but these cases should be few. In addition, there is no information

about the mode of contact (landline or mobile number). In the analytical sample for the

short-term response (Sample 2), of the 6.9% nonresponse, 5.0% were refusals and 1.9%

non-contacts, meaning that non-contacts were relatively rare.

After assigning participation statuses to the observations, we constructed two dependent

variables for the two analyses in this study: for the long-term model (Sample 1), we used

participation patterns. For each household reference person who completed an individual

questionnaire in 2004, we established patterns of participation (grid completion) in

subsequent waves, hence one pattern for each reference person. We distinguished between

five exhaustive and mutually exclusive participation patterns that distinguish between full

participation, immediate dropout and three different irregular patterns. Our choice of

patterns acknowledges the fact that the determinants of participation and therefore the

process of attrition differs across respondents. Some respondents participate mostly

loyally, others drop out definitely sooner or later, and still others participate infrequently

(see Lugtig 2014):

1. The household is either highly committed to the survey or developed a habit of taking

part (Lugtig 2014) and participated at every wave in which it was eligible (full

participation, 53.9%),

2. The household refused at least once, for example due to a temporary “shock” caused

by a life-changing event (Lemay 2009), but participated at the most recent wave in

which it was eligible (there may have been non-contacts at other waves) (refusal and

re-entry, 9.1%),

3. The household never refused, but at least once no contact could be established,

probably caused by a temporary absence (see Lepkowski and Couper 2002, who

show that refusal and non-contact have different determinants), and the household

participated in the most recent wave in which it was eligible (non-contact and

re-entry, 2.6%),

4. The household participated at least in one later wave, but dropped out in or before the

most recent wave in which it was eligible, which may be the result of panel fatigue

(Lemay 2009) (participation and dropout, 30.1%),

5. The household did not participate in any later wave, probably because it experienced

participation negatively (Lemay 2009) (immediate dropout, 4.3%).
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For the short-term model (Sample 2), we used next-wave participation status as the

dependent variable, distinguishing participation, refusal, and non-contact. We accounted

for the multilevel structure of the data with observations nested in households.

3.3. Independent Variables

The main independent variables concerned the interviewer evaluation of the respondent’s

ability and reluctance, which we will use to predict next-wave response and response

patterns. Ability was measured with the question “Was the respondent’s understanding of

the questions: : :?” with responses including good (2), fair (1), and poor (0). Three

questions measured reluctance: “In general, what was the respondent’s attitude toward the

interview?” (Friendly and cooperative (3), cooperative but not particularly interested (2),

impatient and restless (1), and hostile (0)); “How difficult was this case to get?” (Somewhat

easy (0), somewhat difficult (1), and very difficult (2)); and “Do you expect this respondent

to participate in the next wave?” (Absolutely (3), probably yes (2), maybe (1), and no (0)).

We dichotomized the separate indicators of ability and reluctance, each coded 1 if the

respondent was fully cooperative or able (the respective first categories), and 0 otherwise.

The distribution of these indicators in the short-term analytical sample (Sample 2)

was as follows (in brackets for the long-term analytical Sample 1 for the year 2004):

92.9% (89.9%) fully understood the questions well, 96.4% (94.5%) were friendly and

cooperative, 96.6% (93.3%) were somewhat easy to get, and 84.3% (66.0%) were

expected to absolutely participate in the next wave. The interviewer evaluation indicators

correlated only weakly with each other with an absolute correlation coefficient between

.25 (‘respondent friendly’ and ‘respondent understands questions well’, in the short-term

analytical sample) and .36 (‘respondent easy to get’ and ‘respondent will participate in

next wave‘, in the short-term analytical sample). We therefore included all four indicators

in the models.

3.4. Control Variables

We included the following control variables known to be associated with attrition

(Voorpostel 2010; Voorpostel and Lipps 2011):

. Geographical mobility: ownership of the house (yes/no), degree of intention to move

during the coming year (0–10), nationality (Swiss/from a neighboring country, that

is, Germany, Austria, Liechtenstein, Italy, and France / from another country),

whether the respondent has lived in Switzerland for at least 14 years (yes/no).

. Demographic characteristics: age in categories (14–39, 40–49, 50–59, 60–69,

70þ ), survey language competence (first language, second language, other),

education (less than high school level, equivalent to high school level, more than high

school level), gender, partner status (living with partner, does not live with partner,

no partner), presence of children aged up to seven years in the household (yes/no),

number of household members eligible for an interview.

. Social engagement/inclusion/participation history/income: member of a club

(yes/no), political interest (0–10), trust in people (0–10), number of waves,

equivalized household income.
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Table 1. Descriptive statistics independent variables analytical samples for long-term patterns (2004) and for

wave-to-wave sample (2005–2017). Data: SHP 2004–2017.

2004 2005–2017

Variables Mean Std dev. Mean Std dev.

Independent variables: Interviewer evaluations
Respondent is friendly [0,1] 0.945 0.227 0.964 0.187
Respondent understands questions well [0,1] 0.899 0.302 0.929 0.258
Respondent is difficult to convince [0,1] 0.067 0.249 0.034 0.181
Respondent will repeat next wave [0,1] 0.660 0.474 0.843 0.364

Control variables: geographical mobility
Respondent owns residence [%] 0.464 0.499 0.518 0.500
Intention to move in next 12 months [0 ¼ not

at all, : : : , 10 certainly]
1.337 2.895 1.185 2.677

Nationality: Swiss [%] 0.896 0.306 0.906 0.292
Nationality: from a neighbouring country [%] 0.060 0.238 0.058 0.234
Nationality: from another country [%] 0.044 0.205 0.036 0.187
In Switzerland for more than 14 years [%] 0.948 0.221 0.974 0.159

Control variables: demographic characteristics
Age [14–39 years] [%] 0.292 0.455 0.210 0.408
Age [40–49 years] [%] 0.249 0.433 0.225 0.418
Age [50–59 years] [%] 0.196 0.397 0.217 0.412
Age [60–69 years] [%] 0.140 0.347 0.176 0.380
Age [70þ years] [%] 0.123 0.329 0.172 0.378
Survey language is first language [%] 0.954 0.210 0.971 0.167
Survey language is second language [%] 0.039 0.194 0.026 0.159
Survey language is not first or second

language [%]
0.007 0.085 0.003 0.051

Education level: less than high school
equivalent [%]

0.163 0.369 0.147 0.354

Education level: high school equivalent [%] 0.556 0.497 0.510 0.500
Education level: more than high school [%] 0.282 0.450 0.343 0.475
Gender: Male [%] 0.365 0.481 0.383 0.486
Partner: yes, living together [%] 0.644 0.479 0.651 0.477
Partner: yes, but not living together 0.100 0.301 0.097 0.295
Partner: no [%] 0.256 0.436 0.253 0.435
Children under seven years in household [%] 0.132 0.338 0.102 0.302
Number of interview eligible household

members
2.047 0.967 2.063 0.967

Control variables: social engagement
Member of a club [%] 0.497 0.500 0.409 0.500
Political interest [0 ¼ not at all, : : : , 10 very

interested]
5.690 2.836 5.625 2.794

Trust [0 ¼ can’t be too careful,
10 most people can be trusted]

5.623 2.507 6.193 2.273

Number of waves [1, : : : , 6], [1, : : : , 18] 3.666 2.447 8.040 4.656
Equivalised household income [Sfr.] 117829 95868 131026 112500
Response quality variables
Proportion of don’t knows [%] 0.008 0.013 0.007 0.013
Proportion of refused items [%] 0.002 0.008 0.002 0.007
Survey year [2004], [2004, : : : , 2016] 2004 0 2010.569 3.837

Sample (observations) 4,394 60,298
Sample (households) 4,394 10,185
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. Response quality in current wave: proportion of “don’t know” answers, proportion of

refused answers.

. Survey-related variables: survey year (only in the short-term analysis).

Table 1 presents the descriptive statistics of all variables in the study for both analytical

samples.

3.5. Methods

We analyzed the relationship between interviewer evaluations and survey participation

separately for participation patterns and wave-to-wave participation. For both, we first

assessed the bivariate relationship between interviewer evaluations and participation

outcomes, followed by logistic multinomial models controlling for a number of

covariates. For the bivariate analyses, we compared mean evaluation scores by

participation pattern and by next-wave participation and used Chi-square tests to test

whether participation differed by interviewer’s assessment of the respondent’s ability and

reluctance. The logistic multinomial model predicting participation patterns used

participation in all eligible waves after 2004 as the reference category. For the model

predicting next wave participation, the reference category was participation in the next

wave. We included covariates (see measures) from 2004 to predict the participation

pattern afterwards, and wave-specific measures from 2004–2016 to predict participation

in the next wave. As we had multiple observations for each household, we employed a

logistic multinomial random intercept model in the fourth analysis. Although households

were crossed with interviewers, we did not include interviewers as a level of analysis in

any of the models, because the actual outcome depends on a random interviewer in the

next wave (short-term model) or on several random interviewers in subsequent waves

(long-term model). Although the interviewer-respondent assignment is random, there

may be very small selection effects due to different shifts worked by interviewers. We

tested if interviewer evaluation heterogeneity (e.g., by systematically providing better

evaluations) provided different results by using interviewer-centered evaluations as

alternative predictors. Differences compared with our original evaluation variables were

only marginal.

The equation of the model is presented below (see Haynes et al. 2005, 9–10). Suppose

the outcome variable Yit has J ¼ 3 categories (1 ¼ response ¼ reference category,

2 ¼ non-contact, 3 ¼ refusal), then the probability for household i in wave t to not being

contacted ( j ¼ 2) or to refuse ( j ¼ 3) rather than to respond ( j ¼ 1) given a set of control

variables Xit can be estimated as:

pitj ¼ Pr ðYit ¼ jjXitÞ ¼
eXitbj

XJ

k¼1
eXitbk

; j ¼ 2; 3

corresponding to the following multinomial logit model:

log
� pitj

pit1

�
¼ X

0

itbj; j ¼ 2; 3

If we allow for household-specific random effects aij and let Zij denote a vector of

Lipps and Voorpostel: Interviewer Evaluations 125

Unauthentifiziert   | Heruntergeladen  23.03.20 10:39   UTC



coefficients for the random effects, then the model extends to:

log
� pitj

pit1

�
¼ X

0

itbj þ Z
0

ijaij; j ¼ 2; 3

The random effects aij capture non-observable household effects that are assumed to

come from a multivariate normal distribution with mean zero and variance-covariance

matrix S. We first estimated the model for participation patterns before turning to next

wave participation status. The next section presents the results of our analyses.

4. Results

4.1. Interviewer Evaluations and Participation Patterns

Our first research question concerned the extent to which interviewer evaluations in 2004

were able to predict five different subsequent participation patterns in the panel (see

definition in Subsection 3.2). We first note that the participation patterns are different for

all four (dichotomized) evaluation criteria, with significant (1% level) chi2-values ranging

between 61.0 for the ‘easy to convince’ criterion, and between 16.7 and 19.3 for the other

three criteria (cross-tabulations not shown). Table 2 presents for each evaluation criterion

the mean score by participation pattern.

The majority of the participants, regardless of participation pattern, were evaluated as

able and willing to complete the survey task. Respondents who participated in every wave

in which they were eligible, but also respondents who could not be contacted at least once

but re-entered later, had the most positive evaluations. Respondents who dropped out

immediately received the lowest evaluation for “respondent will participate next wave”,

but not for the other items. Respondents who refused but re-entered were least likely to be

evaluated as friendly and easily convinced. This showed that a less positive evaluation was

predictive of refusal at a later wave, but these respondents were not necessarily lost to the

study. Overall, the interviewers gave ratings that were more positive to respondents with

full participation, or non-contact and re-entry, and more negative ratings to respondents

who refused in subsequent waves.

Table 2. Mean scores (in 2004) by participation pattern (2004–2017). Data: SHP 2004–2017.

Interviewer
evaluations:

Full
participation

Refusal
and

re-entry
Non-contact
and re-entry

Participation
and dropout

Immediate
dropout Total

Respondent is
friendly

0.956 0.910 0.965 0.939 0.921 0.945

Respondent
understands
questions

0.912 0.905 0.939 0.871 0.884 0.899

Respondent is easy
to convince

0.957 0.875 0.948 0.914 0.878 0.933

Respondent will
repeat survey

0.680 0.653 0.748 0.625 0.619 0.660

N 2369 400 115 1321 189 4394
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In the next step, we analyzed whether interviewer evaluations were predictive of

participation patterns after controlling for common covariates. We modeled the same long-

term patterns using a multinomial logistic model controlling for all covariates. The first part

of Table 3 presents the beta coefficients of the evaluation covariates of the resulting model

(see Table 3a). We listed the full model in the Appendix, Section 6 (Table A3).

Since our main interests are the ceteris paribus differences in participation pattern by

evaluation, we calculated average marginal effects of a more positive evaluation for the

different patterns (see Table 3b). Average marginal effects show the ceteris paribus

increase of the probability of a participation pattern for a positive evaluation compared

with a less positive evaluation. For example, the average marginal effect of .142 for the

‘easy to convince’ item indicates that the likelihood of full participation was 14.2

percentage points higher for the easier to convince than for the difficult to convince, of

refusal and re-entry 9.4 percentage points lower, of non-contact and re-entry (an

insignificant) 0.6 percentage points lower, and of immediate dropout (an insignificant)

2 percentage points lower, holding all other variables constant. Irrespective of the

‘friendliness’ of the respondent or his or her evaluation of the likelihood to repeat the

next wave, the patterns do not change. For the ‘understands questions’ item the predicted

probability to refuse and re-enter was 3 percentage points higher if the interviewer gave

a positive account of the respondent’s understanding, relative to a bad understanding.

To assess the part of the marginal effects that is due to confounding predictors, we

compared the marginal effects to those calculated with no covariates except the

evaluations (see Table 3c). As it turns out, we found somewhat larger effects of the ‘easy

to convince’ item and a (5%) significant effect of the ‘understands questions’ item on

participation and dropout. However, overall, the interpretation remains largely the same.

The results in this section show that the interviewer’s assessment of respondents’

understanding and, in particular, reluctance, added to the prediction of participation

patterns in subsequent waves, even after controlling for other common predictors of

survey participation.

4.2. Interviewer Evaluations and Short-Term Participation Status

In the last part of our analysis, we investigated the association between the interviewer’s

evaluation of the respondent in each wave (i.e., across all years and not only in 2004) and

the next wave participation status. Thus, we focused on short-term participation only, and

examined the extent to which interviewer evaluations of separate attributes contributed to

predicting nonresponse. Similar to the participation patterns, we first checked bivariate

distributions of the interviewer evaluations and the three response outcomes participation,

refusal, and non-contact in the next wave (cross-tabulations not shown). Again, all chi2-

values were significant (1% level) for all four evaluation criteria, ranging between 463.8

for the ‘easy to convince’ criterion, 360.9 for the ‘repeat next wave’ criterion, 140.0 for the

‘friendliness’ criterion and 75.7 for the ‘understands’ criterion. Table 4 presents the mean

score by participation outcome for each evaluation criterion.

Again, the majority of the participants were evaluated as able and willing to complete

the survey task. Next-wave participants had the most positive evaluations, followed by

not contacted respondents. Refusing respondents were least likely to receive positive
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evaluations on all items. This showed that a less positive evaluation was associated with

next wave non-contact and especially refusal.

Next, we used multivariate logistic random intercept models to control for commonly

used covariates and to accommodate the clustering of the data on the household

level. The first part of Table 5 presents the beta coefficients of the evaluation covariates

Table 4. Mean evaluation scores (2004–2016) by participation (2005–2017). Data: SHP 2004–2017.

Interviewer evaluations: Participation Refusal Noncontact Total

Respondent is friendly 0.966 0.924 0.963 0.964
Respondent understands questions 0.931 0.889 0.928 0.929
Respondent is easy to convince 0.970 0.899 0.940 0.966
Respondent will repeat survey 0.850 0.723 0.802 0.843
N 56149 2990 1159 60298

Table 5. Multinomial logistic random intercept model including all control variables (a, b), without control

variables (c), modeling wave-to-wave participation (participation in next wave (base category), refusal,

noncontact).

a) Beta coefficients: full model

Interviewer evaluations: Refusal Noncontact

Respondent is friendly 20.18 0.36
Respondent understands questions 0.22* 0.09
Respondent is easy to convince 20.75** 20.77**
Respondent will repeat survey 20.37** 20.21*
Constant 2 .069** 21.27**
Variance (observation level) 1.42**
Variance (household level) 2.20**

b) Average marginal effects (dy/dx w.r.t. interviewer evaluations): full model

Interviewer evaluations: Participation Refusal Noncontact

Respondent is friendly .003 2 .009 .006*
Respondent understands questions 2 .011* .009** .001
Respondent is easy to convince .060** 2 .042** 2 .017**
Respondent will repeat survey .022** 2 .018** 2 .004

c) Average marginal effects (dy/dx w.r.t. interviewer evaluations): only evaluations (and
survey year)

Interviewer evaluations: Participation Refusal Noncontact

Respondent is friendly .005 2 .010 .006
Respondent understands questions 2 .004 .000 .004
Respondent is easy to convince .069** 2 .052** 2 .017**
Respondent will repeat survey .024** 2 .021** 2 .003

Data: SHP 2004–2017, N ¼ 10,185 households, 60,298 observations.

p , 0.01 (**), p , 0.05 (*).

Lipps and Voorpostel: Interviewer Evaluations 129

Unauthentifiziert   | Heruntergeladen  23.03.20 10:39   UTC



of the results (see Table 5a). Again, we included the complete model in the Appendix

(Table A5).

When looking at the coefficients, all evaluation items, except for whether or not

the respondent was friendly, were associated with next-wave participation, refusal or

non-contact.

Also for the short-term model, we calculated average marginal effects of participating

in the next wave based on the full model for changes of the four interviewer evaluations

(see Table 5b). The average marginal effects showed a significant effect for friendliness: a

higher respondent friendliness slightly (at a 5% significance level) increased the predicted

probability for next-wave non-contact. A better question understanding meant a 1.1

percentage point lower participation on the 5% significance level, and a 0.9 percentage

point higher refusal, net of other covariates in the model. With regard to difficulty to

convince the respondent, the probabilities varied the most: Respondents who were easy to

convince exhibited a 6.0 percentage points higher participation rate, a 4.2 percentage

points lower refusal rate, and a 1.7 percentage points lower non-contact rate than more

reluctant respondents. Again, to assess the part of these marginal effects that is due to

confounding predictors, we compared them to average marginal effects calculated with no

covariates except the evaluations and the survey years (see Table 5c). In particular, we

investigated the counterintuitive effect in which respondents who understood the questions

well were, surprisingly, slightly more likely to refuse in the next wave when all variables

were included in the model. Looking at the average marginal effects with no covariates

except the evaluations and the survey year, the coefficient of question understanding lost

significance. It became significantly positive on refusal only after adding the other

covariates. For the other evaluation criteria, we did not observe such a change in the size or

direction of the coefficients when covariates were dropped from the model.

5. Conclusion

We set out to assess the extent to which interviewers’ evaluations are predictive of

response patterns and dropout in longitudinal telephone surveys. Prior studies have shown

that interviewer assessments are associated with continued participation in the context of

face-to-face interviews (Plewis et al. 2017; Kalton et al. 1990; Lepkowski and Couper

2002). Our study adds to this knowledge by extending it to telephone interviews, a setting

in which the interviewer has less information on which to judge the respondent. We can

draw the following conclusions.

First, our study showed that even in the absence of face-to-face contact, interviewers’

assessments of respondents were predictive of subsequent response patterns, which is in

line with the findings from Kirchner et al. (2017). We found that when the interviewer

evaluated the respondent as capable with minimal levels of reluctance, respondents were

thereafter more likely to become loyal participants, with possible non-contacts in between.

In particular, when the interviewer judged the respondent as easy to convince, the

respondent was more likely to participate in subsequent waves, rather than to refuse or

drop out altogether.

Second, the interviewers’ evaluations helped to predict short-term participation,

distinguishing participation, refusal, and non-contact. As expected, interviewers were
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better able to predict refusal than non-contact. If the respondent was easy to convince and

the interviewer judged it likely he or she would return in the next wave, respondents were

more likely to participate and less likely to refuse.

An important finding was that the evaluation of the interviewer added to the explanation

of next wave or later nonresponse, even if a large set of commonly used predictors of

survey participation were taken into account. The ability and reluctance of the respondent

as assessed by the interviewer was not fully captured by characteristics such as educational

attainment, political interest or civic engagement, nor by past or current survey behavior.

Our study suggests, in line with Peytchev and Olsen (2007), that the use of information

provided by interviewers may help to improve longitudinal weights designed to reduce

bias from selective attrition. However, for interviewer evaluations to make good

adjustment weights, they should not only be able to predict attrition, but also potential

research variables (Little and Vartivarian 2005). Future studies on weighting should

explore this further.

Our study is also relevant for responsive design development. Interviewers’ assessments

may be one of the criteria on which to base decisions on how to allocate fieldwork effort to

minimize attrition. For example, respondents who are evaluated as difficult to convince

in a given wave can, in the next wave, be offered a higher incentive, a specially tailored

newsletter, or be assigned an interviewer who is experienced in refusal conversion. Also,

interviewers could be incentivized with additional bonuses for difficult cases. The results

of our study can be used to identify respondents for whom special treatment would be most

beneficial to improve continued participation in the panel study. Since non-contacts are

difficult to anticipate, other measures such as a better timing of the call should be

envisaged for this group (Lipps 2012a, 2012b).

There were some limitations to this study that can be addressed in future research. For

example, we had no information on whether households used a landline or a mobile

telephone to answer the survey request. Since there are differences between landline and

mobile telephone surveys with regard to the mechanism generating nonresponse, as well

as conducting the interview (Kennedy 2010), future studies should distinguish mobile and

landline devices, where possible. There are probably additional measurement errors due to

inter-interviewer variability, since interviewer evaluations vary in the extent to which they

accurately measure objective characteristics such as gender, ethnicity, and dwelling (e.g.,

Casas-Cordero et al. 2013; Sinibaldi et al. 2013). In addition, the four evaluation items

were signficantly skewed towards positive evaluations. We encourage survey

methodologists to design and test more elaborated items. To improve the prediction of

subsequent response behavior, these items should be based primarily on the evaluated

difficulty to convince the respondent to participate, and the evaluated likelihood that the

respondent will repeat the survey, and less on the friendliness or degree of question

understanding. As our analyses show, these latter items measure respondent characteristics

that may not directly predict subsequent participation. However, for the moment, we

showed that at least two of the four interviewer evaluations that were considered provide

useful additional information at very low cost. A well-designed battery of interviewer

evaluations should become an integral part of at least the first wave of every large-scale

panel survey. Designing and conducting appropriate experiments remains to be done in

future research.
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6. Appendix

Table A3. Multinomial logistic model including all control variables modeling long-term response patterns

(base category: full participation).

Interviewer evaluations
Refusal, and

re-entry
Noncontact,
and re-entry

Participation,
and dropout

Immediate
dropout

Respondent is friendly 2 0.65* 2 0.01 2 0.18 2 0.45
Respondent understands

questions
0.46* 0.18 0.04 0.35

Respondent is difficult
to convince

2 1.09** 2 0.55 2 0.40* 2 0.78**

Respondent will repeat survey 0.20 0.39 2 0.04 0.06
Owner of house 0.14 2 0.07 0.05 2 0.19
Degree of willingness

to move [0..10]
2 0.02 2 0.02 2 0.01 0.03

Swiss (ref: from
another country)

0.23 2 0.03 2 0.50* 2 0.30

From a neighbouring country
(ref: from another country)

0.21 0.25 2 0.64** 2 0.46

Lives in Switzerland for
14 years or more

0.30 0.35 0.30* 2 0.41

Age: 40–49 (ref: 14–39) 0.22 2 0.58* 2 0.12 2 0.59**
Age: 50–59 (ref: 14–39) 0.25 2 0.92** 2 0.30** 2 0.41
Age: 60–69 (ref: 14–39) 0.17 2 1.67** 2 0.25 2 0.41
Age: 70þ (ref: 14–39) 0.26 2 1.65** 2 0.01 2 0.31
Survey language is second

language (ref: first)
0.17 0.31 2 0.05 2 0.53

Survey language is neither
first nor second

2 0.34 2 13.62** 0.34 0.55

Education equivalent to
high school (ref: low)

2 0.08 2 0.08 2 0.16 2 0.16

Education more than
high school (ref: low)

2 0.48** 2 0.05 2 0.26* 2 0.36

Male (ref: female) 0.13 0.11 0.23** 0.22
Lives with partner

(ref: no partner)
2 0.13 0.34 0.05 0.43

Partner but not living
together (ref: no partner)

2 0.32* 0.37 0.18* 0.15

Child under 7 in the
household (ref: no child)

0.08 2 0.82 2 0.29* 2 0.31

Number interview eligible
household members

0.09 0.06 0.13** 0.12

Member of a club 2 0.14 2 0.10 2 0.17* 2 0.01
Political interest [0..10] 2 0.06** 2 0.11** 2 0.06** 2 0.12**
Trust in people [0..10] 2 0.02 0.03 2 0.04** 2 0.03
Number of waves in the panel 2 0.17** 2 0.07 2 0.15** 2 0.26**
Equivalised household income 2 0.00 2 0.00 2 0.00* 0.00
Proportion of refused answers 2 2.66 2 6.86 6.66* 14.78**
Proportion of don’t know

answers
10.06 4.79 3.50 6.25

Constant 2 0.20 2 1.94 1.28** 0.53

Data: SHP 2004–2017, N ¼ 4,394 households in 2004, r2 ¼ .055.

p , 0.01 (**), p , 0.05 (*).
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Table A5. Multinomial logistic random intercept model including all control variables modeling wave-to-wave

participation (participation in next wave (base category), refusal, noncontact).

Interviewer evaluations Refusal Noncontact

Respondent is friendly 2 0.18 0.36
Respondent understands questions 0.22* 0.09
Respondent is difficult to convince 2 0.75** 2 0.77**
Respondent will repeat survey 2 0.37** 2 0.21*
Owner of house 0.11* 2 0.27**
Degree of willingness to move [0..10] 0.02* 0.04**
Swiss (ref: from another country) 2 0.07 2 0.45**
From a neighbouring country (ref: from another country) 2 0.23 2 0.12
Lives in Switzerland for 14 years or more 2 0.13 2 0.28
Age: 40–49 (ref: 14–39) 0.15* 2 0.33**
Age: 50–59 (ref: 14–39) 0.30** 2 0.81**
Age: 60–69 (ref: 14–39) 0.10 2 1.56**
Age: 70þ (ref: 14–39) 0.54** 2 2.34**
Survey language is second language (ref: first) 0.13 2 0.22
Survey language is neither first nor second 0.73* 0.80
Education equivalent to high school (ref: low) 2 0.15* 2 0.18
Education more than high school (ref: low) 2 0.40** 2 0.40**
Male (ref: female) 0.17** 0.39**
Lives with partner (ref: no partner) 2 0.22* 0.40**
Partner but not living together (ref: no partner) 2 0.28** 0.42**
Child under seven in the household (ref: no child) 2 0.23** 2 0.25*
Number interview eligible household members 0.06 2 0.13**
Member of a club 2 0.19** 2 0.31**
Political interest [0..10] 2 0.05** 2 0.04**
Trust in people [0..10] 2 0.03** 2 0.06**
Number of waves in the panel 2 0.09** 2 0.06**
Equivalised household income 2 0.00 0.00
Proportion of refused answers 7.31** 2.80
Proportion of don’t know answers 8.83** 2.68
Survey year 2004 2 0.24* 2 0.79**
Survey year 2005 2 0.87** 2 0.65**
Survey year 2006 2 0.37** 2 0.53**
Survey year 2007 2 0.50** 2 0.85**
Survey year 2008 2 0.88** 2 0.67**
Survey year 2009 2 1.58** 2 0.60**
Survey year 2010 2 1.23** 2 0.47**
Survey year 2011 2 1.29** 2 0.36*
Survey year 2012 2 0.70** 2 0.24
Survey year 2013 2 0.37** 0.01
Survey year 2014 2 0.38** 2 0.25
Survey year 2015 2 0.18* 0.31*
Constant 2 .069** 2 1.27**
Variance (observation level) 1.42**
Variance (household level) 2.20**

Data: SHP 2004–2017, N ¼ 10,185 households, 60,298 observations. p , 0.01 (**), p , 0.05 (*).
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Notes on Use of the Composite Estimator:
an Improvement of the Ratio Estimator

Kung-Jong Lui1

This article discusses use of the composite estimator with the optimal weight to reduce the
variance (or the mean-squared-error, MSE) of the ratio estimator. To study the practical
usefulness of the proposed composite estimator, a Monte Carlo simulation is performed
comparing the bias and MSE of composite estimators (with estimated optimal weight and
with known optimal weight) with those of the simple expansion and the ratio estimators. Two
examples, one regarding the estimation of dead fir trees via an aerial photo and the other
regarding the estimation of the average sugarcane acres per county, are included to illustrate
the use of the composite estimator developed here.

Key words: Composite estimator; ratio estimator; simple expansion estimator; odds ratio;
phi correlation; regression estimator.

1. Introduction

The ratio estimator, which incorporates the information on the auxiliary measurements

into estimation, is one of the most commonly-used estimators in surveys. For example, the

Current Population Survey employed the ratio estimator accounting for the number of

African Americans to estimate the number of unemployed African Americans (Scheaffer

et al. 2012). When the correlation between the auxiliary measurement and the studied

measurement is high, the ratio estimator can outperform the simple expansion estimator

with respect to precision (or variance) (Cochran 1977, 157–158). However, if this

correlation is low, the ratio estimator can be less precise than the simple expansion

estimator (Cochran 1977). The ratio estimator is biased, but its bias decreases to 0 as the

sample size increases to 1 (Cochran 1977). There are publications on adjusting or

reducing the bias of the ratio estimator (Pascual 1961; Sahoo 1987; Cochran 1977).

Because the bias of the ratio estimator is of order 1/n, we commonly focus our attention

on variance when comparing the ratio estimator with the simple expansion estimator

(Cochran 1977; Scheaffer et al. 2012). Some discussions on use of the composite

estimation technique to improve the precision of existing estimators in small area

estimation (Lui and Cumberland 1991; Schaible 1978, Royall 1970) or to extend the ratio

estimator to multivariate ratio-typo estimators have been presented elsewhere (Sukhatme

et al. 1984, 217–223; Cochran 1977, 184–185). A recent discussion on use of the
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composite estimator with weights proportional to the reciprocal of the variance of its

component estimator for two-stage cluster sampling has also been presented by Lee et al.

(2016). However, the weight suggested by Lee et al. (2016) is optimal only when its two

component estimators are independent.

This article suggests that the idea of the composite estimator to reduce the bias and

variance (or the mean-squared-error (MSE) of the ratio estimator may be applied with no

additional efforts of collecting extra data. The optimal weight minimizing variance (or MSE)

for the composite estimator under the simple random sampling (SRS) is derived. A Monte

Carlo simulation comparing the performance of the simple expansion estimator, the ratio

estimator, the composite estimator with an estimated optimal weight and the composite

estimator with known optimal weight is carried out in a variety of situations. A brief

discussion is given on deriving the optimal weight minimizing variance (or MSE) when

measurements are dichotomous. Two examples, one regarding the estimation of dead fir

trees via an aerial photo and the other regarding the estimation of the average sugarcane acres

per county, are included to illustrate the use of the composite estimator developed here.

2. Notation and Methods

Suppose that a population consists of {ðXi; YiÞjXi . 0; Yi . 0; i ¼ 1; 2; 3; :::;N}, where

Xi and Yi are measurements on subject i and N is the population size. For clarity, we

summarize the definitions of notation in the following:

Let X ¼
PN

i¼1 Xi and Y ¼
PN

i¼1 Yi denote the population totals of measurements Xi and Yi ;

let �X ¼
PN

i¼1 Xi=N and �Y ¼
PN

i¼1 Yi=N denote the population means of measurements Xi

and Yi;

let R ¼ Y=X ¼ �Y= �X denote the population total or mean ratio;

let S2
x ¼

PN
i¼1 ðXi 2 �XÞ2=ðN 2 1Þ and S2

y ¼
PN

i¼1 ðYi 2 �YÞ2=ðN 2 1Þ denote the population

variances;

let Sxy ¼
PN

i¼1 ðXi 2 �XÞðYi 2 �YÞ=ðN 2 1Þ denote the population covariance between

Xi and Yi;

let r ¼ Sxy=ðSxSyÞ denote the simple correlation coefficient between Xi and Yi, as well as

let CVx ¼ Sx= �X and CVy ¼ Sy= �Y denote the coefficients of variation for Xi and Yi.

Note that since we will consider using the ratio estimator only when Xi and Yi are

positively correlated, we assume r . 0 in the following discussion.

Suppose that we employ the SRS scheme and obtain n subjects. Let notation c denote

the collection of labels in the sample. Furthermore,

let �xs ¼
P

i[c Xi=n and �ys ¼
P

i[c Yi=n denote the sample means of Xi and Yi;

let s2
x ¼

P
i[c ðXi 2 �xsÞ

2=ðn 2 1Þ and s2
y ¼

P
i[c ðYi 2 �ysÞ

2=ðn 2 1Þ denote the sample

variances;

let R̂ ¼ �ys=�xs denote the ratio of the two sample means;

let sxy ¼
P

i[c ðXi 2 �xsÞðYi 2 �ysÞ=ðn 2 1Þ denote the sample covariance between Xi and Yi;

let r̂ ¼ sxy=ðsxsyÞ denote the estimated correlation coefficient between Xi and Yi ; as well as

let cvx ¼ sx=�xs and cvy ¼ sy=�ys denote the sample coefficients of variation for Xi and Yi.
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Here, we focus our attention on estimation of the population total Y . Note that the

simplest unbiased estimator for Y under the SRS is the simple expansion estimator given

by (Cochran 1977)

Ŷ ¼ N �ys: ð1Þ

The variance for Ŷ is (Cochran 1977, 23)

VarðŶÞ ¼ N 2ð1 2 f ÞS2
y=n

¼ N 2ð1 2 f Þ �Y2CV2
y=n;

ð2Þ

where f ¼ n=N is the sampling fraction. To estimate the population total Y , we can also

employ the most commonly-used ratio estimator defined by (Cochran 1977)

ŶR ¼ R̂X; ð3Þ

where R̂ ¼ �ys=�xs. The variance for ŶR is approximately given by (Cochran 1977, 154; see

also Appendix 1, Subsection 7.1.)

VarðŶRÞ ¼ N 2ð1 2 f Þ½S2
y þ R2S2

x 2 2RSXY �=n;

¼ N 2ð1 2 f Þ �Y2½CV2
y þ CV2

x 2 2rCVxCVy�=n; ð4Þ

where R ¼ �Y= �X. Furthermore, we can show that the covariance between Ŷ and ŶR can be

approximated by (Appendix 1)

CovðŶ; ŶRÞ ¼ N 2ð1 2 f Þ �Y2½CV2
y 2 rCVxCVy�=n: ð5Þ

Consider use of the composite estimator wŶþ ð1 2 wÞŶR (where 0 # w # 1) to

estimate the population total Y . Note that the simple expansion estimator Ŷ (1), the ratio

estimator ŶR (3) and the composite estimator wŶþ ð1 2 wÞŶR can all be expressed as
P

i[c aiyi, a linear combination of the sampled units. The weights ai for ŶR are calibrated

towards the population total X (i.e.,
P

i[c aixi ¼ X), while the weights ai for Ŷ and

wŶþ ð1 2 wÞŶR are not. Note also that since the weight w in wŶþ ð1 2 wÞŶR is between

0 and 1, the absolute magnitude of the bias for the composite estimator

jEðwŶþ ð1 2 wÞŶR 2 Y Þj ¼ jð1 2 wÞEðŶR 2 Y Þj, is always smaller than jEðŶR 2 Y Þj,

the absolute magnitude of the bias for the ratio estimator. Note that the ratio estimator is an

asymptotically unbiased estimator for Y (Cochran 1977, 161) and so is the composite

estimator. The optimal weight w minimizing the variance VarðwŶþ ð1 2 wÞŶRÞ can be

shown to equal

w* ¼ ðVarðŶRÞ2 CovðŶ; ŶRÞÞ=ðVarðŶRÞ þ VarðŶÞ2 2CovðŶ; ŶRÞÞ;

¼ 1 2 rCVy=CVx: ð6Þ

Define w* to be 0 if 1 2 rCVy=CVx , 0. Because EðŶR 2 YÞ2 < VarðŶRÞ and

CovðŶ; ŶRÞ ¼ EðŶ 2 YÞðŶR 2 YÞ, the optimal weight w* (6) minimizing the variance of

the composite estimator is approximately equivalent to minimizing its MSE. We denote

the composite estimator w*Ŷþ ð1 2 w*ÞŶR with the optimal weight w* by ŶCðw*Þ. When

0 , w* , 1, the variance for ŶCðw*Þ is obtained by simply substituting w* for w in
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VarðŶCðwÞÞ and is given by (Cochran 1977, 185)

VarðŶCðw
*ÞÞ¼ ðVarðŶÞVarðŶRÞ2 ðCovðŶ; ŶRÞÞ

2Þ=ðVarðŶÞþVarðŶRÞ22CovðŶ;ŶRÞÞ

¼N 2ð12 f Þ �Y2CV2
yð12r2Þ=n: ð7Þ

On the basis of (2) and (7), we can show that the proportional reduction of variance

(PRV) by use of ŶCðw*Þ instead of Ŷ is given by

PRVS ¼ ½VarðŶÞ2 VarðŶCðw
*ÞÞ�=VarðŶÞ ¼ r2: ð8Þ

Furthermore, the PRV by use of ŶCðw*Þ instead of ŶR is given by

PRVR ¼ ½VarðŶRÞ2 VarðŶCðw*ÞÞ�=VarðŶRÞ

¼ 1=½1þ ð1 2 r2Þ=ðCVx=CVy 2 rÞ2�; ð9Þ

which depends only on the ratio CVx=CVy and r.

On the basis of VarðŶÞ and VarðŶRÞ, we can see that VarðŶRÞ , VarðŶÞ if and only if

r . CVx=ð2CVyÞ. As compared with the definitions of (8) and (9), we can further show

that PRVR , PRVs if and only if VarðŶRÞ , VarðŶÞ and hence r . CVx=ð2CVyÞ. In fact,

we can also prove this result by directly comparing Equation (8) with Equation (9). When

r ¼ CVx=ð2CVyÞ, the two variances VarðŶRÞ ¼ VarðŶÞ. In this case, the optimal weight

w* becomes 0.5 and both PRVS and PRVR reduce to CV2
x=ð4CV2

yÞ. When r ¼

CVx=ð2CVyÞ and CVx ¼ 2CVy, PRVS and PRVR will equal 1 in this extreme case. On the

other hand, if r ¼ CVx=CVy, PRVR will reduce to 0. This is because the composite

estimator ŶCðw*Þ with w* ¼ 0 will be the same as the ratio estimator ŶR. This accounts for

the reason why PRVR is 0.

To estimate VarðŶÞ, VarðŶRÞ and CovðŶ; ŶRÞ, we can substitute r̂, cvx, cvy and �ys for r,

CVx, CVy and �Y, respectively. Furthermore, to estimate the optimal weight w*, we can

similarly substitute estimators r̂, cvx and cvy for r, CVx and CVy, and obtain ŵ*.

Note that if we want to employ the composite estimator w �Ŷþ ð1 2 wÞ �ŶR (where �Ŷ¼ �ys

and �ŶR ¼ R̂ �X) to estimate the population mean �Y, the optimal weight w* for the composite

estimator minimizing variance Varðw �Ŷþ ð1 2 wÞ �ŶRÞ will remain the same as given in (6).

We denote the composite estimator w* �Ŷþ ð1 2 w*Þ �ŶR with w* by �ŶCðw*Þ. The variances

Varð �Ŷ Þ, Varð �ŶRÞ and Varð �ŶCðw*ÞÞ are simply equal to VarðŶ Þ=N 2, VarðŶRÞ=N 2 and

VarðŶCðw*ÞÞ=N 2, respectively.

3. Monte Carlo Simulations

Because the true optimal weight w* ¼ 1 2 rCVy=CVx depends on unknown parameters,

we need to employ the estimator ŵ* ¼ 1 2 r̂cvy=cvx calculated from data in use of the

composite estimator in practice. This may inflate variance (or MSE) of the composite

estimator ŶCðw*Þ with known optimal weight. We employ Monte Carlo simulation to

compare the performance of Ŷ, ŶR, ŶCðŵ*Þ and ŶCðw*Þ with respect to the bias and MSE.

For specified values of S2
x , S2

y and rSxSy, we first generate N ¼ 10000 pairs of units ðXi; YiÞ:

Xi ¼ SxZ1i þ �X and Yi ¼ rSyZ1i þ Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
Z2i þ �Y, where Z1i and Z2i are all mutually

independent and follow the standard normal distribution with mean 0 and variance 1.
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We arbitrarily choose �X ¼ �Y ¼ 10 in the simulations. To assure that the occurrence of

obtaining a simulated sample for which Xi , 0 or Yi , 0 is rare, we focus our attention on

CVx and CVy # 1/2. We consider the situations in which the coefficients of variation

CVx ¼ 0.33, 0.5 and CVy ¼ 0.25, 0.33 the correlation between Xi and Yi, r ¼ 0.60, 0.80;

and the sample size n ¼ 10, 25, 50. These cover the situations in which the optimal weight

w* ranges from 0.20 to 0.70. For each configuration determined by a combination of the

above parameters, we generate a population of N ¼ 10000 pairs of units ðXi; YiÞ via the

standard normal random number generator in SAS (2009) according to the procedure as

described in the above. We then take 10,000 simple random samples, each being of size n,

from the population in calculation of the bias and MSE for Ŷ, ŶR, ŶCðŵ*Þ and ŶCðw*Þ. We

calculate the simulated bias (or MSE) for an estimator eðYÞ of Y as the average of

ðeðYÞ2 YÞ (or the average of ðeðYÞ2 YÞ2 ) over 10,000 simulated samples of size n. If we

obtained ŵ* . 1 in a simulated sample, we would set ŵ* ¼ 1. Similarly, if we obtained

ŵ* , 0, we would set ŵ* ¼ 0. To help readers easily see the relative performance of

different estimators, we present the simulated MSE for ŶR, ŶCðŵ*Þ and ŶCðw*Þ relative to

the MSE of the simple expansion estimator Ŷ. Note that because the bias for Ŷ is

theoretically zero, the simulated bias of an estimator eðYÞ relative to the simulated bias of

Ŷ can be potentially misleading. Thus, we present the bias itself for an estimator eðYÞ. To

help readers easily see where the bias of an estimator is non-negligible, we indicate the

entry by a superscript “†” whenever its value is larger than 1,000 (or 1% of the expected

population total 100,000 in simulations).

To study the usefulness of PRVS (8) and PRVR (9) in practice, we compare the

underlying values for these parameters with those obtained by use of ŶCðŵ*Þ in the same set

of configurations considered previously. We calculate the simulated PRVS and PRVR as

SPRVS ¼ ½SMSEðŶÞ2 {SMSEðŶCðŵ
*ÞÞ2 ðSBIASðŶCðŵ

*ÞÞÞ2}�=SMSEðŶÞ; ð10Þ

and

SPRVR ¼ ½{SMSEðŶRÞ2ðSBIASðŶRÞÞ
2}2{SMSEðŶCðŵ

*ÞÞ2ðSBIASðŶCðŵ
*ÞÞÞ2}�

=½SMSEðŶRÞ2ðSBIASðŶRÞÞ
2�; ð11Þ

where SMSEðŶÞ, SMSEðŶRÞ and SMSEðŶCðŵ
*ÞÞ are the simulated MSEs for Ŷ, ŶR and

ŶCðŵ
*Þ, as well as SBIASðŶRÞ and SBIASðŶCðŵ

*ÞÞ are the simulated biases for ŶR and

ŶCðŵ
*Þ, respectively.

4. Results

Table 1 summarizes the simulated bias and the simulated MSE relative to the MSE of Ŷ for

estimators Ŷ ŶR, ŶCðŵ*Þ and ŶCðw*Þ in situations in which the coefficients of variation

CVx ¼ 0.33, 0.5 and CVy ¼ 0.25, 0.33 the correlation between Xi and Yi, r ¼ 0.60, 0.80

and the sample size n ¼ 10, 25, 50. As what we expect, the bias of the ratio estimator can

be non-negligible, especially when the sample size n is not large ( ¼ 10). The biases for

the other estimators are generally smaller than that of the ratio estimator (Table 1). When

we examine the relative simulated MSE, the composite estimator ŶCðw*Þ with known

optimal weight has the smallest MSE (in boldface). Table 1 also suggests that the

composite estimator ŶCðŵ*Þ can consistently outperform the ratio estimator ŶR with
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Table 1. The simulated bias and the simulated MSE (in parenthesis) relative to the MSE of the simple expansion

estimator Ŷ, for the ratio estimator ŶR, the composite estimator ŶCðŵ
*
Þ with the estimated optimal weight and

the composite estimator ŶCðw
*
Þ with the known optimal weight in situations in which the coefficient of variation

CVx ¼ 1/3, 1/2; CVy ¼ 1/4, 1/3; the correlation between Xi and Yi, r ¼ 0.60, 0.80; and the sample size n ¼ 10,

25, 50. The entry with the bias larger than 1% of the expected population total is indicated by a superscript “†”

and the entry with the smallest relative simulated MSE is printed in boldface. Each entry is calculated on the basis

of 10,000 repeated samples.

CVx CVy
r n Ŷ ŶR ŶCðŵ*Þ ŶCðw*Þ

0.33 0.25 0.60 10 55 770 66 372
(1.000) (1.289) (0.731) (0.662)

25 266 279 223 87
(1.000) (1.202) (0.667) (0.637)

50 234 149 211 47
(1.000) (1.221) (0.661) (0.651)

0.80 10 1 468 32 281
(1.000) (0.685) (0.403) (0.363)

25 257 150 232 67
(1.000) (0.640) (0.354) (0.342)

50 264 105 215 37
(1.000) (0.647) (0.358) (0.353)

0.33 0.60 10 67 491 23 321
(1.000) (0.836) (0.707) (0.653)

25 23 173 15 113
(1.000) (0.804) (0.661) (0.640)

50 242 66 241 23
(1.000) (0.784) (0.640) (0.631)

0.80 10 2107 115 243 71
(1.000) (0.404) (0.391) (0.360)

25 84 108 47 103
(1.000) (0.402) (0.371) (0.361)

50 59 24 1 31
(1.000) (0.393) (0.359) (0.352)

0.50 0.25 0.60 10 87 2222† 165 728
(1.000) (3.172) (0.743) (0.696)

25 45 655 25 228
(1.000) (2.826) (0.686) (0.667)

50 70 364 42 158
(1.000) (2.647) (0.660) (0.650)

0.80 10 2155 1826† 253 637
(1.000) (2.409) (0.405) (0.400)

25 220 552 237 208
(1.000) (1.982) (0.379) (0.374)

50 249 412 18 135
(1.000) (1.875) (0.365) (0.363)

0.33 0.60 10 16 1613† 223 671
(1.000) (1.675) (0.714) (0.655)

25 49 597 24 274
(1.000) (1.474) (0.654) (0.638)

50 14 377 33 163
(1.000) (1.411) (0.626) (0.622)

0.80 10 151 1241† 22 730
(1.000) (1.029) (0.405) (0.385)

25 36 461 213 262
(1.000) (0.901) (0.372) (0.366)

50 226 214 233 101
(1.000) (0.902) (0.362) (0.358)
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respect to the MSE, although one needs to estimate w* from the sample data (Table 1).

Comparing the relative MSE of ŶCðŵ*Þ with that of ŶCðw*Þ reveals that the percentage of

inflation in the MSE because of estimation for w* is generally small for n $ 25. For

example, consider the case CVx ¼ 1/3, CVy ¼ 1/3, r ¼ 0.60, and n ¼ 50. The ratio of the

MSE of ŶCðŵ*Þ relative to the MSE of ŶCðw*Þ is 1.014.

To study the influence due to CVx, CVy and r, as well as the effect due to estimation of

w* on the PRV, we summarize in Table 2 PRVS (8), SPRVS (10), PRVR (9), and SPRVR

(11) in the same set of configurations as those considered in Table 1. When n $ 25, the

values of SPRVS agree well with those of PRVS, and so do the values of SPRVR compared

to PRVR. This is consistent with the findings that the loss of precision due to estimation of

the optimal weight is relatively small for n $ 25 (Table 1). When the ratio CVy=CVx is

small (¼ 1/2), and r is large (¼ 0.80), the gain in efficiency (according to PRVR ) for

using the composite estimator as compared with the ratio estimator seems to be the largest

in situations considered in Table 2.

5. Examples

We consider two examples, one regarding the estimation of dead fir trees via an aerial

photo and the other regarding the estimation of the average sugarcane acres per county.

Because the number of sampled units is small in both two examples, the bias of the ratio

Table 2. The underlying values for PRVS (8) and PRVR (9) and their corresponding simulated values SPRVS

(10) and SPRVR (11) for using the composite estimator ŶCðŵ*Þ with the estimated optimal weight in situations in

which the coefficient of variation CVx ¼ 1/3, 1/2; CVy ¼ 1/4, 1/3; the correlation between Xi and Yi, r ¼ 0.60,

0.80; and the sample size n ¼ 10, 25, 50. Each entry is calculated on the basis of 10,000 repeated samples.

CVx CVy r n PRVS SPRVS PRVR SPRVR

0.33 0.25 0.60 10 0.36 0.27 0.46 0.43
25 0.36 0.33 0.46 0.44
50 0.36 0.34 0.46 0.46

0.80 10 0.65 0.60 0.45 0.41
25 0.65 0.65 0.45 0.45
50 0.65 0.64 0.45 0.45

0.33 0.60 10 0.36 0.29 0.20 0.15
25 0.36 0.34 0.20 0.18
50 0.36 0.36 0.20 0.18

0.80 10 0.64 0.61 0.10 0.03
25 0.64 0.63 0.10 0.08
50 0.64 0.64 0.10 0.09

0.50 0.25 0.60 10 0.35 0.26 0.75 0.76
25 0.35 0.31 0.75 0.76
50 0.35 0.34 0.75 0.75

0.80 10 0.65 0.59 0.80 0.83
25 0.65 0.62 0.80 0.81
50 0.65 0.64 0.80 0.80

0.33 0.60 10 0.37 0.29 0.55 0.57
25 0.37 0.35 0.55 0.55
50 0.37 0.37 0.55 0.55

0.80 10 0.64 0.59 0.58 0.60
25 0.64 0.63 0.58 0.59
50 0.64 0.64 0.58 0.60
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estimator can be non-negligible. However, for the purpose of illustration only, we will

assume that the bias of the ratio estimator is not of our concern, as done elsewhere

(Cochran 1977; Scheaffer et al. 2012).

Consider the first example regarding a forest resource manager who wishes to estimate

the total number of dead fir trees in a 300 acre area of heavy infestation by use of an aerial

photo. The area was divided into (N ¼ ) 200 1.5-acre plots. We summarize in Table 3 the

photo count (Xi ) and the actual ground count (Yi ) of dead fir trees for a simple random

sample of n ¼ 10 plots (Scheaffer et al. 2012, 206). The total number of dead fir trees

obtained from the photo account is (X ¼ ) 4200. Given these data (Table 3), we obtain the

estimated coefficient of variation cvx ¼ 0.490, cvy ¼ 0.485 and r̂ ¼ 0.973. These lead the

optimal weight estimate to be ŵ* ¼ 0.037. Because dVarVar ðŶÞ is much larger than dVarVar ðŶRÞ,

the estimated optimal weight ŵ* associated with the component Ŷ of the composite

estimator ŶCðŵ*Þ is close to 0 (or the weight 1-ŵ* associated with the component ŶR is

close to 1). We get the estimates: Ŷ ¼ 6120, ŶR ¼ 5492, and ŶCðŵ*Þ ¼ 5516 with
dVarVar ðŶÞ ¼ 837858, dVarVar ðŶRÞ ¼ 45890, and dVarVar ðŶCðŵ*ÞÞ ¼ 44722. The variance estimate

for ŶCðŵ*Þ is smaller than those of Ŷ and ŶR; the corresponding estimates of PRVs are
dPRVPRVS ¼ 0.947 and dPRVPRVR ¼ 0.025.

Consider the second example regarding the estimate of the average sugarcane acres per

county over (N ¼ ) 32 counties in Florida, Hawaii, Louisiana and Texas (United States) in

1999. We summarize in Table 4 the data on (n ¼ ) the six sampled counties for years 1997

and 1999 (Scheaffer et al. 2012, 178). Given these data (Table 4), we obtain cvx ¼ 0.995,

cvy ¼ 0.930 and r̂ ¼ 0.993. The optimal weight estimate is ŵ* ¼ 0.072. Again, since
dVarVar ðŶÞ is much larger than dVarVar ðŶRÞ, the optimal weight ŵ* obtained here is also small.

The average ( �X ¼ ) is known to be 27,752 sugarcane acres over 32 counties in 1997. Given

Table 3. The photo count and ground actual count of dead fir trees on ten sampled plots.

Photo
Count

Ground
Count

Photo
Count

Ground
Count

i ¼ Xi Yi i ¼ Xi Yi

1 12 18 6 30 36
2 30 42 7 12 14
3 24 24 8 6 10
4 24 36 9 36 48
5 18 24 10 42 54

Scheaffer et al. 2012, 206.

Table 4. The number of sugarcane acres of the six sampled counties for year 1997 and year 1999 in the four

states: Florida, Hawaii, Louisiana, and Texas.

County

State

Hendry,

FL

Kauai,

HI

Saint Landry,

LA

Calcasieu,

LA

Iberia,

LA

Cameron,

TX

1997

Acreage Xi

54000 12300 9100 1700 57200 12900

1999

Acreage Yi

57000 13900 15500 3900 59900 10400

Scheaffer et al. 2012, 178.
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these data, we obtain the estimates: �Ŷ ¼ 26767, �ŶR ¼ 30278, and �ŶCðŵ*Þ ¼ 30025 with

variance estimatesdVarVar ð �ŶÞ ¼ 83825986,dVarVar ð �ŶRÞ ¼ 1595550 anddVarVar ð �ŶCðŵ*ÞÞ ¼ 1097183.

These give dPRVPRVS ¼ 0.987 and dPRVPRVR ¼ 0.312. Thus, we may gain a moderate amount of

efficiency by use of �ŶCðŵ*Þ as compared with �Ŷð¼ �ysÞ and �ŶRð¼ R̂ �XÞ, although the weight

1 2 ŵ* ¼ 0.928 associated with the ratio estimator in the composite estimator is large.

This example may illustrate the situation in which CVx . CVy, using the composite

estimator can be of use to improve the precision of the ratio estimator even for a large

correlation r. We may wish to note that the estimated gain in efficiency presented in both

examples does not account for the uncertainty due to estimation of the optimal weight.

Thus, to further confirm this finding of gaining efficiency in the above cases with high

correlation and small sample size, we have carried out additional similar simulations as

described previously for correlation r ¼ 0.90, 0.95. We have obtained the same results on

the relative performance among different estimators with respect to the MSE as found for

r ¼ 0.80 in Table 1. For brevity, we do not present these simulation results, which are,

however, available to readers upon request.

6. Discussion

The composite estimator Ŷðw*Þwith known optimal weight can be shown to outperform the

ratio estimator with respect to both bias and variance algebraically. Furthermore, the

simulation results presented here suggest that both the bias and MSE of the composite

estimator with the estimated optimal weight can be still smaller than those of the ratio

estimator. Because there is no need for us to obtain any extra information besides the data

required to apply the ratio estimator, the composite estimator proposed here should be of use

to improve the efficiency of the ratio estimator in practice. We also wish to note that it is

simply straightforward to extend the composite estimators discussed here to accommodate

the stratified random sampling, in which the SRS is employed within each stratum.

When estimating the population mean �Y, Cochran (1977, 190–192) considered a class of

regression estimators {�ys þ b0ð �X 2 �xsÞ;where b0 is preassigned fixed constant}. It is easy to

see that the composite estimator �Ŷðw*Þ can be rewritten as �ys þ rðCVy=CVxÞR̂ð �X 2 �xsÞ,

which is not a member of the above class of regression estimators. This is because

rðCVy=CVxÞR̂ is random rather than a fixed constant. However, the composite estimator
�Ŷðw*Þ with the estimated optimal weight ŵ* will lead to the estimator �ys þ b̂0ð �X 2 �xsÞ,

where b̂*
0 ¼ r̂ðsy=sxÞ is the estimator for the constant b

*
0 (¼ rðCVy=CVxÞ) that minimizes

the variance Varð�ys þ b0ð �X 2 �xsÞÞ under SRS (Cochran 1977, 191).

Note that we focus our attention on the classical finite-population sampling, in which

the expectation is taken with respect to sampling scheme (or random permutations). As

long as the auxiliary variate Xi is highly correlated with Yi, we may consider use of the

ratio estimator accounting for the auxiliary information to improve the precision of the

simple expansion estimator without making assumptions of any model relationship

between Yi and Xi (Cochran 1977; Scheaffer et al. 2012; Thompson 2012). Because the

composite estimator includes the ratio estimator as a special case, the composite

estimator with known optimal weight will have, as noted previously, the MSE smaller

than the ratio estimator for all bivariate models of (Xi, Yi) under the SRS. Furthermore,

we may find numerous real-life examples illustrating the use of ratio estimator under the
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SRS in data likely fitting the common linear regression model Yi ¼ aþ bXi þ ei, where

random errors ei have mean equal to 0 and constant variance VarðeiÞ (Scheaffer et al.

2012, 173–186). In our simulations, we assume that the bivariate normal model for (Xi, Yi)

in which all assumptions of the linear regression model with constant variance are

implicitly satisfied (Casella and Berger 1990). Our simulated results (Table 1) suggest that

use of composite estimators even with use of the estimated optimal weights may still

substantially reduce the bias and MSE of the ratio estimator in these cases. On the other

hand, the ratio estimator is often considered, provided that the population model:

Yi ¼ bXi þ ei, where random errors ei have mean equal to 0 and variance VarðeiÞ

proportional to Xi is assumed under the super-population model-based approach (SPMBA)

(Royall 1970). This is because the ratio estimator ŶR is the best linear unbiased estimator for

the population total Y with respect to random errors assumed in this linear model under the

SPMBA (Cochran 1977, 158–159). However, for a given correlation r between Xi and Yi,

creating a bivariate model for (Xi, Yi) with the conditional mean EðYijXiÞ ¼ bXi and

conditional variance VarðYijXiÞ ¼ s2Xi is extremely difficult. Thus, a topic for future

research is to extend our simulation results under the SRS for a given fixed correlation r to

cover cases with the conditional variance VarðYijXiÞ proportional to Xi when one needs to

estimate the optimal weight for the composite estimator from data.

Finally, when Xi and Yi are dichotomous (i.e., Xi and Yi ¼ 1 if subject i possesses the

characteristics of interest, and ¼ 0, otherwise), we note that one may follow the same

arguments as presented here and derive the optimal weight minimizing the variance (or

MSE) of the composite estimator under the SRS. We can further derive the PRVs for using

the composite estimator as compared with the ratio and simple expansion estimators. We

leave some details in Appendix 2 (Subsection 7.2.) for readers’ information.

7. Appendix

7.1. Appendix 1

Note that

EðŶ 2 YÞðŶR 2 YÞ ¼ EðŶ 2 YÞðŶR 2 EðŶRÞ þ EðŶRÞ2 YÞ

¼ EðŶ 2 YÞðŶR 2 EðŶRÞÞ þ EðŶ 2 YÞðEðŶRÞ2 YÞ: ðA:1Þ

Because ðEðŶRÞ2 YÞ is constant and EðŶÞ ¼ Y , the second part in (A.1) is zero. Therefore,

we have CovðŶ; ŶRÞ ¼ EðŶ 2 YÞðŶR 2 YÞ.

Furthermore, note that

EðŶ 2 YÞðŶR 2 YÞ ¼ EðN �ys 2 YÞðR̂X 2 YÞ ¼ N 2 �XEð �ys 2 �YÞðð �ys 2 R�xsÞ=�xsÞ

< N 2Eð �ys 2 �YÞðð �ys 2 �Y 2 Rð�xs 2 �XÞÞ

¼ N 2½Eð�ys 2 �YÞ2 2 REð�ys 2 �YÞð�xs 2 �XÞ�

¼ N 2ð1 2 f Þ½S2
y 2 RSxy�=n

¼ N 2ð1 2 f Þ �Y2½CV2
y 2 rCVxCVy�=n: ðA:2Þ
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Note also that

EðŶR 2 YÞ2 ¼ N 2 �X2EðR̂ 2 RÞ2 ¼ N 2 �X2Eðð�ys 2 R�xsÞ=�xsÞ
2

< N 2Eð �ys 2 R�xsÞ
2 ¼ N 2Eð �ys 2 �Y 2 Rð�xs 2 �XÞÞ2

¼ N 2½Eð �ys 2 �YÞ2 þ R2ð�xs 2 �XÞ2 2 2REð �ys 2 �YÞð�xs 2 �XÞ�

¼ N 2ð1 2 f Þ½S2
y þ R2S2

x 2 2RSxy�=n

¼ N 2ð1 2 f Þ �Y2½CV2
y þ CV2

x 2 2rCVxCVy�=n: ðA:3Þ

Because EðŶRÞ is actually not equal to Y , it can be more appropriate to call EðŶR 2 YÞ2

(A.3) the MSE of ŶR as what was done by Sukhatme et al. (1984, 192). However,

the relative bias EðŶR 2 YÞ=Y < ð1 2 f ÞCV2
xð1 2 rCVy=CVxÞ=n converges to 0 as n

increases. Therefore, despite of EðŶRÞ – Y , Formula (A.3) is also the traditional variance

formula used for VarðŶRÞ in many textbooks (Cochran 1977; Scheaffer et al. 2012;

Govindarajulu 1999; Thompson 2012).

Because EðŶR 2 YÞ2< VarðŶRÞ and CovðŶ; ŶRÞ ¼ EðŶ 2 YÞðŶR 2 YÞ, the optimal

weight w* minimizing the variance VarðŶCðwÞÞ of the composite estimator ŶCðwÞ ¼

wŶþ ð1 2 wÞŶR is equivalent to minimizing the MSE EðŶCðwÞ2 YÞ2. To derive the

optimal weight w* minimizing VarðŶCðwÞÞ, we set the first derivative of VarðŶCðwÞÞ taken

with respect to w equal 0 and solve the equation.

7.2. Appendix 2

When Xi (and Yi ) ¼ 1 if subject i possesses the characteristics of interest, and ¼ 0,

otherwise. One can show that CVx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1 2 PxÞ=½ðN 2 1ÞPx�

p
, where Px ¼

PN
i¼1Xi=N

represents the proportion of subjects possessing the characteristics of interest in the

population of Xi. Similarly, CVy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1 2 PyÞ=½ðN 2 1ÞPy�

p
, where Py ¼

PN
i¼1Yi=N

represents the proportion of subjects possessing the characteristics of interest in the

population of Yi. Note that r is simply identical to the phi w correlation for dichotomous

data defined elsewhere (Fleiss et al. 99). Thus, the optimal weight w for the composite

estimator ŶCðwÞ ¼ wðNp̂yÞ þ ð1 2 wÞðp̂y=p̂xÞðNPxÞ (where p̂y ¼
P

i[c yi=n and p̂x ¼P
i[c xi=n) minimizing variance VarðŶCðwÞÞ is

w* ¼ 1 2 w
ffiffiffiffiffiffiffiffiffiffi
ORxy

p
ðA:4Þ

where ORxy ¼ Pxð1 2 PyÞ=½ð1 2 PxÞPy� is the odds ratio (OR) of the marginal proportions

of possessing the characteristics between populations of Xi and of Yi. Note that this ORxy is

different from the OR, ð p11p00Þ=ð p10p01Þ, where prs ¼ PðXi ¼ r; Yi ¼ sÞ, r ¼ 1; 0 and

s ¼ 1; 0. The latter OR is related to the w correlation, measuring the strength of association

between Xi and Yi. Note that the OR has many mathematically inherent and desirable

properties and is one of the most common-used indices measuring the extent of association

between variables in Epidemiology (Lui 2004, 89–90). On the basis of Formula (A.4), we

see that the higher the w or the larger the ORxy, the smaller is the optimal weight w*
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(subject to w* $ 0). The PRV based on (8) by use of ŶCðw*Þ instead of Ŷ becomes

PRVS ¼ w2: ðA:5Þ

Furthermore, the PRV based on (9) by use of ŶCðw*Þ instead of ŶR is

PRVR ¼ ð1 2 w
ffiffiffiffiffiffiffiffiffiffi
ORxy

p
Þ2=½ð1 2 w

ffiffiffiffiffiffiffiffiffiffi
ORxy

p
Þ2 þ ORxyð1 2 w2Þ�: ðA:6Þ

When the prevalence rate of possessing the characteristics of interest between populations

Xi and Yi are equal (i.e., ORxy ¼ 1), PRVR Formula (A.6) simplifies to ð1 2 wÞ=2.

A systematic comparison of the performance for the composite estimator with the

estimated optimal weight minimizing the variance (or the MSE) versus its two component

estimators in dichotomous data can be a small research project.
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An Appraisal of Common Reweighting Methods for
Nonresponse in Household Surveys Based on the Norwegian

Labour Force Survey and the Statistics on Income and
Living Conditions Survey

Nancy Duong Nguyen1 and Li-Chun Zhang2

Despite increasing efforts during data collection, nonresponse remains sizeable in many
household surveys. Statistical adjustment is hence unavoidable. By reweighting the design,
weights of the respondents are adjusted to compensate for nonresponse. However, there is
no consensus on how this should be carried out in general. Theoretical comparisons are
inconclusive in the literature, and the associated simulation studies involve hypothetical
situations not all equally relevant to reality. In this article we evaluate the three most common
reweighting approaches in practice, based on real data in Norway from the two largest
household surveys in the European Statistical System. We demonstrate how cross-
examination of various reweighting estimators can help inform the effectiveness of the
available auxiliary variables and the choice of the weight adjustment method.

Key words: Unit nonresponse; auxiliary variable selection: inverse propensity weighting;
generalised regression estimation; doubly robust estimation.

1. Introduction

Response rates in household surveys have declined steadily in many Western countries

(De Leeuw and De Heer 2002; Stoop et al. 2010; Meyer et al. 2015). Post data collection,

statistical adjustment is needed due to a sizeable amount of nonresponse. A standard

process to compensate for unit nonresponse is reweightings (Little 1986; Kalton and

Flores-Cervantes 2003; Särndal and Lundström 2005; Brick 2013). Generally speaking,

this requires making two interrelated decisions on auxiliary variable selection and weight

adjustment method. However, there is no consensus on a general approach.

We distinguish between the three most common reweighting approaches in practice.

Firstly, the two-step approach combines response propensity weighting (from respondents

to sample) and calibration (from sample to population); see, for example Kalton and

Kasprzyk (1986). In general two different sets of auxiliary variables are used at the two

steps. The first step weight may either be directly given by the inverse of the estimated

response propensities (Cassel et al. 1983; Little and Rubin 1987), or indirectly based on

adjustment cells formed using these propensities (Little 1986; Eltinge and Yansaneh
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1997). Secondly, applying calibration of the sampling weights (from respondents to

population) directly yields the one-step approach (Lundström and Särndal 1999), for

which a set of auxiliary variables should ideally have high association with both the

response indicator and the target outcome variable. Adopting the linear calibration

function yields the modified generalised regression (MGR) estimator (Bethlehem 1988).

Thirdly, using the same covariates for both response propensity modelling and calibration,

the two-step approach could yield the doubly robust (DR) estimators (see e.g., Robins et al.

1994; Robins and Wang 2000; Bang and Robins 2005; Carpenter et al. 2006; Kang and

Schafer 2007).

Despite their long tradition, the choice between the two- and one-step approaches is still

not conclusive in the literature. For instance, one may easily find motivations for the one-

step approach (Little and Vartivarian 2005; Särndal and Lundström 2008, 2010), but there

exist also several warnings against its potential pitfalls (Brick 2013; Kott and Liao 2015;

Haziza and Lesage 2016). Although the DR estimators have attracted much attention

outside the field of survey sampling, we did not come across any reports on their

performance in real household (or business) surveys.

We believe theoretical comparisons are unable to reach a clear-cut choice because the

‘true’ nonresponse mechanism cannot be identified based on the observed data alone.

Moreover, while simulation studies are useful for illustrating certain properties of one

approach or another, not all the hypothetical set-ups are relevant to reality. It is therefore

essential to examine situations in actual household surveys, which are limited in number.

For instance, in the context of European Statistical System (ESS), there are currently only

about ten major household surveys. Moreover, relevant auxiliary variables consist mostly

(or entirely) of categorical variables, unlike what is common in simulation studies.

In this article, we assess empirically the three reweighting approaches outlined above,

based on the Norwegian Labour Force Survey (LFS) and Survey of Income and Living

Conditions (SILC), which are the two largest household surveys in the ESS. The protocol

of the appraisal is generally applicable to other surveys or countries.

We begin with a description of the sampling designs of the Norwegian LFS and the SILC

in Section 2. In Section 3, we describe a set of reweighting estimators to be investigated

and some common variations. Then, we introduce simple Analysis of Variance (ANOVA)-

type measures to understand the potential effects of an auxiliary variable based on its

association with the outcome variable and the response indicator in Section 4, and use real

data to illustrate how these may be related to the resulting change in the point estimate and

the associated variance. Our discussion brings forward greater nuances of the reweighting

effects than those that have been delineated previously by Thomsen (1973, 1978), Oh and

Scheuren (1983) and Little and Vartivarian (2005). In Section 5 we present an empirical

study of the Norwegian LFS and SILC data. As will be demonstrated, cross-examination of

the different point estimates and their variances can inform the effectiveness of the

available auxiliary variables and the choice of the weight adjustment method. Some general

conclusions that emerge from the empirical appraisal will be summarised in Section 6.

In summary, regarding auxiliary variable selection, we find that it is always useful to

increase the association with the outcome variable, but seeking the highest possible

association with nonresponse is not necessarily helpful. Moreover, we find that the choice

of weight adjustment method matters, especially when there exist strong auxiliary
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variables for the outcome available; whereas provided only weak auxiliary variables for

the outcome variable, limiting the loss of efficiency and avoiding spurious adjustment may

be a relevant priority. Overall, we found no evidence in the situations examined to support

an uncritical adoption of the two-step approach. Since the ‘true’ nonresponse model

envisaged for a two-step approach cannot be identified based on the observed data,

regardless of whether the available auxiliary variables have low or high association with

nonresponse, it makes sense to choose based on cross-examination of the alternatives in a

given situation.

2. Sampling Designs

In this article we use or relate the discussions to the LFS data in Subsections 4.2, 4.3. and

5.1., and the SILC data in Subsection 5.2. We now briefly describe the sampling designs of

these two surveys and a relevant variable called Panel Response Status.

2.1. The LFS

The Norwegian LFS has a stratified cluster sampling design, where the 19 counties make

up the strata and family units form the clusters. The population register provides the

sampling frame. The target population consists of residents aged 15–74 years old in

Norway. Every in-scope person stays in the LFS for eight quarters, and there is

approximately an 7/8 overlap between two consecutive quarters. The quarterly sample

contains approximately 24,000 individuals, and the current response rate is around 80%.

All interviews are conducted by telephone.

The overlap between two consecutive quarters means that approximately one in eight

persons is new in each quarterly sample. It is possible to create a variable called Panel

Response Status that identifies every person as new in sample, or previous quarter

respondent, or previous quarter nonrespondent. This variable has very high association

with the current quarter response indicator, in that previous quarter respondents (or

nonrespondents) are more likely to respond (or not respond) again. Later on we will use this

Panel Response Status to demonstrate the effects of a variable that has high association with

the response indicator on the point estimate and the variance of an estimator.

2.2. The SILC

The annual SILC collects data on housing, finance, health, and work, and so on. The target

population consists of residents aged 16 years and over and not living in institutions. It has

a four-year rotating panel design. Individuals are selected from the population register

using the SRS design. The interviews are largely conducted over telephone, although face-

to-face interviews can take place by way of exception. Just like with the LFS, the panel

design of the SILC allows one to create the Panel Response Status variable, distinguishing

new persons in the sample, previous year respondents and previous year nonrespondents.

3. Reweighting Estimators to be Investigated

Consider a finite population U of size N. Let Y be an outcome variable of interest which

takes the value yi for unit i [ U. Assume that a sample s of size n is selected from U by
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probability sampling, where pi is the inclusion probability and di ¼ 1/pi is the design

weight of unit i [ s. Let R be the response indicator defined as ri ¼ 1 if unit i responds and

ri ¼ 0 otherwise, for i [ s. Let r denote the respondent sample of nr units such that r , s

and nr , n. We describe the various methods to be included in a schematic investigation in

terms of the estimator of the population total t ¼
P

i[U yi.

As a baseline for comparison, consider the design weighted estimator

t̂d ¼
n

nr i[r

X
diyi: ð1Þ

This estimator takes the sampling design into account, and is approximately unbiased for

t provided nonresponse missing completely at random (MCAR, Little and Rubin 1987).

An alternative baseline estimator is the sample respondent expansion estimator

t̂ ¼
N

nr i[r

X
yi: ð2Þ

It is unbiased for t provided MCAR and equal probability selection method (epsem), and

allows one to gauge both the effects of sampling design and nonresponse on reweighting.

In many household surveys, epsem holds either exactly or approximately, such that the

difference between t̂d and t̂ may be small, when compared to the various reweighting

estimators described below, which aim to adjust for the potential bias caused by

nonresponse.

To begin with, when it comes to auxiliary variable selection, it is often recommended to

select variables that have high association with both the survey variable (Y ) and the

response indicator (R); see, for example Little and Vartivarian (2005), Schouten (2007),

Särndal and Lundström (2008) or Bethlehem et al. (2011). In practice, instead of building a

bivariate model of (Y, R), it is common to model R and Y separately. Denote by Z the

selected predictors of the R-model and by X those of the Y-model. The two generally do not

coincide. Not all the variables in Z (or X) are equally important to R (or Y ). In a sense, one

may consider the variables in the joint subset, denoted by A ¼ Z ^ X, to be explanatory of

both R and Y, but we are unaware of any recommended reweighting approach that only

makes use of A. There exist also other variable selection approaches that are not based on

explicit R- and Y-modelling; see, for example Schouten (2007) and Särndal and Lundström

(2010). However, we shall focus on the modelling approach to auxiliary variable selection

in this article, because it is more generally applicable and has a more direct connection to

the weight adjustment methods, as will be explained shortly. Notice that in this article, we

consider the y-values in the population to be fixed when calculating the expectation and

variance of an estimator, even when Y-modelling is used to ‘assist’ its construction.

Denote the response propensity of unit i, for i [ s, by

pi ¼ pðzi;aÞ ¼ Prðri ¼ 1jziÞ

for example, defined via a logistic regression model. Let

mi ¼ EðYijxiÞ ¼ mðxi;bÞ

be the conditional expectation of Yi given xi. For illustration, we shall assume the most

common linear regression, that is, mi ¼ xT
i b; but other types of regression models of mi are
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equally feasible. The two-step weight adjustment that uses Z and X separately can now be

given as

t̂2sts ¼
i[U

X
mðxi; b̂Þ þ

i[r

X di

pðzi; âÞ
yi 2 mðxi; b̂Þ
� �

; ð3Þ

where b̂ ¼
�P

i[r dixix
T
i =pðzi; âÞ

�21P
i[r dixiyi=pðzi; âÞ, and â is the estimator of a,

which is typically obtained from fitting an appropriate logistic regression model to the

sample by solving for
P

i[s zi½ri 2 pðzi;aÞ� ¼ 0. The estimator (3) is approximately

unbiased for t provided nonresponse is missing-at-random (MAR, Little and Rubin 1987)

given Z, and the model of pi is correctly specified.

By itself, the first step of (3) yields the Inverse Propensity Weighting (IPW) estimator

t̂IPW ¼
i[r

X di

pðzi; âÞ
yi: ð4Þ

It is approximately unbiased under the same condition as (3), but may be less efficient if

X can help reduce the variance. Extreme weights can arise by IPW, when large weights are

assigned to relatively few respondents with similar characteristics to nonrespondents.

Some authors propose to stratify the sample into several groups (or adjustment cells) based

on similar pðzi; âÞ, that is, Response Propensity Stratification (RPS), and use the inverse

within-group response rate as the 1st-step weight. RPS is reported to be more efficient than

IPW in some studies (Little 1986; Kang and Schafer 2007), although Lunceford and

Davidian (2004) warn against their routine use based on their theoretical and empirical

results. In general, while potential modification of the IPW weight pðzi; âÞ
21 is always a

relevant practical issue, the IPW weight is more easily interpretable when comparisons

are made to other weight adjustment methods. We recommend t̂IPW to be computed and

included in a schematic investigation of reweighting methods.

Next, applying the second weight adjustment of (3) directly to the respondents yields

the one-step MGR estimator

t̂MGR ¼
i[U

X
mðxi; B̂Þ þ

i[r

X
di{yi 2 mðxi; B̂Þ}; ð5Þ

where B̂ ¼
P

i[r dixix
T
i

� �21P
i[r dixiyi. As mentioned before, other one-step calibration

estimators are possible by other calibration functions. But the linear calibration (5) is the

most routine choice, and we shall focus on it to compare the one-step approach to other

adjustment methods. The MGR estimator is approximately unbiased, if nonresponse is

MAR given X, and if the linear model of mi is correctly specified or if the response

propensity pi is the inverse of a linear combination of xi (Lundström and Särndal 1999). An

extra feature sometimes included in the discussion of the one-step approach is when some

variables in X are observed in the whole sample but have unknown population totals

(Särndal and Lundström 2005; Andersson and Särndal 2016). However, this is not an

essential difference to the two-step approach, because the same possibility can as well be

accommodated by the two-step approach.

Now, the variables Z selected by R-modelling generally differ from X by Y-modelling.

Moreover, none of the associated MAR assumptions can be entirely true. Under the DR
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approach, one uses the same variables to build an R-model and a Y-model; see, for

example Kim and Haziza (2014). The resulting estimator is approximately unbiased if

either one of the two models is correctly specified. In practice, without actually building a

bivariate (R, Y )-model, taking the auxiliary variables V ¼ Z _ X, as the union of Z and X

following separate R- and Y-modelling, appears a likely course of variable selection. The

DR estimator for t that we adopt for this study is thus given by applying the two-step

approach (3) to (V, V ) instead of (Z, X ), that is,

t̂DR ¼
i[U

X
mðvi; ĵ Þ þ

i[r

X di

pðvi; ĥÞ
{yi 2 mðvi; ĵ Þ}; ð6Þ

where ĵ ¼
P

i[r diviv
T
i =pðvi; ĥÞ

� �21P
i[r diviyi=pðvi; ĥÞ under the linear Y-model

mi ¼ vT
i j, and ĥ is the estimator of the R-model parameter h in pi ¼ p(vi;h). Note that

this requires known population total of zi, unlike the IPW estimator for which one only

needs the zi’s in the sample. Provided nonresponse is MAR given V, the estimator (6) is

approximately unbiased when either the R- or Y-model is correctly specified. Notice that

unless separate modelling happens to result in Z ¼ X, adopting V ¼ Z _ X would imply

over-fitting for pi or mi. However, in the situation of vi ¼ xi, Lunceford and Davidian

(2004) demonstrate the potential gains of the DR approach, that is, to “over-model” p(zi; a)

by p(vi; h). So it is of interest to investigate the performance of t̂DR, despite the heuristic

construction of V.

Thus we arrive at a minimal set of estimators for a schematic investigation in any given

situation (Table 1). Also specified are the respective auxiliary variables to be used for each

reweighting estimator. For the estimators using V ¼ Z _ X, refitting of piðvi;hÞ and

miðvi; j Þ is needed in practice. Cross-examination of the different point estimates and their

associated variances in a given survey will be illustrated in Section 5.

4. Effects of Auxiliary Variable

4.1. Subclass Reweighting and Association Measures

Not all the selected variables in Z or X are equally effective. To gauge the potential effects

of a categorical auxiliary variable, c ¼ 1, 2, : : : , C, let the population be partitioned

accordingly into C subclasses with known population sizes N1, : : : , NC, and

N ¼
PC

c¼1Nc. Let each subclass consist of a respondent stratum and a nonrespondent

stratum (Cochran 1953), respectively, of the population sizes N
0

c and N
00

c and means
�Y
0

c and �Y
00

c . Let �Y
0

¼
P

c N
0

c
�Y
0

c=N
0

be the population respondent mean, where N
0

¼
P

c N
0

c,

and �Y
00

¼
P

c N
00

c
�Y
00

c=N
00

the population nonrespondent mean, where N
00

¼
P

c N
00

c.

Table 1. A minimal set of reweighting estimators.

Selection and use of auxiliary variable

Weight adjustment method

One-step IPW One-step MGR Two-step

Separate R- and Y-modelling t̂IPW ðZ; – Þ t̂MGRð– ;XÞ t̂2stsðZ;XÞ

Refitting after R- and Y-modelling t̂IPW ðV ; – Þ t̂MGRð– ;VÞ t̂DRðV ;VÞ
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Let �Y ¼ �Y
0

N
0

=N þ �Y
00

N
00

=N be the population mean. Consider the unweighted sample

respondent mean

�y ¼
i[r

X
yi=nr ¼ t̂=N;

as an estimator of �Y ¼ t=N, against the reweighted respondent mean

�yW ¼
XC

c¼1

Wc �yc;

where Wc ¼ Nc=N and �yc is the respondent mean in sample subclass c.

The set-up is convenient for several reasons. Previously, Thomsen (1973 1978), Oh and

Scheuren (1983) and Little and Vartivarian (2005) all used it to study the effects of

reweighting, which is natural for household surveys where the auxiliary variables are

either categorical or can be categorised, and the subclasses may arise from cross-

classifying several variables. Based on subclasses 1, : : : , C, all the reweighting estimators

described in Section 3 reduce to �yW , provided simple random sampling (SRS), which

allows us to isolate away the choice of adjustment method. Moreover, one can estimate the

randomisation variances of �y and �yW based on the observed sample (Thomsen 1978),

where the population y- and r-values are treated as fixed. As pointed out by Little and

Vartivarian (2005), the SRS assumption allows one to gain an appreciation of the relative

efficiency, that is, RE ¼ Varð �yW Þ=Varð �yÞ, without complicating the technical details due

to complex designs. Notice that, even when the sampling design is complex, or if one

prefers the model-based or quasirandomisation-based inference in the end, it is still

possible to make use of the randomisation-based results below, obtained under the SRS

assumption, in order to easily gauge the potential effects of an auxiliary variable.

Now, to examine the change of the point estimate due to subclass reweighting, let

B ¼ Eð �y 2 �yW Þ ¼
1
�h

XC

c¼1

Wc
�Y
0

cðhc 2 �hÞ ¼
1
�h

XC

c¼1

Wcð �Y
0

c 2 �Y
0

Þðhc 2 �hÞ; ð7Þ

where hc ¼ N
0

c=Nc, for hc . 0, is the population subclass respondent proportion, and
�h ¼

P
c Wchc is the population respondent proportion. The second last expression in (7) is

given by Thomsen (1973), and the last one follows since
P

c Wcðhc 2 �hÞ ¼ 0. Considering

{W1, : : : , WC} as a probability mass function, one may interpret B as the covariance

between �Y
0

c and hc as c varies, denoted by CovW ð �Y
0

c; hcÞ. Since �h is fixed at the estimation

stage, different subclass formations can only affect CovW ð �Y
0

c; hcÞ. Thus, B would be large

if either �Y
0

c or hc varies much across the subclasses, that is, if the subclasses are

heterogeneous either with respect to the outcome variable or the response indicator, or

both.

Next, regarding the RE of subclass reweighting, Thomsen (1978) shows that

Varð �yÞ ¼
1

n�h2

XC

c¼1

WchcS2
c þ

XC

c¼1

Wchcð �Y
0

c 2 �Y
0

Þ2

( )

¼
1

n�h2
ðt1 þ t2Þ;
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Varð �yW Þ <
1

n

XC

c¼1

WcS2
c=hc;

where S2
c ¼

PN
0

c

i¼1ðYci 2 �Y
0

cÞ
2=ðN

0

c 2 1Þ is the population subclass respondent variance.

Notice that Varð �yÞ can be decomposed into two terms of within- and between-subclass

respondent variances, denoted by t1 and t2, respectively, with fixed sum t1 þ t2. A

corresponding ANOVA-type measure of the association between c and Y can be given by

lcY ¼ t2=ðt1 þ t2Þ:

The association measure lcY provides an easy appreciation of the potential effects of

the auxiliary variable (or variables) underlying the subclasses c ¼ 1 , : : : , C. In the

extreme case of lcY ¼ 1 and t1 ¼ 0, we would have B ¼ Biasð �yÞ ¼ Eð �yÞ2 �Y and

Varð �yW Þ ¼ 0 , Varð �yÞ. At the other end, where lcY ¼ 0, t2 ¼ 0 and S2
c ; S2, we would

have B ¼ 0 and

Varð �yÞ ¼
S2

n
�

1
�h

#
S2

n
�
YC

c¼1

1

hc

� �Wc

#
S2

n
�
XC

c¼1

Wc

hc

< Varð �yW Þ;

by applying twice the inequality of weighted arithmetic and geometric means, or directly

the Titu’s lemma as a special case of Cauchy-Schwarz inequality. Between the two

extreme cases, increasing lcY makes the subclasses more heterogeneous with respect to Y,

which tends to decrease the within-subclass variances S2
c and Varð�yW Þ, as well as

increasing the change of point estimate, that is, provided fixed h1, : : : , hC.

Similarly, an ANOVA-type measure of the association between c and R is given as

lcR ¼
XC

c¼1

Wcðhc 2 �hÞ2

,
XC

c¼1

Wchcð1 2 hcÞ þ
XC

c¼1

Wcðhc 2 �hÞ2

( )

¼ n2=ðn1 þ n2Þ

where n1 and n2 are the within- and between-subclass variances of R, respectively, with

fixed sum n1 þ n2. In the extreme case of lcR ¼ 1 and n1 ¼ 0, hc would be either 0 or 1,

such that the subclasses are nested in the respondent and nonrespondent strata. We would

have B ¼ 0, despite perfect association between c and R, so that subclass reweighting

affects only the variance depending on lcY . At the other end, where lcR ¼ 0, n2 ¼ 0 and

hc ; �h, we would again have B ¼ 0, where subclass reweighting affects only the variance.

Between the two extreme cases, both B and CovW ð �Y
0

c; hcÞ are likely to increase with

n2 ¼ VarW(hc) and lcR. To appreciate what might happen to the variance at the same

time, rewrite

Varð �yW Þ <
1

n

XC

c¼1

WcS2
c=
�h 2

XC

c¼1

WcS2
cðhc 2 �hÞ=�h2 þ

XC

c¼1

WcS2
cðhc 2 �hÞ2=�h3

( )

;

based on Taylor expansion of hc around �h. As n2 increases, the term involving ðhc 2 �hÞ2

may increase accordingly, while that involving ðhc 2 �hÞ remains small since
P

c Wcðhc 2 �hÞ ¼ 0. In particular, even if lcY is high and S2
c’s are relatively small, it is

possible for the term involving ðhc 2 �hÞ2 to increase to such an extent that we would have
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Varð �yW Þ . Varð �yÞ. Thus, as lcR increases, subclass reweighting is likely to achieve

greater change of the point estimate while increasing the variance at the same time.

Remark Särndal and Lundström (2010) consider three indicators, H1 2 H3, for the

usefulness of auxiliary information. They consider H2 to be ad hoc, which is only included

for exploration. According to their conclusion, they prefer H1 for a given y-variable, and

they argue for H3 as a tentative choice for the “many y-variables situation”, but call for

more research to develop other indicators (than H3).

The indicator H1 is given by H1 ¼ jH0j and H0 ¼ DA/Sy. Combining Equations (2.1),

(5.2), (5.7), (5.8) and (5.11) in Särndal and Lundström (2010), we have

H0 ¼
DA

Sy

¼ 2Ry;m £ cvm ¼ 2
Covð y;mÞ

SySm

£
Sm

�mr;d

¼ 2
P

Sy

Covð y;mÞ

where P is the weighted response rate, that is, an estimate of �h in our set-up, and

DA ¼ ð ~YEXP 2 ~YCALÞ=N̂, with the “expansion” estimator ~YEXP and the “calibration”

estimator ~YCAL. Thus, DA is similar to the B-term by Equation (7) in this article, defined as

the expectation of �y 2 �yW under SRS, where �y ¼ t̂d=N ¼ ~YEXP=N̂ and �yW ¼ ~YCAL=N̂ by

subclass reweighting. Notice that by Equation (7) in this article, B is a function of �h and

CovW ð �Y
0

c; hcÞ. The key difference between DA and B is that the latter is based on the

response propensity pi’s, whereas the former is based on mi’s which are on the scale of 1/pi.

Next, H3 ¼ cvm, which is based on the auxiliary variables and the response indicator but

not the y-values. In this sense, it is similar to lcR in our article, which measures the

association between the auxiliary variables and the response indicator. While H3 is related

to the variance of mi, lcR is related to the variance of pi; while H3 depends in addition on �h,

lcR depends in addition on the decomposition of the variance of pi.

Thus, by introducing lcY and lcR, we move into areas not covered by Särndal

and Lundström (2010). In particular, we find that as lcY increases, reweighting tends

to increase both bias adjustment (B or DA) and efficiency gains; whereas as lcR

increases, reweighting is likely to increase bias adjustment, but inflate the variance at the

same time.

4.2. A Simulation Study

In Subsection 4.1, we presented the formula for B, the change in point estimate due to

subclass reweighting, as well as the fomulas for the variance of the unweighted

respondent mean �y and weighted mean �yW . These formulas hold exactly under SRS. In

practice, strict SRS is not the most common design, despite the household survey,

inclusion probabilities tend not to vary greatly across the population. They can still

provide useful indications for the relative importance and potential effects of the

different auxiliary variables in reweighting, as we will discuss in more detail in Section 5,

even though they do not suffice as the final uncertainty measures to be reported together

with the survey estimates. We feel that such uses are warranted based on our past

experience of in-house empirical evaluations. Below, we carry out a simple simulation

study to illustrate this point.

First, we generate a Norwegian Labour Force population that resembles the LFS in the

first quarter of 2015, including the response indicator. This proceeds as follows.
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. The population of approximately 3.8 million Norwegians aged 15–74 are distributed

in the 19 counties, according to the situation in the first quarter of 2015. The county

population size varies from approximately 58,000 to 506,000. For more details on the

population, we refer to https://www.ssb.no/en/befolkning/statistikker/folkemengde.

. Within each county, assign each person a binary registered employment status, such

that the total number of registered employed people is as given in the first quarter of

2015.

. Within each county, simulate independently the LFS classification (employed,

unemployed, inactive) for each person, by the multinomial distribution with the

corresponding proportions observed among the LFS respondents in that county.

. Within each county h, simulate independently the response indicator (yes, no) for

each person, using the Bernoulli distribution with a probability 0.81 þ d1h if

the person is registered employed and 0.76 þ d0h if the person is not registered

employed. The Figures 0.81 and 0.76 are respectively the average response rates for

the registered employed and not registered employed in the first quarter of 2015.

Within each stratum, the response rates for these two groups vary slightly, about 2%

above or below the averages. Hence, d0h and d1h are simulated to have a normal

distribution with mean 0 and standard deviation 0.01 to reflect the range of the

corresponding stratum response rates observed in the LFS sample.

We then repeatedly draw samples (of the same size as the LFS) from this population

using SRS or Stratified SRS (StrSRS), where the strata are the 19 counties and the stratum

sample sizes are the same as in the Norwegian LFS. The county sample size varies from

610 to 2,745. Based on m simulated samples, with sufficiently large m, we may compare

the true values of B, Varð �yÞ and Varð �yW Þ under each sampling design, with the expected

sample estimates of them using the formulas in Subsection 4.1 under the assumption of

SRS. The results for the proportions of unemployed and employed persons are given in

Table 2. The table shows that the formulas under the SRS assumption (“Estimated”) hold

as approximately well under the Stratified SRS sampling design.

4.3. Examples from the Norwegian LFS Data

In practice, lcY and lcR are neither 0 nor 1, and they vary simultaneously with the auxiliary

variables. In the literature, such as those cited in Section 3, it is often suggested that one

should select variables that have high associations with both Y and R. Little and

Vartivarian (2005) summarise in their “Table 1” the effects of reweighting, depending on

the association of the auxiliary variables to Y and R, which is reproduced here as Table 3.

However, our own experiences (Zhang et al. 2013) suggest that there exist greater nuances

Table 2. Simulation results ( £ 1023), m ¼ 1,000.

Unemployment Employment

Estimated SRS StrSRS Estimated SRS StrSRS

B 21.00 21.00 21.00 B 12.48 12.44 12.62

s:e:ð �yÞ 1.14 1.14 1.20 s:e:ð �yÞ 3.34 3.33 3.45

s:e:ð �yW Þ 1.16 1.16 1.22 s:e:ð �yW Þ 1.90 2.01 1.93
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in reality, which we demonstrate below using four examples based on the Norwegian LFS

data. The examples also illustrate how (lcY, lcR) may be related to the changes of the point

estimate and the associated variance.

We use the Norwegian LFS in the first quarter of 2015. The sample size is n ¼ 24,353

and the response rate is �h ¼ 0:79. We consider two binary Y-variables: employment and

unemployment status. All the terms B, Varð �yÞ, Varð �yW Þ, and so on are estimated based on

the observed sample. However, for simplicity we do not introduce extra notations to

emphasise that the values presented are estimates instead of population quantities.

Example 1 Let Y be the LFS Unemployment Status. Let two subclasses be formed based

on the Registered Employment Status, where c ¼ 1 for not registered employed and c ¼ 2

for registered employed. We have Wc ¼ (0.35, 0.65) and hc ¼ (0.74, 0.81), for c ¼ (1, 2),

with the corresponding subclass respondent means �yc ¼ ð0:07; 0:00Þ and respondent

variances S2
c ¼ ð0:06; 0:00Þ. We obtain

lcY ¼ 0:04; lcR ¼ 0:01; B ¼ 21:41 £ 1023; s:e:ð�yÞ ¼ 1:13 £ 1023; RE ¼ 1:07:

Both lcY and lcR are close to zero. This provides an example of the top-left scenario in

Table 3, according to which reweighting has little effect. However, the point estimate is

actually changed by about 120% of the standard error (s.e.) of �y, while it increases the

variance only slightly. Previous studies of the Norwegian data (Zhang 1999; Thomsen

and Zhang 2001; Zhang 2005) all conclude that employment is overestimated and

unemployment underestimated, based on the unadjusted respondent sample. Therefore,

the adjustment B is in the direction one would expect, and it is by no means ‘negligible’ in

size, despite the low association of the auxiliary variable with both Y and R.

Example 2 Let Y be the LFS Employment Status, and keep the same subclasses as in

Example 1. We have �yc ¼ ð0:14; 0:96Þ and S2
c ¼ ð0:12; 0:04Þ, and

lcY ¼ 0:69; lcR ¼ 0:01; B ¼ 1:68 £ 1022; s:e:ð�yÞ ¼ 3:31 £ 1023; RE ¼ 0:34:

It can be seen that lcR stays the same but lcY is greatly increased, compared to when

the outcome variable is Unemployment Status. This provides an example of the top-right

scenario in Table 3, according to which reweighting leads to little bias adjustment,

although it may reduce the variance. However, it can be seen that in addition to the huge

variance reduction, the change in the point estimate is also several times the standard error.

Table 3. Effects of nonresponse reweighting, from Little and Vartivarian (2005).

Association with outcome variable

Association with nonresponse Low High

Low Effect on bias: –– Effect on bias: ––
Effect on variance: –– Effect on variance: #

High Effect on bias: –– Effect on bias: #
Effect on variance: " Effect on variance: #
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Example 3 Let Y be the LFS Employment Status. Let the subclasses be formed using

the Panel Response Status, where c ¼ 1 if previous nonrespondent, c ¼ 2 if previous

respondent, and c ¼ 3 if new sample unit. For c ¼ (1, 2, 3), we obtain Wc ¼ (0.20, 0.67,

0.13), hc ¼ (0.29, 0.94, 0.77), �yc ¼ ð0:66; 0:71; 0:66Þ, and S2
c ¼ ð0:22; 0:21; 0:22Þ, so that

lcY ¼ 0:00; lcR ¼ 0:39; B ¼ 5:50 £ 1023; s:e:ð �yÞ ¼ 3:31 £ 1023; RE ¼ 1:28:

Compared to Example 1, lcR is considerably increased, but lcY remains almost zero.

This provides an example of the low-left scenario in Table 3, according to which

reweighting leads to little bias adjustment, although it may increase the variance. Actually,

however, in addition to the increasing variance, the change in the point estimate is again by

no means ‘negligible’ in size, despite the low association between the auxiliary variable

and Y.

Example 4 Let Y be the LFS Employment Status. Crossing the Panel Response Status

and the Registered Employment Status yields the subclasses, where c ¼ 1 if previous

nonrespondent and not registered employed, c ¼ 2 if previous nonrespondent and

registered employed, c ¼ 3 if previous respondent and not registered employed, c ¼ 4 if

previous respondent and registered employed, c ¼ 5 if new sample unit and not registered

employed, and c ¼ 6 if new sample unit and registered employed. Then, for c ¼ (1, 2, 3, 4,

5, 6), we obtain Wc ¼ (0.08, 0.12, 0.21, 0.47, 0.05, 0.08), hc ¼ (0.25, 0.31, 0.93, 0.94, 0.72,

0.79), �yc ¼ ð0:14; 0:95; 0:14; 0:96; 0:10; 0:95Þ, S2
c ¼ ð0:12; 0:05; 0:12; 0:04; 0:09; 0:05Þ,

and

lcY ¼ 0:69; lcR ¼ 0:39; B ¼ 1:78 £ 1022; s:e:ð�yÞ ¼ 3:31 £ 1023; RE ¼ 0:43:

Compared to Example 2, lcR is considerably increased in addition to high lcY. This

provides an example of the low-right scenario in Table 3, which is ‘ideal’ according to the

prevailing recommendation in the literature. However, while the adjustment B is increased

by about 6% compared to the reweighting in Example 2, there is also a loss of efficiency by

about 26%. In other words, it is not unreservedly beneficial to increase the association with

R, while the association with Y remains the same. In fact, we now demonstrate the caveat

of doing so with the following thought experiment.

Example 4* The first two hc’s in Example 4 are the response rates of the previous

nonrespondents, the next two of the previous respondents, and the last two of the new

sample members. To vary the response rates more extremely, suppose we have full

response among the previous respondents, so that h3 ¼ h4 ¼ 1; suppose the response rates

among the new sample units stay the same, so that h5 ¼ 0.72 and h6 ¼ 0.79; suppose the

response rates among the previous nonrespondents are reduced to h1 ¼ 0.05 and

h2 ¼ 0.10. This yields hc ¼ (0.05, 0.10, 1.00, 1.00, 0.72, 0.80), with the same overall

response rate �h ¼ 0:79. Keeping everything else the same as in Example 4, we obtain

lcY ¼ 0:69; lcR ¼ 0:78; B ¼ 1:99 £ 1022; s:e:ð�yÞ ¼ 3:31 £ 1023; RE ¼ 1:13:

As we remarked earlier in Subsection 4.1, without increasing lcY at the same time,

increasing lcR on its own can result in Varð �yW Þ . Varð �yÞ, despite high association lcY.
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5. Empirical Study of Reweighting

For this study of reweighting, a number of auxiliary variables are extracted from the

statistical register system at Statistics Norway and linked to the samples at the individual

level. For the LFS, these include age (11), sex (2), county (19), education level (4), marital

status (3), family type (3), immigration (3), birth country (2), income (5), household

income (5), and registered employment (2), where the numbers in parentheses indicate the

number of categories each variable has. The same variables are used for the SILC, except

for registered employment due to data protection regulations. In addition, some of the

variables are adjusted to have fewer categories due to the smaller SILC sample size, for

example 4 age groups instead of 11, 7 regions instead 19 counties, and so on.

For both R- and Y-modelling, variable selection is carried out stepwise according to the

Akaike Information Criterion. While this is somewhat simplistic, it suffices for the purpose

of this study and reflects well the existing process at national statistical offices. All six

estimators listed in Table 1 are applied to each of the outcome variables to be presented, in

terms of the corresponding population mean estimators, denoted by �ymethod ¼ t̂method=N

where the subscript method identifies the weight adjustment method. The baseline

estimator to be presented is �y ¼ t̂=N for t̂ given by (2). The difference to t̂d=N is negligible

compared to their differences to the various reweighting estimates. To save space, other

estimators that have been calculated may be mentioned in comments but not presented in

detail. This include, for example, using RPS instead IPW under the two-step approach. All

the estimated variances are calculated in R using 500 bootstrap samples with the same

sampling design as the LFS/SILC, except for one case to be specified later. The bootstrap

follows the procedure of Canty and Davison (1999), where to mimic the effect of sampling

without replacement, the bootstrap population is made by concatenating copies of the

observed sample, from which the bootstrap replicate samples are taken without

replacement according to the given sampling design. For each sample, we calculate the

estimates for each of the estimators discussed in Section 3, and the standard deviation of

these estimates is used to estimate the standard error of each estimator.

5.1. The LFS

We have carried out the same analysis for five quarterly samples. The results are very

similar, so only those based on the first quarter of 2015 are presented here, where we focus

on two binary outcome Y-variables, employment and unemployment, denoted by Yem and

Yun, respectively.

The association measures of each covariate with R, Yem and Yun are given in Table 4,

together with B and RE by the respective subclass reweighting, as described in Subsection

4.1. It can be seen that the available covariates have very different associations with the

two outcome variables. While registered employment, age, income and education all have

a high association with Yem, the association with Yun is much lower across the board,

although registered employment and income remain the two with the highest associations

there. The covariates selected for the R-model and the two Y-models are marked (by †) for

the corresponding lcR, lcYem
and lcYun

(Table 4). No interaction terms are selected for any of

the models based on these data. Largely the same variables are selected for both Y-models,

denoted by Xem and Xun, respectively. Each model includes the covariates that have the
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highest association with either Yem or Yun. The R-model includes all the available

covariates (Z ), except for birth country that is similar to immigration status. In particular,

both Xem and Xun are nested in Z, such that V ¼ Z for both Yem and Yun.

The different estimates and their associated s.e.’s (in parentheses) are given in Table 5.

Compared to the baseline estimate, all the reweighting estimates adjust the employment

rate downwards and the unemployment rate upwards, that is, in the expected direction. In

the case of employment, all the one-step MGR and two-step estimators reduce the

variance, while the one-step IPW estimator increases the variance. In the case of

unemployment, all the reweighting estimators increase the variance, but have similar RE

to each other. For both Yem and Yun, the point-estimate changes are very large compared to

the s.e.’s. Bias exploration by the method described in Zhang (1999) suggests that,

provided informative nonresponse, the reweighted employment estimators may still have a

positive bias, so that the risk is low that the reweighted estimators are more biased than the

baseline estimator. Likewise for the reweighted unemployment estimators, since the

upward adjustments of unemployment resulted from reweighting appear plausible in

magnitude compared to the downward adjustments of employment.

To a large extent, these results have confirmed the potential adjustment effects, which

are suggested by simple subclass reweighting and association measures in Subsection 4.3.

Table 4. Association with (R, Yem, Yun), selected†, B in 1022.

Auxiliary variable lcR lcYem
lcYun

Bem (RE) Bun (RE)

Registered employment 0.01† 0.69† 0.04† 1.68 (0.33) 20.14 (1.07)
Age 0.02† 0.28† 0.01† 21.04 (0.71) 20.10 (1.08)
Sex 0.00† 0.00† 0.00† 0.01 (1.00) 0.00 (1.00)
County 0.00† 0.01† 0.00 0.07 (0.99) 0.00 (1.00)
Family type 0.02† 0.02 0.00 0.19 (0.99) 20.02 (1.02)
Birth country 0.02 0.00 0.01 20.25 (1.01) 20.15 (1.11)
Immigration status 0.02† 0.00 0.01† 20.20 (1.02) 20.16 (1.12)
Education 0.01† 0.11† 0.01† 0.59 (0.91) 20.06 (1.04)
Marital status 0.02† 0.01 0.00 0.30 (1.00) 20.06 (1.05)
Income 0.02† 0.26† 0.02† 1.47 (0.80) 20.13 (1.08)
Household income 0.04† 0.09† 0.01 1.39 (0.96) 20.14 (1.13)

Table 5. LFS estimates (s.e.) in 1022, the first quarter 2015.

Auxiliary for
(IPW, MGR)

Mean employment, �y ¼ 69:84 ð0:35Þ

One-step �yIPW One-step �yMGR Two-step estimator

(Z, Xem) 67.47 (0.44) 67.10 (0.19) �y2sts ¼ 67:08 ð0:19Þ
(Z, Z) ” 67.10 (0.19) �yDR ¼ 67:09 ð0:19Þ

Auxiliary for
(IPW, MGR)

Mean unemployment, �y ¼ 2:45 ð0:12Þ

One-step �yIPW One-step �yMGR Two-step estimator

(Z, Xun) 2.99 (0.14) 3.06 (0.14) �y2sts ¼ 3:18 ð0:15Þ
(Z, Z) ” 3.05 (0.14) �yDR ¼ 3:19 ð0:15Þ
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As indicated in Example 2, it is possible to achieve large adjustment of the point

estimate and variance reduction for Yem without high association with R but provided

high association with the outcome variable. Moreover, as indicated in Example 1, the

reweighting estimators can yield appreciable adjustment of the point estimate of Yun but

also slightly increase the variance, despite the low association with both Yun and R.

Cross-examination of the estimators gives rise to additional noteworthy observations.

Firstly, a striking result in Table 5 is the large variances of the IPW estimators, for

example, �yIPW is even less efficient than the baseline estimator �y for Yem. Using RPS with

five groups does not result in a smaller variance compared to that of the IPW estimator

either. Recall that in the case of V ¼ Z _ X ¼ X, Lunceford and Davidian (2004) show

that “over-modelling” p(zi; a) by p(vi; h) can reduce the variance of the IPW estimator.

However, since Xem is a subset of Z here, the predictive covariates are already included in

Z and the strategy of “over-modelling” does not work. This shows that having predictive

variables for Y in the R-model does not guarantee efficiency by itself, without an

appropriate weight adjustment method. For instance, the MGR estimator based on “over-

modelling” m(v; j ) with v ¼ z is basically as efficient as �yMGR that only uses Xem.

Moreover, the two-step estimator �y2sts is able to recover almost all the lost efficiency of

�yIPW by calibration of the IPW-adjusted weights di=pðzi; âÞ with respect to Xem.

Secondly, the two-step approach �y2sts does not offer any noticeable advantage over the

one-step MGR for the Norwegian LFS. In theory, correct modelling of the unit

nonresponse could yield approximately unbiased estimation for any outcome variable. In

reality, however, the true nonresponse model is unobtainable. This is certainly the case

with the LFS data here, given the low association between the available covariates and R.

Empirically, �y2sts does not yield any notable improvement over �yMGR here, but is more

complicated due to an extra step of model-fitting and reweighting.

Thirdly, the DR approach does not offer any noticeable advantage compared to the

traditional one- and two-step approaches for the Norwegian LFS. In the case of Yem, where

there is a good Y-model, the results here agree with the literature (Bang and Robins 2005;

Kang and Schafer 2007) that the DR estimator does not perform better than the regression

estimator, but could improve the performance of �yIPW obtained from the R-model alone.

Compared to the two-step estimator �y2stsðZ;XÞ, the DR estimator �y2stsðZ; ZÞ has the same

IPW-weights, but differ with respect to the extra calibration variables in Z \ Xem for Yem and

Z \ Xun for Yun. However, this makes little difference since the extra variables do not have

any appreciable association with the respective outcome variable.

Therefore the one-step MGR estimator �yMGR seems reasonable for the Norwegian LFS,

among the options considered here. The auxiliary variables may be selected with respect to

several key Y-variables. It is the simplest in production, and has the lowest variance, although,

in this case, the differences compared with the two-step alternatives are minor. We note that

the existing production method in the LFS is essentially the same as subclass reweighting

based on post-stratification by sex, age, and registered employment. It performs similarly to

�yMGR for both Yem and Yun, with somewhat smaller adjustment of the point estimates, but also

smaller variance for Yun. Therefore, the key to improve the existing method must be to find

other auxiliary variables in the statistical register system, as more administrative data are being

made available, that are more predictive of the unemployment status Yun. The MGR can be

used instead of the post-stratification if the number of auxiliary variables increases.
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5.2. The SILC

For the SILC, we use data from the 2015 sample, where the response rate is 57% and the

net sample size is about 9,200. We focus on two binary Y-variables: whether people find it

difficult to make ends meet and whether they have poor health conditions, denoted by Yen

and Yhe, respectively.

The association measures of each available covariate with R, Yen and Yhe are given in

Table 6, together with B and RE by the respective subclass reweighting. Here, we are in a

situation of only low association with both the outcome variables and nonresponse across

the board. The covariates selected for the R-model and the two Y-models are marked (by †)

in Table 6. No interaction terms are selected for any of the models based on these data. As

in the case of LFS, largely the same variables are selected for both Y-models, denoted by

Xen and Xhe, respectively, and each of them includes the covariates that have the highest

association with either Yen or Yhe. The R-model includes all the available covariates (Z),

except for family type that resembles marital status. While Xhe is entirely nested in Z, Xen is

almost so, except for family type.

The different estimators and their associated s.e.’s (in parentheses) are given in Table 7.

Compared to the baseline estimates, reweighting leads to upwards adjustments for both Yen

and Yhe, and increases the variance in all the cases. Again, as exemplified in Subsection

4.3, the adjustment of the point estimate can be large, several times the s.e.’s here, despite

Table 6. Association with (R, Yen, Yhe), selected†, B in 1022.

Auxiliary variable lcR lcYen
lcYhe

Ben (RE) Bhe (RE)

Age 0.00† 0.02† 0.01† 0.01 (0.98) 0.12 (0.96)
Sex 0.00† 0.00 0.00 0.08 (0.98) 0.03 (0.99)
Region 0.00† 0.00 0.00 0.15 (0.98) 0.05 (0.99)
Family type 0.00 0.02† 0.00 20.13 (1.00) 0.00 (1.00)
Birth country 0.01† 0.02† 0.00 20.43 (1.05) 20.04 (1.02)
Education 0.04† 0.01 0.01† 20.39 (1.08) 20.37 (1.13)
Marital status 0.01† 0.03† 0.01† 20.31 (1.02) 0.07 (0.97)
Income 0.03† 0.03† 0.02† 20.67 (1.08) 20.42 (1.12)
Household income 0.02† 0.06† 0.02† 20.93 (1.08) 20.34 (1.10)

Table 7. SILC estimates (s.e.) in 1022, year 2015, V ¼ Z _ Xen.

Auxiliary for
(IPW, MGR)

Mean of Yen, �y ¼ 11:20 ð0:39Þ

One-step �yIPW One-step �yMGR Two-step Estimator

(Z, Xen) 13.05 (0.44) 14.16 (0.46) �y2sts ¼ 14:68 ð0:48Þ
(V, V) 13.05 (0.44) 14.22 (0.46) �yDR ¼ 14:65 ð0:48Þ

Auxiliary for
(IPW, MGR)

Mean of Yhe, �y ¼ 6:07 ð0:30Þ

One-step �yIPW One-step �yMGR Two-step Estimator

(Z, Xhe) 6.83 (0.35) 6.99 (0.35) �y2sts ¼ 7:00 ð0:36Þ
(Z, Z) ” 6.98 (0.37) �yDR ¼ 6:94 ð0:38Þ
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the low association with both Y and R; whereas low association with Y does increase the

variance. For both Y-variables, it can be seen that the one-step MGR and the two-step

estimators are closer to each other than the one-step IPW estimators. In particular, the IPW

estimators do not have larger variances, compared to any of the alternatives that include

calibration towards the selected population auxiliary totals. Notice that using RPS with

five groups reduces the variance of �yIPW slightly, and it may somewhat change the point

estimate, for example we would have �yen ¼ 12:75 ð0:43Þ and �yhe ¼ 6:85 ð0:34Þ instead.

Regarding the three reweighting approaches, the results suggest similar conclusions for

the SILC and for the LFS. The DR estimator using (V, V), for V ¼ Z _ X, does not offer

any noticeable advantage compared to the traditional two-step approach using (Z, X) for

the SILC. Nor does the two-step approach �y2sts using (Z, X) offer any trustworthy

advantage over the one-step MGR using X. The variance of �y2sts is slightly larger than that

of �yMGR for both Y-variables. The adjustment of the point estimate is similar in the case of

Yhe, and about one s.e. larger by �y2sts for Yen. However, given the low association of the

available covariates with nonresponse, the R-model is hardly the true nonresponse model.

Indeed, given the low association with the Y-variables, it seems possible that the difference

in the adjusted point estimates may be spurious.

The situation here, where one may only achieve low association with Y, may very well

happen in many countries that have fewer auxiliary variables available than Norway. It is

often possible to find additional sample covariates that have higher association with

nonresponse. For instance, given the rotating panel design of the SILC, one may introduce

the Panel Response Status (PRS) as in Examples 3 and 4 in Subsection 4.3, which has a

higher association with R (lcR ¼ 0.20), but almost no association with the two Y-variables

(lcYen
¼ 0.00, and lcYhe

¼ 0.00). The variable PRS has three categories indicating whether

an individual is a previous respondent, previous nonrespondent, or is a new sample unit.

Adding PRS as an extra covariate to Z given in Table 6 yields Z* for the R-model.

The new one-step IPW and two-step estimators using Z* for the R-model are given in

Table 8. The 500 bootstrap resamples are generated with the same design as the SILC, but

are further stratified by whether or not an individual is a new sample unit. The most

notable feature in Table 8 is that all the reweighting estimators produce greater point-

estimate adjustments, but also considerably larger variances, compared to the

corresponding estimators without PRS in Table 7. A simple explanation is that PRS

enhances the association with R without increasing the association with the two Y-

variables. On the one hand, it is highly likely that the baseline �y underestimates both

proportions, since all the reweighting methods produce upwards adjustments. On the other

hand, it is unclear whether the bias of any adjusted estimator may have gone from negative

to positive, and the increased variances certainly suggest a heightened risk of introducing

spurious adjustments.

Table 8. SILC estimates (s.e.) in 10 22, with Z* for R-model.

One-step �yIPW Two-step �y2sts Two-step �yDR

Mean of Yen: �y ¼ 11:20 ð0:39Þ 14.39 (0.65) 15.57 (0.66) 15.43 (0.63)
Mean of Yhe: �y ¼ 6:07 ð0:29Þ 7.09 (0.43) 7.14 (0.43) 7.04 (0.44)
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The existing production method of the SILC is reweighting by about 200 subclasses,

which are formed by cross-classifying several of the auxiliary variables considered here.

Stablising the variance of estimation is therefore an important aspect for improvement.

This speaks against including variables like PRS, because the affected estimators would

have considerably larger variances. Recall that Xen and Xhe are essentially nested in Z

(Table 6). A possible resolution is to settle for a common set of variables, denoted by Q,

and choose between the IPW and MGR estimators based on an overall assessment of their

efficiency for different Y-variables. Two initial choices for Q are (i) the intersection

Q0 ¼ Z ^ Xen ^ Xhe, and (ii) the union Q1 ¼ Z _ Xen _ Xhe. In addition, one can explore

any of the 32 possible Q between Q0 and Q1, and obtain the corresponding IPW and MGR

estimates that are given in Table 9.

We observe the same pattern in Table 9 as previously, given low association with Y: the

auxiliary variables Q that yield greater adjustment of the point estimates also lead to larger

Table 9. SILC estimates (s.e.) in 1022, with different auxiliary variables.

Mean of Yen Mean of Yhe

Variables IPW (s.e.) MGR (s.e.) IPW (s.e.) MGR (s.e.)

Q0 12.68 (0.43) 13.27 (0.43) 6.61 (0.33) 6.81 (0.34)

Q0, region 12.65 (0.43) 13.24 (0.43) 6.62 (0.33) 6.81 (0.34)

Q0, sex 12.68 (0.43) 13.27 (0.43) 6.61 (0.33) 6.80 (0.34)

Q0, birth country 12.79 (0.43) 14.06 (0.46) 6.59 (0.33) 6.80 (0.35)

Q0, education 12.91 (0.44) 13.37 (0.43) 6.83 (0.34) 6.99 (0.35)

Q0, family type 12.70 (0.43) 13.37 (0.43) 6.61 (0.33) 6.81 (0.34)

Q0, region, sex 12.65 (0.43) 13.24 (0.43) 6.62 (0.33) 6.81 (0.34)

Q0, region, birth country 12.76 (0.43) 14.02 (0.46) 6.59 (0.33) 6.78 (0.35)

Q0, region, education 12.89 (0.44) 13.36 (0.43) 6.84 (0.34) 7.00 (0.35)

Q0, region, family type 12.67 (0.43) 13.35 (0.43) 6.63 (0.33) 6.81 (0.34)

Q0, sex, birth country 12.79 (0.43) 14.06 (0.46) 6.59 (0.33) 6.80 (0.35)

Q0, sex, education 12.90 (0.44) 13.37 (0.43) 6.84 (0.34) 6.99 (0.35)

Q0, sex, family type 12.70 (0.43) 13.37 (0.43) 6.61 (0.33) 6.80 (0.34)

Q0, birth country, education 13.07 (0.44) 14.18 (0.46) 6.81 (0.34) 7.00 (0.37)

Q0, birth country, family type 12.82 (0.43) 14.16 (0.46) 6.59 (0.33) 6.80 (0.35)

Q0, education, family type 12.91 (0.44) 13.45 (0.43) 6.82 (0.34) 6.99 (0.35)

Q0, region, sex, birth country 12.76 (0.43) 14.02 (0.46) 6.59 (0.33) 6.78 (0.35)

Q0, region, sex, education 12.88 (0.44) 13.36 (0.43) 6.85 (0.35) 7.00 (0.35)

Q0, region, sex, family type 12.67 (0.43) 13.35 (0.43) 6.63 (0.33) 6.81 (0.34)

Q0, region, birth country, education 13.06 (0.44) 14.14 (0.46) 6.81 (0.34) 6.97 (0.36)

Q0, region, birth country, family type 12.78 (0.43) 14.12 (0.47) 6.59 (0.33) 6.78 (0.35)

Q0, region, education, family type 12.89 (0.44) 13.44 (0.43) 6.84 (0.34) 7.00 (0.35)

Q0, sex, birth country, education 13.07 (0.44) 14.18 (0.46) 6.82 (0.35) 7.00 (0.37)

Q0, sex, birth country, family type 12.82 (0.43) 14.16 (0.46) 6.59 (0.33) 6.80 (0.35)

Q0, sex, education, family type 12.90 (0.44) 13.45 (0.43) 6.84 (0.34) 6.99 (0.35)

Q0, birth country, education, family type 13.07 (0.44) 14.26 (0.46) 6.81 (0.34) 6.99 (0.37)

Q0, region, sex, birth country, education 13.05 (0.44) 14.15 (0.46) 6.83 (0.35) 6.98 (0.37)

Q0, region, sex, birth country, family type 12.78 (0.43) 14.12 (0.47) 6.59 (0.33) 6.78 (0.35)

Q0, region, sex, education, family type 12.88 (0.44) 13.44 (0.43) 6.85 (0.35) 7.00 (0.35)

Q0, region, birth country, education, family type 13.06 (0.44) 14.22 (0.46) 6.81 (0.34) 6.97 (0.36)

Q0, sex, birth country, education, family type 13.07 (0.44) 14.26 (0.46) 6.82 (0.35) 7.00 (0.37)

Q1 13.05 (0.44) 14.22 (0.46) 6.82 (0.35) 6.98 (0.37)
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variances. The simplest choice here appears to be Q0, which achieves the minimum s.e.’s

for both the IPW and MGR estimators for both the Y-variables. Adding extra auxiliary

variables does not improve the efficiency, but it may be accepted in practice, if

benchmarking towards the extra variable is considered necessary and the induced

adjustment and variance are deemed reasonable. For example, region may be added to Q0

to produce consistent regional estimates without losing efficiency or significantly affecting

the point estimates.

6. Conclusions

Two interdependent decisions are required when reweighting for unit nonresponse:

auxiliary variable selection and weight adjustment method. The following conclusions

emerge from the review and empirical appraisal above.

When selecting the auxiliary variables, it is always useful to increase the association

with the outcome variable, but seeking higher association with nonresponse is not

necessarily helpful. In particular, one can achieve large useful adjustment of the point

estimate and reduce the variance at the same time, provided high association with the

outcome variable but only low association with nonresponse. While it is often possible to

find variables that are primarily associated with nonresponse but not the outcome

variables, such as the variable PRS in the LFS and SILC, caution would be necessary

regarding such variables, because they tend to inflate the variance and heighten the risk of

spurious adjustment, as has been demonstrated empirically in Subsections 4.3 and 5.2.

Regarding weight adjustment, the choice of method does matter, for example between

the one-step IPW and MGR estimators, especially when there exist strong auxiliary

variables for the outcome available, as for the employment variable in the LFS. In

particular, it would be unwise only to consider the IPW (or RPS) estimator based on a

nonresponse model, when high association with the outcome variable is available. Provided

weak auxiliary variables for the outcome variable, bigger adjustment of the point estimate

is often accompanied by an increasing variance, by either the IPW or MGR estimator.

Limiting the loss of efficiency and avoiding spurious adjustment may be the priority in such

situations. Thus, it is important to pay attention not only to the size of adjustment of the

point estimate by the weight adjustment method, but also the effects of reweighting on the

variance of estimation, whether the given auxiliary variables are strong or weak.

Finally, regarding the three main reweighting approaches identified in Section 1, we

found no evidence in the situations examined that supports an uncritical general adoption of

either the two-step approach. Neither the traditional nor the DR two-step approach yields

any gains empirically for the Norwegian LFS and SILC. Since the ‘true’ nonresponse

model envisaged for a two-step approach cannot be identified based on the observed data,

whether the available auxiliary variables have low or high association with nonresponse, it

makes sense to choose based on cross-examination of the alternatives in a given situation.
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A Procedure for Estimating the Variance of the
Population Mean in Rejective Sampling

Marius Stefan1 and Michael A. Hidiroglou2

Rejective sampling was first introduced by Hájek in 1964 as a way to select a sample
consisting uniquely of distinct units. If n denotes the fixed sample size, the n units are drawn
independently with probabilities that may vary from unit to unit and the samples in which all
units are not distinct are rejected. More generally, in rejective sampling, we select repeated
samples according to a basic sampling design until a selected sample meets a specified
balancing tolerance. Given a set of auxiliary variables, we consider a procedure in which the
probability sample is rejected unless the sample mean of the auxiliary variables is within a
specified distance of its corresponding population mean. The procedure represents an
alternative to the well-known balanced cube method. In this article, we propose an estimator
of the variance under the rejective sampling design. We also present the results of a Monte
Carlo simulation study.

Key words: Balanced sampling; rejective sampling; normality assumption.

1. Introduction

Auxiliary data are commonly used these days in National Statistical Offices. The resulting

estimators are either regression or calibration based. The regression-based procedures

are chosen so as to improve the reliability of the estimators of the parameters of interest. The

calibration-based procedures ensure that the weighted totals (means) of the auxiliary data

exactly agree with their population totals (means). A deficiency of these procedures is that the

final weight, the product of the original design weight times a factor accounting for the

auxiliary data, can be negative. One way to avoid negative weights is to use the weight

bounding algorithms given in Huang and Fuller (1978) or in Deville and Särndal (1992).

Another way is to use the cube method given in Deville and Tillé (2004) or the rejective

procedure developed by Fuller (2009). These methods will eliminate samples in which the final

weights associated with some sampled units are negative. Comparisons between the cube and

the rejective procedure have been given in Legg and Yu (2010) and Chauvet et al. (2017).

In this article, we focus on the rejective procedure developed by Fuller (2009) for

estimating a population mean, �YU ¼ N 21
P

i[U yi, where N is the population size and y

denotes a characteristic of interest. A number of procedures closely related to Fuller’s

(2009) rejective procedure can be found in the literature. Hájek (1981, 66) gives a formal

definition of rejective sampling resulting from a procedure in which a Poisson sample is
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rejected unless it contains exactly n units. The Hájek articles (1964, 1981) discuss the

analysis of such samples extensively.

Denote as pbðsÞ the probability of selecting a specified sample s. The associated first

order and second order inclusion probabilities are p b
i ¼

P
s]i pbðsÞ and

p b
ij ¼

P
s]i; j pbðsÞ, where p b

ij ¼ p b
i for i ¼ j. A sample sb selected from U with p b

i as

its first order selection probabilities is a basic sample: this term was introduced by Fuller

(2009). The superscript b stands for basic sampling design. The expectation and variance

operators under the basic sampling design will be denoted by Eb (z) and Vb (z).

We assume that a vector of auxiliary data, say x, is available for each unit in the

population. Let xT
i ¼ ðxi1; : : : ; xipÞ be the value of x for unit i in the population U.

The known population mean is �XU ¼ N 21
P

i[U xi. For a given sample sb, selected via the

basic sampling design, X̂�
b

HT ¼ N 21
P

i[s b xi=p
b
i is the associated Horvitz-Thompson

estimator of the population mean �XU . Its population variance is

VbðX̂�
b

HT Þ ¼
1

N 2
i[U

X

j[U

X
Db

ij

xi

p b
i

xT
j

p b
j

where Db
ij ¼ p b

ij 2 p b
i p

b
j : The variance-covariance matrix VbðX̂�

b

HT Þ is assumed to be

invertible.

The sample mean X̂�
b

HT can be quite far away from the population mean �XU : The sample

mean of samples selected with Deville and Tillé (2004)’s cube method or Fuller’s (2009)

rejective procedure will be “close” to the population mean.

In this article, we use Fuller’s (2009) rejective procedure for selecting a sample. It

is constructed based on a “distance” variable Q defined as

Q ¼ ðX̂�
b

HT 2 �XUÞ
T VbðX̂�

b

HT Þ
� �21

ðX̂�
b

HT 2 �XUÞ: ð1Þ

A sample sb , U is initially selected using the basic sampling design. This sample is

retained only if

Q # g2 ð2Þ

where g 2 . 0 is a pre-specified constant. If the Q associated with the sample does not

satisfy inequality (2), another sample sb is selected. The process stops when inequality (2)

is satisfied, and that sample is retained. Samples sb that satisfy (2) will be denoted as sr,

where r stands for rejective sampling. The term rejective sampling design will be associated

with samples sr, selected using rule (2). The expectation and variance operators associated

with the rejective sampling design will be respectively denoted by Er (z) and Vr (z).

Given inequality (2), the distance between the sample mean X̂�
b

HT and population mean
�XU is controlled via g2: the smaller g2 is, the closer X̂�

b

HT is to �XU . An approximate

rejection rate can be set by suitably selecting the value of g2. High rejection rates could

provide high reductions in the variance. On the other hand, low rejection rates may not

reduce the variance by a large amount, but provide sufficient comfort that a very poor

sample will not be selected.

A sample is balanced on a vector of auxiliary variables, x, if the following equations are

satisfied:

X̂�
b

HT ¼
�XU : ð3Þ
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Balancing can be thought of as calibration at the design stage. Deville and Tillé (2004)’s

cube method attempts to select balanced samples with pre-determined first order inclusion

probabilities. Although the inclusion probabilities are exactly satisfied with the cube

method, it may not be possible to satisfy equality in balancing Equation (3). Therefore, in

cube sampling one has not control on the (possible) discrepancy between X̂�
b

HT and �XU .

Given that g is not zero, a rejective sample sr selected using criterion (2) does not satisfy

(3). A rejective sample sr will satisfy (3) only when g ! 0, or equivalently when the

rejection rate tends to 100%. Therefore, a sample sr is only approximately balanced, but

the discrepancy between X̂�
b

HT and �XU can be controlled via the balancing tolerance g. The

drawback of rejective sampling is that the inclusion probabilities are usually unknown.

The weight associated with the basic sampling design for units belonging to a given

rejective sample sr is

wb
i;HT ¼

1

p b
i

: ð4Þ

An estimator of the population mean �YU that uses these weights is

Ŷ�
b

HT ¼
1

N i[s r

X
wb

i;HTyi: ð5Þ

The weighted estimator Ŷ�
b

HT based on weights wb
i;HT is not a Horvitz-Thompson estimator

as it is constructed with a rejective sample sr. Chauvet et al. (2017) pointed out that Ŷ�
b

HT can

be biased given the rejective sampling procedure. Its rejective bias is given by:

BrðŶ�
b

HT Þ ¼
1

N i[U

X p r
i

p b
i

2 1

� �

yi ð6Þ

where p r
i ¼ Ss r]ip

rðs rÞ and prðs rÞ is the probability of selecting a specified sample sr via

the rejective sampling design. Thus, the bias can be large if some of the p r
i =p

b
i ratios are

unusually large. For Poisson sampling and simple random sampling without replacement

p r
i =p

b
i will be fairly close to 1.

The unknown first order inclusion probabilities p r
i associated with the rejective

sampling design may or may not be equal to p b
i for i ¼ 1; : : : ;N: The probability prðsrÞ

of selecting a specific rejective sample sr can be computed exactly if N and n are

sufficiently small to enumerate all possible samples. It is then possible to compute the

inclusion probabilities p r
i and p r

ij ¼ Ss r]i; j p rðs rÞ: The inclusion probabilities p r
i and p r

ij

can be approximated via Monte Carlo methods if it is not possible to enumerate all

samples. However, as Legg and You (2010) point out, simulating enough samples for a

large population to give a precise estimate of the inclusion probability for each pair of

units is impractical.

Another possibility is to approximate them. Recently, Chauvet el al. (2017)

approximated the first order probability of inclusion p r
i via the Edgeworth expansion

for a basic sampling design that used Poisson sampling. Using these approximations, an

approximately unbiased estimator for the population mean can be constructed given that

rejective sampling was used to select the sample. They did not, however, approximate the

joint selection inclusion probabilities p r
ij necessary for measuring the precision of the

population mean estimator under rejective sampling.
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Let x* be a vector of auxiliary data available at the estimation stage. The x* vector is not

necessarily identical to x used at the design stage in the definition of Q. We will suppose

that x # x*.

There are a number of ways to use the auxiliary data x*. The GREG regression

estimator, Särndal et al. (1992, chap. 6) is the one that we chose, as it is widely used. It is

given by

Ŷ�
b

GREG ¼ Ŷ�
b

HT þ ð
�X*

U 2 X̂�
*b

HT Þ
T b̂

b

GREG

¼
1

N i[s r

X
wb

i;GREGyi
ð7Þ

where

b̂
b

GREG ¼
i[s r

X x*
i x*T

i

p b
i

0

@

1

A

21

i[s r

X x*
i yi

p b
i

and

wb
i;GREG ¼

1

p b
i

1þ Nð �X*
U 2 X̂�

*b

HT Þ
T

j[s r

X x*
j x*T

j

p b
j

0

@

1

A

21

x*
i

8
<

:

9
=

;

ð8Þ

with X̂�
*b

HT ¼ N 21
P

i[s r x*
i =p

b
i and �X*

U ¼ N 21
P

i[U x*
i :

Fuller (2009) used the optimal estimator given by:

Ŷ�
b

OPT ¼
�X*T

U b̂
b

OPT ð9Þ

where

b̂
b

OPT ¼
i[s r

Xfb
i x*

i x*T
i

ðp b
i Þ

2

0

@

1

A

21

i[s r

Xfb
i x*

i yi

ðp b
i Þ

2

and the fb
i ’s are constants determined by the design. These constants are fb

i ¼

ð1 2 p b
i Þ; i ¼ 1; : : : ;N for Poisson sampling, and fb

i ¼ ðNh 2 1Þ21ðNh 2 nhÞ for the ith

element belonging to the hth stratum for a stratified sampling design. The estimator Ŷ�
b

OPT is

design consistent under the basic procedure, (Fuller 2009), if covðX̂�
*bT

HT ; Ŷ
� b

HT Þ ¼ Oðn21Þ

and if there exists a vector c such that

fb
i x*T

i c

ðp b
i Þ

2
¼

1

p b
i

: ð10Þ

Fuller (2009) proved that estimator Ŷ�
b

OPT constructed with the rejective sample has the

same limiting variance as the regression estimator that uses the first and second order

inclusion probabilities associated with the basic selection procedure. Fuller et al. (2017)

proposed a bootstrap procedure as an alternative way to estimate the variance of Ŷ�
b

OPT . The

method, suggested for Poisson samples, also performs well with rejective Poisson

samples.

We focus on estimating the variance of an estimator of �YU , say û , given that rejective

sampling has taken place. The variance estimator is a plug-in estimator obtained from a
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result for the rejective variance of û based on a normality assumption. The rejective

variance estimator for û is expected to perform well if its distribution is normal or

approximately normal. The theory will be applied to estimate the variance of û ¼ Ŷ�
b

HT and

û ¼ Ŷ�
b

GREG under the rejective sampling knowing that, under fairly broad regularity

conditions, the limiting distributions of these estimators are normal.

The article is structured as follows. In Section 2 we obtain Vrðû Þ assuming that the joint

distribution of û and the vector X̂�
b

HT 2 �XU follows a multivariate normal distribution under

the basic sampling design. We will also show under the normality assumption that û is

unbiased under the rejective sampling design if û is unbiased under the basic sampling

design. In Section 3 we show how an estimator V̂rðû Þ of the rejective variance of û can be

obtained. Section 4 provides the results of a simulation study that evaluates VrðûÞ and its

estimator V̂rðû Þ. In this simulation, we focus on the weighted estimators Ŷ�
b

HT and Ŷ�
b

GREG

defined in Equations (5) and (7) respectively. We considered two basic procedures: simple

random sampling without replacement (SRSWOR) and Bernoulli sampling without

replacement (BernWOR). Finally, Section 5 contains the concluding remarks.

2. Rejective Mean and Variance of û Under the Normality Assumption

Recall that we denoted the mean and variance of an estimator û of �YU under the rejective

sampling as Erðû Þ and Vrðû Þ respectively. The population parameters Erðû Þ and Vrðû Þ are

based on the unknown probabilities associated with the rejective sample. However, it is

possible to express them in terms of the basic sampling distribution and Q given by (1).

That is, ErðûÞ and VrðûÞ are set equal to the conditional mean and variance of û conditioned

by Q # g2:

Erðû Þ ¼ Ebðû jQ # g2Þ and VrðûÞ ¼ Vbðû jQ # g2Þ: ð11Þ

We decompose the middle component of Q, the variance-covariance matrix

VbðX̂�
b

HT Þ
� �21

, using the Cholesky decomposition. That is,

VbðX̂�
b

HT Þ
� �21

¼ PT P ð12Þ

where PT is a p £ p lower triangular matrix that is invertible.

Next, define the p-dimensional vector Z ¼ ðZ1; : : : ; ZpÞ
T ,

Z ¼ PðX̂�
b

HT 2 �XUÞ: ð13Þ

Using Z, the quadratic form Q given by (1) can alternatively be written as:

Q ¼ ZT Z ¼
Xp

i¼1

Z2
i ð14Þ

where Zi is the ith component of the p-dimensional vector Z.

Define the p þ 1 dimensional vector W as û augmented with Z: that is W ¼ ðû ;ZT ÞT .

Using (14), the conditional mean and the conditional variance in (11) are respectively
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given by

Erðû Þ ¼ Ebðû jZ
T Z # g2Þ and Vrðû Þ ¼ Vbðû jZ

T Z # g2Þ

The conditional mean and variance can be evaluated using the multivariate distribution

of W. We assume that the sampling distribution of W under the basic sampling design is a

multivariate normal distribution of dimension p þ 1. That is W , MVNpþ1ðmw;SwÞ with

mw ¼ EbðWÞ and Sw ¼ VbðWÞ. It follows from (13) that Eb (Z) ¼ 0 and mT
w ¼ ðmu; 0

T Þ,

where mu ¼ EbðûÞ.

Since the matrix P is non-singular, Equation (12) can be expressed as PVbðX̂�
b

HT ÞP
T ¼ Ip

where Ip is the identity matrix of order p. It follows that the variance-covariance matrix

Vb (Z) of Z under the basic sampling design is the identity matrix Ip. Since Z is a component

of W, it follows that, under the basic sampling design, Z is distributed as Z , MVNp (0; Ip)

and its density function is fZðzÞ ¼ ð
ffiffiffiffiffiffi
2p
p
Þ2pe21

2
z T z.

Denote as s 2 ¼ Vb(û ) the variance of û, and szu ¼ covb (Z,û ) as the covariance

between the random vector Z and the û, under the basic sampling design. We have:

szu ¼ covbðZ;û Þ ¼ P covbðX̂�
b

HT ;ûÞ ð15Þ

where covbðX̂�
b

HT ;û Þ¼ ðcovbðX̂�
b

1HT ;û Þ; : : : ; covbðX̂�
b

pHT ;û ÞÞ
T with X̂�

b

kHT ¼N 21
P

i[s b xik=p
b
i .

The variance-covariance matrix Sw and its inverse are given by:

Sw ¼
s 2
u s T

zu

szu Ip

0

@

1

A and S21
w ¼

a21 2a21s T
zu

2a21szu M

 !

ð16Þ

where

a ¼ s 2
u 2 s T

zuszu and M ¼ Ip þ
1

a
szus

T
zu:

The determinant of matrix Sw; jSwj, is equal to a.

Given the above preliminaries, we can now spell out our main result concerning

the rejective mean ErðûÞ and the rejective variance VrðûÞ of estimator û using the

normality of W.

Theorem 1. Assume that the basic sampling distribution of vector W follows a

multivariate normal distribution: that is W , MVNpþ1ðmw;SwÞ. Given that X̂�
b

HT satisfies

inequality (2), the conditional mean and variance of û are:

i: ErðûÞ ¼ Ebðû jZ
T Z # g2Þ ¼ mu ð17Þ

and

ii: VrðûÞ ¼ Vbðû jZ
T Z # g2Þ ¼ s 2

u 2 s T
zuszu 1 2

Ð

A
z2

1 f ZðzÞdz
Ð

A
f ZðzÞdz

0

@

1

A ð18Þ

where A ¼ {ðz1; : : : ; zpÞ [ Rpjz2
1 þ : : :þ z2

p # g2}, and z1 is the first component of

zT ¼ ðz1; : : : ; zpÞ.
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Proof: See Appendix A (Subsection 6.1).

Deville and Tillé (2005) used a similar normality assumption on the distribution of an

augmented vector to evaluate the variance in the case of balanced sampling. Deville and

Tillé (2005) obtained four alternative approximations for the variance of the Horvitz-

Thompson (Horvitz and Thompson 1952) under balanced sampling that allowed them to

construct variance estimators that do not depend on second order inclusion probabilities.

It follows from part i. of Theorem 1 that û will be unbiased under the rejective sampling

design if û is an unbiased estimator of the population mean under the basic sampling

design. Part ii. of Theorem 1 provides a formula for computing the variance of û under the

rejective sampling and the normality assumption. Notice that if the normality assumption

W , MVNpþ1ðmw;SwÞ only holds approximately, then Equations (17) and (18)

respectively represent approximations of Er (û ) and Vr (û).

Next, we show how the integrals in Equation (18) can be computed.

Proposition 1: For a positive integer n $ 0, let JnðgÞ the integral given by JnðgÞ ¼Ð g
0
r ne2r 2

2 dr:

i. The integral Jn(g) obeys the following recursive relation

Jnþ1ðgÞ ¼ nJn21ðgÞ2 gne
2

g 2

2 ;where n $ 1: ð19Þ

The first two Jn(g) values are computed as: J0ðgÞ ¼
ffiffiffiffiffiffi
2p
p

ðFðgÞ2 0:5Þ and J1ðgÞ ¼

1 2 e2
g 2

2 , where F(·) is the cumulative distribution function of a standard normal

distribution.

ii. Given A and f ZðzÞ as defined in Theorem 1, we have that:

1 2

Ð

A
z2

1f ZðzÞdz
Ð

A
f ZðzÞdz

¼ gðg; pÞ ð20Þ

where gðg; pÞ ¼ g pe
2
g 2

2

pJp21ðgÞ
.

Proof : See Appendix B (Subsection 6.2).

Using (12) and (15), the product s T
zuszu is given by:

s T
zuszu ¼ covbðX̂�

b

HT ;û Þ
T VbðX̂�

b

HT Þ
� �21

covbðX̂�
b

HT ;û Þ:

Recall that s 2
u ¼ Vbðû Þ. Using (18) and (20), VrðûÞ can be expressed as:

Vrðû Þ ¼ VbðûÞ2 covbðX̂�
b

HT ;û Þ
T VbðX̂�

b

HT Þ
� �21

covbðX̂�
b

HT ;û Þgðg; pÞ: ð21Þ

The variance matrix VbðX̂�
b

HT Þ and its inverse are positive definite. The quadratic form

uT VbðX̂�
b

HT Þ
� �21

u is greater or equal to zero for any vector u. Since g(g, p) is positive, the

second term in Equation (21) is greater or equal to zero, and it follows that Vrðû Þ # Vbðû Þ.

If an estimator û satisfies the conditions of Theorem 1, Equation (21) shows that its

rejective variance is equal or smaller than its basic variance.
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Notice that
g!1
lim J0ðgÞ ¼

ffiffiffiffiffiffiffiffiffi
p=2

p
and

g!1
lim J1ðgÞ ¼ 1. Using these limits and the recursive

formula given by (19), it follows that
g!1
lim JpðgÞ is finite for any fixed p. This implies that

g!1
lim gðg; pÞ ¼ 0 and that

g!1
lim VrðûÞ ¼ Vbðû Þ. This means that when g is large, the basic and

the rejective sampling plans are similar, and consequently there is little gain in precision in

using rejective sampling.

Since
g!0
lim J0ðgÞ ¼

g!0
lim J1ðgÞ ¼ 0, it follows that

g!0
lim JpðgÞ ¼ 0 for any fixed p. Hence:

g!0
lim gðg; pÞ ¼

g!0
lim

gp

pJp21ðgÞ
¼

g!0
lim

pgp21

pgp21e
2

g 2

2

¼ 1: ð22Þ

Using Equations (21) and (22), the minimum rejective variance of û , V min
r ðû Þ, is

attained when g tends to zero. This minimum is:

V min
r ðûÞ ¼ Vbðû Þ2 covbðX̂�

b

HT ;ûÞ
T VbðX̂�

b

HT Þ
� �21

covbðX̂�
b

HT ;û Þ: ð23Þ

The rejective variance Vrðû Þ is a function of g(g, p). Table 1 illustrates the behavior of

g(g, p) as a function of p and the rejection rate (RR). An approximate rejection rate can be

set using the quantiles of the x2ð pÞ distribution. Recall that g 2 given in Equation (2) is a

pre-specified constant. As g tends to zero, the rejection rate tends to 100% for a fixed p. On

the other hand, for a fixed rejection rate, g increases as p increases.

The results given in Table 1 support Equation (22). That is, for a given p, as the rejection

rate increases, or equivalently as g tends to zero, g (g, p), tends to 1.

For a given rejection rate, the term g(g, p) decreases as p increases, or equivalently as

g tends to infinity. This implies that increasing the number of variables in the distance

variable Q defined by (1) does not necessarily result in reductions of the rejective variance

VrðûÞ. In order to decrease Vrðû Þ, one has to make sure that the variance-covariance term

covbðX̂�
b

HT ;ûÞ
T VbðX̂�

b

HT Þ
� �21

covbðX̂�
b

HT ;û Þ is large.

3. Estimation of Vrðû Þ

In this section we construct an estimator V̂rðû Þ of the rejective variance Vrðû Þ. It is obtained

by plugging into Equation (21) the estimators of its components under the basic sampling

design.

Table 1. Values of g(g, p) as a function of p and Rejection Rate (RR).

Rejection Rate (RR)

p 0.80 0.90 0.95

1 0.978 0.994 0.998

2 0.892 0.948 0.974

3 0.810 0.887 0.931

4 0.745 0.830 0.885

5 0.692 0.782 0.842
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Three population parameters in Equation (21) are to be estimated. They are: i. the

variance-covariance matrix VbðX̂�
b

HT Þ; ii. the variance VbðûÞ; and iii. the covariance vector

covbðX̂�
b

HT ;û Þ. These parameters correspond to the basic sampling design. They are

estimated using inclusion probabilities p b
i and p b

ij associated with units that belong to the

rejective sample sr.

An estimator of VbðX̂�
b

HT Þ is

V̂bðX̂�
b

HT Þ ¼
1

N 2
i[s r

X

j[s r

X Db
ij

p b
ij

xi

p b
i

xT
j

pb
j

: ð24Þ

Let V̂bðûÞ anddcovcovbðX̂�
b

HT ;û Þ be the respective estimators of VbðûÞ and covbðX̂�
b

HT ;ûÞ under

the basic design. Then, an estimator for Vbðû Þ is

V̂rðûÞ ¼ V̂bðûÞ2dcovcovbðX̂�
b

HT ;ûÞ
T V̂bðX̂�

b

HT Þ
� �21

dcovcovbðX̂�
b

HT ;û Þgðg; pÞ: ð25Þ

Remark 1: The plug-in estimator V̂rðûÞ is obtained by replacing the unknown

parameters VbðûÞ, covbðX̂�
b

HT ;ûÞ and VbðX̂�
b

HT Þ by their respective estimators V̂bðû Þ,

dcovcovbðX̂�
b

HT ;ûÞ and V̂bðX̂�
b

HT Þ. They are unbiased under the basic procedure. That is, if one

was to average their values over the set of samples sb, their expectation would be Vbðû Þ,

covbðX̂�
b

HT ;û Þ and VbðX̂�
b

HT Þ respectively. However, given that we compute their values with

the rejective samples sr, some bias may occur.

Remark 2: Part i. of Theorem 1 can be applied to each of the three estimators, V̂bðû Þ,

dcovcovbðX̂�
b

HT ;ûÞ and V̂bðX̂�
b

HT Þ. If their basic sampling distribution is approximately normal,

they will be approximately unbiased when they are computed using the sr samples. This in

turn will provide an estimator V̂rðû Þ of Vrðû Þ that will be approximately unbiased. Results

in Section 4 illustrate that the bias of V̂rðû Þ decreases as n increases.

4. Simulation Study

In this section we report on a Monte Carlo simulation that evaluates the Equation (21) for

the rejective variance VrðûÞ and its estimator V̂rðû Þ, when û ¼ Ŷ�
b

HT and û ¼ Ŷ�
b

GREG. We

considered two basic sampling designs with equal probabilities: one of fixed sample size

and the other one with random sample size. These two basic sampling designs are:

1. SRSWOR of fixed sample size n with inclusion probabilities p b
i ¼ n=N, and

2. BernWOR of mean sample size n with equal inclusion probabilities p b
i ¼ n=N.

Next, we describe how the population variances and their estimators are obtained for the

two estimators Ŷ�
b

HT and Ŷ�
b

GREG and the two sampling designs. We denote by VhbðX̂�
b

HT Þ,

h ¼ 1, 2 the variance-covariance matrix of X̂�
b

HT ¼ N 21
P

i[s b xi=p
b
i under the basic

sampling design. The subscript h is set to 1 when SRSWOR is used as the basic sampling

design. It is set to 2 when BernWOR is used as the basic sampling design. For SRSWOR,

the matrix V1bðX̂�
b

HT Þ is ð1 2 f Þn21ðN 2 1Þ21
P

i[Uðxi 2 �XUÞðxi 2 �XUÞ
T . For BernWOR,

V2bðX̂�
b

HT Þ is ð1 2 f Þn21N 21
P

i[U xix
T
i , where f ¼ n=N (see Särndal et al. 1992, Result

5.4.1., 170).
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The estimated population mean X̂�
b

HT was based on the two-dimensional vector xk ¼

ðx1k; x2kÞ
T for SRSWOR, to ensure that the matrix V1bðX̂�

b

HT Þ would be non-singular. For

BernWOR, X̂�
b

HT was based on the three-dimensional vector xk ¼ ð1; x1k; x2kÞ
T . The three-

dimensional vector of auxiliary variables x*
k ¼ ð1; x1k; x2kÞ

T was used to construct Ŷ�
b

GREG

for both SRSWOR and BernWOR.

We computed the population variance Vbðû Þ and the population covariance

covbðX̂�
b

HT ;ûÞ for the two basic sampling designs, SRSWOR with fixed sample size n

and BernWOR with expected sample size n. We denote them as Vhbðû Þ and covhbðX̂�
b

HT ;ûÞ

for h ¼ 1, 2, where û is either Ŷ�
b

HT ¼ N 21
P

i[s r yi=p
b
i or Ŷ�

b

GREG ¼ Ŷ�
b

HTþ

ð �X*
U 2 X̂�

*b

HT Þ
T b̂

b

GREG. Given that the population data, y and x* are known, it is possible to

compute an exact population variance for Ŷ�
b

HT (see Särndal et al. 1992, Result 2.8.1., 43)

and an exact population covariance covbðX̂�
b

HT ; Ŷ
� b

HT Þ (see Särndal et al. 1992, Result 5.4.1.,

170). On the other hand, this is not possible for the regression estimator Ŷ�
b

GREG. Särndal

et al. (1992, Result 6.6.1., 235) provide an approximate population variance for Ŷ�
b

GREG

based on a Taylor linearization of Ŷ�
b

GREG. The Taylor expansion can also be used to

approximate covhbðX̂�
b

HT ; Ŷ
� b

GREGÞ. However, these approximations are only reasonable for

moderate to large values of n.

Given this drawback, we chose to compute Monte Carlo values for VhbðŶ�
b

GREGÞ and

covhbðX̂�
b

HT ; Ŷ
� b

GREGÞ by sampling a large number of basic samples sb from the population U.

Although we could have computed VhbðŶ�
b

HT Þ and covhbðX̂�
b

HT ; Ŷ
� b

HT Þ exactly, we evaluated

them using the large number of samples sb selected from the population.

The estimators V̂hbðX̂�
b

HT Þ, V̂hbðû Þ and dcovcovhbðX̂�
b

HT ;û Þ were obtained via the standard

theory in Särndal et al. (1992) for the Horvitz-Thompson and GREG estimators. They

were computed using the data of the selected rejective samples sr and the inclusion

probabilities inherited from the basic sample design. Estimators V̂hbðŶ�
b

HT Þ are based on

Result 2.8.1. (Särndal et al. 1992, 43). Estimators V̂hbðX̂�
b

HT Þ anddcovcovhbðX̂�
b

HT ; Ŷ
� b

HT Þ are based

on Result 5.4.1. (Särndal et al. 1992, 170). For the GREG estimator, V̂hbðŶ�
b

GREGÞ and

dcovcovhbðX̂�
b

HT ; Ŷ
� b

GREGÞ use Result 6.6.1. (Särndal et al. 1992, 235).

We now explain how the simulation was carried out. The dependent variable y was

generated using the following linear model:

yk ¼ 1þ x1k þ 5x2k þ ek; k ¼ 1; : : : ;N with ek , Nð0; 1Þ ð26Þ

where N ¼ 1,000. The population of y-values generated by (26) has mean �YU ¼ 21:147

and variance S2
yU ¼ 234:72. The population coefficient of determination associated with

model (26) is R2 ¼ 99.5%. The values of x1 are generated using a normal distribution of

mean 10 and variance 1. The values of x2 are generated using a gamma distribution of

mean 2 and variance 10. The differential mix of distributions for generating the

independent variables x was chosen to illustrate how well Theorem 1 held under non-

normal, asymmetric distributions.

We carried out two separate simulations. The objective of the first simulation was to

compute accurately the population variance Vhbðû Þ and covariance covhbðX̂�
b

HT ;ûÞ for

h ¼ 1, 2. We selected L ¼ 500,000 basic samples, sb, from the population U for each of the

sampling procedures, SRSWOR (h ¼ 1) and BernWOR (h ¼ 2). For the lth selected

sample, we computed û ðl Þ, where û ðl Þ ¼ Ŷ�
bðlÞ

HT or û ðl Þ ¼ Ŷ�
bðlÞ

GREG. The resulting Monte Carlo
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variances and covariances are given by

VMC1
hb ðûÞ ¼

1

L

XL

l¼1

û ðl Þ 2 EMC1
hb ðû

ðl ÞÞ
� �2

and

covMC1
hb ðX̂

� b

HT ;ûÞ ¼
1

L

XL

l¼1

X̂�
bðlÞ

HT 2 EMC1
hb ðX̂

� b

HT Þ
� �

û ðl Þ 2 EMC1
hb ðûÞ

� �

where EMC1
hb ðûÞ ¼

PL
l¼1û

ðl Þ=L and EMC1
hb ðX̂

� b

HT Þ ¼
PL

l¼1X̂�
bðlÞ

HT =L with û ðl Þ and X̂�
bðlÞ

HT the

respective values of û and X̂�
b

HT for the lth selected basic sample sb.

The values of the rejective variance VrðûÞ are computed via Equation (21) that depends

on VMC1
hb ðX̂

� b

HT Þ, VMC1
hb ðû Þ and covMC1

hb ðX̂
� b

HT ;û Þ. These variances are denoted as V1rðûÞ for

SRSWOR and V2rðû Þ for BernWOR.

The objective of the second simulation was to test how accurate the rejective variance

Vhrðû Þ based on (21) and its estimator V̂hrðûÞ were under the rejective sampling. The g 2

value was chosen so as to yield rejective samples with a 90% rejection rate for both

SRSWOR and BernWOR. The g 2 value was chosen by trial and error for both of these

sampling designs. For SRSWOR, a value of g2 equal to 0.05 ðg2
1 ¼ 0:05Þ resulted in a

rejection rate of 90% of the basic samples sb. The g2 had to be increased to 0.22

ðg 2
2 ¼ 0:22Þ for BernWOR to obtain the 90% rejection rate. Noting that Q is

approximately distributed as a x 2( p) where p is the length of vector xk, we could have

obtained the value of g 2 using the quantiles of x2 ( p). However, the trial and error

approach proved to be better in getting exact 90% rejection rates.

Given the required g 2 for each of the basic sampling procedures, SRSWOR and BernWOR,

we selected L ¼ 500,000 rejective samples sr from a large number of basic samples sb, based

on criterion (2). For each selected rejective sample sr, we computed V̂hbðX̂�
b

HT Þ, V̂hbðûÞ and

dcovcovhbðX̂�
b

HT ;û Þ, for h ¼ 1, 2. The estimated values of VrðûÞ, denoted by V̂1rðû Þ for SRSWOR

and by V̂2rðû Þ for BernWOR, were obtained using Equation (25) of Section 3.

For the lth selected rejective sample let:

. û ðlÞ be the value of estimator û for the lth sample,

. V̂hrðûÞ
ðlÞ be the value of estimator V̂hrðûÞ, h ¼ 1, 2 for the lth sample, and

. V̂hbðû Þ
ðlÞ be the value of estimator V̂hbðû Þ, h ¼ 1, 2 for the lth sample.

For h ¼ 1, 2 the Monte Carlo expectation and the Monte Carlo variance of estimator û

are computed as:

EMC2
hr ðû Þ ¼

1

L

XL

l¼1

û ðlÞ and VMC2
hr ðû Þ ¼

1

L

XL

l¼1

û ðlÞ 2 EMC2
hr ðû Þ

� �2
:

The Monte Carlo expectation of estimators V̂hrðû Þ and V̂hbðû Þ are computed as:

EMC2
hr V̂hrðûÞ
� �

¼
1

L

XL

l¼1

V̂hrðû Þ
ðlÞ and EMC2

hr V̂hbðû Þ
� �

¼
1

L

XL

l¼1

V̂hbðû Þ
ðlÞ:

Stefan and Hidiroglou: Variance Estimation for Rejective Sampling 183

Unauthentifiziert   | Heruntergeladen  23.03.20 10:40   UTC



4.1. Rejective Sampling Using SRSWOR

The following observations can be made from Table 2. The estimators Ŷ�
b

HT and Ŷ�
b

GREG are

virtually unbiased under the rejective sampling design. This follows because the Monte

Carlo expectation of Ŷ�
b

HT and Ŷ�
b

GREG, represented by EMC2
1r ðûÞ, is quite close to the true

population mean �YU ¼ 21:147, for all values of n.

We compare the various combinations of population variances VMC1
1b ðûÞ, VMC2

1r ðûÞ and V1rðûÞ.

The use of rejective sampling results in gains in terms of population variance. This

follows by comparing the variance VMC1
1b ðû Þ under SRSWOR to the Monte Carlo variance

VMC2
1r ðû Þ under rejective sampling. The gains are quite large for the Ŷ�

b

HT estimator: this

makes sense, as we have drawn samples whose mean, X̂�
b

HT , is quite close to the population

mean X̂�U . On the other hand, for the regression estimator Ŷ�
b

GREG, the gains are not as large

since it uses auxiliary data that are well correlated with y.

The value of V1rðû Þ is compared to the Monte Carlo variance of û under rejective

sampling, VMC2
1r ðû Þ. Recall that the two components of V1rðû Þ, defined by Equation (21),

were obtained via simulation under SRSWOR. The value of V1rðû Þ is quite close to VMC2
1r ðûÞ

for û ¼ Ŷ�
b

HT . For û ¼ Ŷ�
b

GREG, the largest difference between V1rðŶ�
b

GREGÞ and VMC2
1r ðŶ

� b

GREGÞ

occurs when n ¼ 10: in this case we have that V1rðŶ�
b

GREGÞ ¼ 0:1792 and VMC2
1r

ðŶ�
b

GREGÞ ¼ 0:0947. This means that for n ¼ 10, the normality assumption of Theorem 1 is

far from being satisfied. Theorem 1 is not applicable for small values of n. For moderate to

large values of n, V1rðŶ�
b

GREGÞ and VMC2
1r ðŶ

� b

GREGÞ are approximately equal.

The covariance in the second term of V1rðŶ�
b

GREGÞ given by Equation (21) can be

approximated using Result 6.6.1. (Särndal et al. 1992, 235). That is cov1bðX̂�
b

HT ; Ŷ
� b

GREGÞ <
ð1 2 f Þn21SxE where SxE ¼ ðN 2 1Þ21ð

P
i[U Eixi 2 N �E �XUÞ, b0;GREG ¼

�P
i[U

x*
i x*T

i

�21P
i[U x*

i yi, Ei ¼ yi 2 x*T
i b0;GREG and �E ¼ N 21

P
i[U Ei. It can be shown that

P
i[U Eixi ¼ 0 and

P
i[U Ei ¼ 0, using the system of equations

P
i[Uð yi 2

x*T
i b0;GREGÞ x

*
i ¼ 0 and xi , x*

i . Hence, SxE ¼ 0 and the second term in Equation (21)

is approximately zero. This explains why the variances VMC1
1b ðŶ

� b

GREGÞ and V1rðŶ�
b

GREGÞ

are approximately equal for all values of n considered in Table 2. On the other

hand, we noticed that V1rðŶ�
b

GREGÞ and VMC2
1r ðŶ

� b

GREGÞ are getting closer as n increases.

Consequently, the rejective variance of Ŷ�
b

GREG tends to its basic variance if SRSWOR is the

basic sampling design. This is not the case for Ŷ�
b

HT , as Table 2 clearly illustrates.

The estimator V̂1bðûÞ is unbiased for V1bðû Þ under the SRSWOR basic sampling design.

However, when its Monte Carlo mean is computed over the set of the rejective samples sr,

this estimator has some bias. This is readily observed from Table 2 by comparing the value

of EMC2
1r ½V̂1bðû Þ� to the variance VMC1

1b ðû Þ. For n ¼ 10 the bias is large for both estimators,

û ¼ Ŷ�
b

HT and û ¼ Ŷ�
b

GREG. Under the rejective sampling, as n increases, the bias of V̂1bðû Þ as

an estimator of V1bðûÞ decreases (see Remark 2). A similar conclusion holds for

dcovcov1bðX̂�
b

HT ;û Þ as an estimator of cov1bðX̂�
b

HT ;û Þ under rejective sampling (numerical results

not shown).

We next turn to the estimators of the rejective variance of û . The variance of û under

rejective sampling can be estimated by V̂1bðûÞ or by V̂1rðû Þ. The first estimator, V̂1bðûÞ,

ignores that rejective sampling has taken place. The second estimator, V̂1rðû Þ, obtained via

estimators V̂1bðX̂�
b

HT Þ, V̂1bðûÞ and dcovcov1bðX̂�
b

HT ;û Þ, accounts for the rejective sampling.
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ðû
Þ

2
3

.2
3

4
1

1
.5

1
8

4
.4

4
5

2
.1

1
4

0
.1

7
9

4
0

.0
5

5
2

0
.0

1
9

1
0

.0
0

8
8

V
M

C
2

1
r
ðû
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ðû
Þ�

2
0

.2
0

7
1

0
.7

4
1

4
.3

5
1

2
.0

9
0

0
.0

7
3

9
0

.0
4

2
1

0
.0

1
7

5
0

.0
0

8
5

N
o

te
:
� Y

U
¼

2
1
:1

4
7

,
S

2 yU
¼

2
3

4
:7

2
an

d
R

2
¼

9
9
:5

%
.

Stefan and Hidiroglou: Variance Estimation for Rejective Sampling 185

Unauthentifiziert   | Heruntergeladen  23.03.20 10:40   UTC



The estimated variance of Ŷ�
b

HT can be computed as V̂1bðŶ�
b

HT Þ or as V̂1rðŶ�
b

HT Þ. Given that

the population variance of Ŷ�
b

HT is VMC2
1r ðû Þ, V̂1bðŶ�

b

HT Þ is highly biased for all values of n. On

the other hand, V̂1rðŶ�
b

HT Þ has a small bias since, under rejective sampling, estimators

V̂1bðX̂�
b

HT Þ, V̂1bðûÞ and dcovcov1bðX̂�
b

HT ;ûÞ are biased for V1bðX̂�
b

HT Þ, V1bðû Þ and cov1bðX̂�
b

HT ;ûÞ

respectively (see Remark 1). As n increases, the bias of these estimators tends to zero. It

follows that estimator V̂1rðŶ�
b

HT Þ becomes unbiased for the rejective variance of Ŷ�
b

HT as

n becomes large.

There are two alternative estimators for estimating the variance of Ŷ�
b

GREG under the

rejective sampling:

i. V̂1bðŶ�
b

GREGÞ based on the standard theory and probabilities ðp b
i ;p

b
ij Þ of the basic

sampling procedure and

ii. V̂1rðŶ�
b

GREGÞ obtained using Equation (25).

From a bias point of view, they are very similar if we compare EMC2
1r ½V̂1bðŶ�

b

GREGÞ� to

EMC2
1r ½V̂1rðŶ�

b

GREGÞ�. This result is not surprising. We noticed that for the GREG estimator,

its rejective and basic variances are getting closer. On the other hand, under rejective

sampling, the bias of V̂1bðŶ�
b

GREGÞ as an estimator of V1bðŶ�
b

GREGÞ tends to zero. It follows

that the bias of V̂1bðŶ�
b

GREGÞ as an estimator of V1rðŶ�
b

GREGÞ decreases as n becomes larger.

Fuller (2009) proved that this would be the case for the optimal estimator, Ŷ�
b

OPT , defined

in Equation (9).

A referee pointed out that the proposed variance estimator in (25) shows large bias for

small sample sizes in the simulation study. He suggested that we consider alternative

variance estimators proposed in Deville and Tillé (2005). These estimators, that we denote

as DT, were developed for the variance of the Horvitz-Thompson estimator Ŷ�
b

HT in the

context of balanced sampling defined by Equation (3).

Using Deville and Tillé (2005)’s notation, the DT variance estimators are given by

V̂
DTi

r ðû Þ ¼
1

N 2
k[s r

X
ckiðy

^
k

2 ŷ^*
k Þ

2; i ¼ 1; : : : ; 5 ð27Þ

where ŷ^*
k ¼ x̂^

T

k ð
P

l[s r clix
^

l x^
T

l Þ
21
P

l[s r clix
^

ly
^

l, with x^k¼ xk=pk and y^k¼ yk=pk.

Deville and Tillé (2005) proposed five ck’s labeled as cki; i ¼ 1; : : : ; 5. The ck’s are:

i. ck1 ¼ 1 2 pk

ii. ck2 ¼ ð1 2 pkÞ
n

n2p
where p is the length of vector xk

iii. ck3 ¼ ð1 2 pkÞ

P
k[s r ð12pkÞP

k[s r Dkk1

where Dkk1 ¼ ck1 2 c2
k1x^

T

k

�

l[s r

P
cl1x^l x^

T

l

�21

x^k

iv. ck4 ¼
bk4

pk

n
n2p

N2p
N

where bk 4 are solutions to the nonlinear equations

pkð1 2 pkÞ ¼ bk4 2 b2
k4x^

T

k

�

l[U

X
bl4 x^l x^

T

l

�21

x^k; k ¼ 1; : : : ;N

and

v. ck5 where the ck5’s are solutions to the nonlinear equations
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1 2 pk ¼ ck5 2 c2
k5x^

T

k

�

l[s r

X
cl5 x^l x^

T

l

�21

x^k; k ¼ 1; : : : ; n

We followed Matei and Tillé (2005) to solve the nonlinear equations by the fixed

point technique using a single iteration.

We denote our estimator given by (25) as V̂
SH

r ðû Þ. We analyzed the performance of the DT

variance estimators, and compared them to our own, for û ¼ Ŷ�
b

HT , via a third simulation study

using SRSWOR as the basic sampling design. Since under SRSWOR, V̂
DT2

r ðûÞ ¼ V̂
DT3

r ðû Þ,

we computed V̂
DTi

r ðûÞ for i ¼ 1, 2, 4, 5. We used xk ¼ ðx1k; x2kÞ, implying that p ¼ 2.

We generated a large number (L ¼ 500,000) of rejective samples sr to compute the

Monte Carlo rejective variance as:

VMC3
r ðûÞ ¼

1

L

XL

l¼1

ðû ðl Þ 2 û�Þ2

with û�¼ L21
PL

l¼1û
ðl Þ where û ðl Þ is the lth value of û .

Let V̂r be one of the five variance estimators (V̂
SH

r ðûÞ and V̂
DTi

r ðû Þ, i ¼ 1, 2, 4, 5) to be

compared in the simulation study, and V̂
ðl Þ

r its lth value. The variance estimators are

compared via the Relative Bias (RB):

RBðV̂rÞ ¼
EMC3

r ðV̂rÞ

VMC3
r ðû Þ

2 1

where the Monte Carlo mean of V̂r is computed as EMC3
r ðV̂rÞ ¼ L21

PL
l¼1V̂

ðl Þ

r .

We considered two more values for the rejection rate: 0.99 and 0.997. When the basic

sampling design is SRSWOR, a rejection rate of 99% is obtained for g 2
3 ¼ 0:003 whereas

a rejection rate of 99.7% is obtained for g 2
4 ¼ 0:0009. The results of the relative bias of the

five variance estimators under the three rejective rates, 0.90, 0.99 and 0.997, are given

in Table 3.

Table 3. Relative bias (%) of the variance estimators for û ¼ Ŷ�
b

HT : basic sampling design SRSWOR.

V̂
SH

r ðûÞ V̂
DT1

r ðûÞ V̂
DT2

r ðûÞ V̂
DT4

r ðûÞ V̂
DT5

r ðûÞ

RR50.90
ðg 2

1 ¼ 0:05Þ

n510 216.1 279.9 274.9 275.0 276.0

n 5 20 27.9 277.5 275.0 275.0 275.4

n 5 50 22.9 275.9 274.9 274.9 275.0

n5100 21.9 275.4 274.9 274.9 274.9

RR50.99
ðg 2

3 ¼ 0:003Þ

n510 220.6 231.5 214.3 214.4 217.9

n520 210.6 223.6 215.1 215.1 216.4

n550 23.5 217.7 214.3 214.3 214.6

n5100 21.6 216.1 214.4 214.4 214.5

RR50.997
ðg 2

4 ¼ 0:0009Þ

n510 222.0 223.7 24.6 24.7 28.6

n520 211.3 214.7 25.2 25.2 26.6

n550 25.3 29.3 25.5 25.6 25.9

n5100 22.7 26.9 25.0 25.0 25.1

Note: �YU ¼ 21:147, S2
yU ¼ 234:72 and R 2 ¼ 99:5%.
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The relative bias of the four DT variance estimators differ across rejection rates and

sample sizes. The relative bias of these estimators decreases as the rejection rate increases.

When the rejection rate is 90%, none of the DT variance estimators have a relative bias that

is smaller than the SH variance estimator. All four DT variance estimators display very

similar relative bias, ranging from 279.9% to 274.9% for all sample sizes considered.

The relative bias of the DT estimators decreases when the rejection rate is increased to

99%. DT2, DT4 and DT5 have relative biases that are similar. Their bias is smaller than

the one associated with SH only for n ¼ 10. DT1 has relative bias that is consistently

higher than the one associated with SH.

The DT estimators have the smallest relative bias when the rejection rate is 99.7%. This

is not surprising as the balancing Equation (3) is closely satisfied at such a high rejection

rate. Once more, DT1 has the largest relative bias amongst the DT variance estimators.

The other DT variance estimators have smaller relative bias than the SH estimator when

n is 10 or 20. For n equal to 50 or 100, the SH estimator has the smallest relative bias.

4.2. Rejective Sampling Using BernWOR

In Table 4, we present the results obtained when the basic procedure is BernWOR and the

rejection rate is 90%. The results in the table are with respect to the expected sample size.

The Monte Carlo expectation of û ¼ Ŷ�
b

HT and û ¼ Ŷ�
b

GREG represented by EMC2
2r ðû Þ is

quite close to the true population mean �YU ¼ 21:147, for all values of n.

BernWOR adds extra variation because the sample size is random. For the HT

estimator, the basic variance VMC1
2b ðŶ

� b

HT Þ under BernWOR is approximately three times

larger than VMC1
1b ðŶ

� b

HT Þ under SRSWOR. For the GREG estimator, VMC1
2b ðŶ

� b

GREGÞ and

VMC1
1b ðŶ

� b

GREGÞ are much closer except for n ¼ 10. In this case, VMC1
2b ðŶ

� b

GREGÞ is 0.3098 as

opposed to 0.1794 for VMC1
1b ðŶ

� b

GREGÞ. Due to the small expected sample size (n ¼ 10), the

value VMC1
2b ðŶ

� b

GREGÞ ¼ 0:3098 was computed using BernWOR samples sb of size larger

than 5. There is still a large difference between 0.3098 and 0.1794 compared to the

corresponding differences associated to larger expected sample sizes considered in the

simulation. This shows that it is fairly inappropriate to use a GREG estimator in samples

with very few observations when the GREG estimator is based on a three-dimensional

vector (1, x1k, x2k)
T.

The gains in terms of variance due to the rejective sampling design are larger for

SRSWOR as opposed to BernWOR for û ¼ Ŷ�
b

HT . This is observed by comparing the ratios

VMC1
1b ðŶ

� b

HT Þ=VMC2
1r ðŶ

� b

HT Þ in Table 2 for SRSWOR to the ratios VMC1
2b ðŶ

� b

HT Þ=VMC2
2r ðŶ

� b

HT Þ in

Table 4 for BernWOR. The ratio VMC1
1b ðŶ

� b

HT Þ=VMC2
1r ðŶ

� b

HT Þ is approximately equal to 60,

whereas the ratio VMC1
2b ðŶ

� b

HT Þ=VMC2
2r ðŶ

� b

HT Þ is approximately equal to 20 for any sample size

in the simulation. For û ¼ Ŷ�
b

GREG, the gains in terms of variance are similar for SRSWOR

and BernWOR.

Note that V2rðû Þ and VMC2
2r ðûÞ, for û ¼ Ŷ�

b

HT and û ¼ Ŷ�
b

GREG, are getting closer as n

increases.

For Ŷ�
b

GREG, its rejective and basic variances are getting closer as n increases. This

observation is in line with what happens when SRSWOR is the initial sampling design.

A similar argument can be used to support this observation for moderate to large values

of n. The population covariance cov2bðX̂�
b

HT ; Ŷ
� b

GREGÞ is approximately equal to
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û
¼

Ŷ�
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ðû
Þ

6
7

.4
9

0
3

3
.4

0
4

1
2

.9
4

6
6

.1
3

6
0

.3
0

9
8

0
.0

6
2

8
0

.0
1

9
6

0
.0

0
8

9

V
M

C
2

2
r
ðû
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ð1 2 f Þn21N 21
P

i[U Ei xi. This approximation is obtained by applying Result 6.6.1., in

Särndal et al. (1992, 235) to the case of the covariance between the GREG and the HT

estimators when the sampling design is BernWOR. Since
P

i[U Ei xi ¼ 0, it follows that

the second term in Equation (21) approaches zero as n increases.

The population variance V2rðû Þ is estimated by V̂2rðûÞ. Comparing the Monte Carlo

mean of the resulting estimator EMC2
2r ½V̂2rðûÞ� to the Monte Carlo variance VMC2

2r ðû Þ, we see

that large differences occur for n ¼ 10 for both Ŷ�
b

HT and Ŷ�
b

GREG. As n increases the bias of

these estimators tends to zero.

5. Conclusion

The use of rejective sampling brings about reductions in variance for both the Horvitz-

Thompson estimator and the GREG regression estimator. The reduction is more

significant for the Horvitz-Thompson than for the regression estimator.

We obtained an exact formula for the rejective variance VrðûÞ of a population mean

estimator û by assuming that under the basic sampling design, û and its associated

auxiliary data mean X̂�
b

HT , have a joint normal distribution. This result was obtained by

conditioning on Q # g2. This allowed us to avoid computing (approximating) the

unknown rejective inclusion probabilities p r
i and p r

ij.

If the normal distribution is only approximate, Vrðû Þ represents an approximation of the

true rejective variance. There are estimators û of the population mean �YU whose

distribution tends to normality. Our result is applicable to such estimators in samples with

sufficiently large n.

An estimator V̂rðûÞ for the rejective variance was obtained by replacing the unknown

parameters in Vrðû Þ by estimators associated with the basic sampling design and based on

the rejective sample.

A simulation study was undertaken to evaluate the accuracy of Vrðû Þ and the bias of its

estimator V̂rðû Þ. This was carried out for two estimators ðû ¼ Ŷ�
b

HT and û ¼ Ŷ�
b

GREGÞ and

two basic sampling designs (SRSWOR and BernWOR). The empirical results show that if

the normality assumption is approximately respected, the formula for VrðûÞ performs well

for moderate to large values of n. For small sample sizes, the proposed variance estimator

V̂rðû Þ is biased but the bias reduces as n increases.

6. Appendix

6.1. Appendix A: Proof of Theorem 1

i. Denote by fW (w) the density function of vector W where w ¼ (x, z) and z ¼ (z1, : : : , zp).

The marginal density of Z is

f ZðzÞ ¼

ð1

21

f Wðx; zÞdx ¼
1

ð
ffiffiffiffiffiffi
2p
p
Þp

e
2

zT z

2

Using the formula for the inverse of matrix SW, the determinant jSwj ¼ a and the

definition of matrix M, M ¼ Ip þ a21szus
T

zu , the density function fW (w) of vector W is:
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f WðwÞ ¼
1

ð
ffiffiffiffiffiffi
2p
p
Þpþ1

ffiffiffiffiffiffiffiffiffi
jSwj

p e
2

1

2
ðw2mwÞ

TS21
w ðw2mwÞ

¼
1
ffiffiffiffiffiffiffiffiffi
2pa
p e

2
1

2a
ðx2muÞ2z Tszu½ �

2

f ZðzÞ

ðA1Þ

The conditional mean Ebðû jZ
T Z # g2Þ can alternatively be rewritten as Ebðû jZ [ AÞ,

where A is the random event defined as A ¼ {vjZ1ðvÞ
2 þ : : :þ ZpðvÞ

2 # g2}. In order

to compute Ebðû jZ
TZ # g2Þ and Ebðû

2jZT Z # g2Þ one needs to find the density function

fû jZ[AðxÞ of the conditional variable û jZ [ A.

The cumulative probability function of û jZ [ A is given by:

F
û jZ[AðxÞ ¼ Pðû # xjZ [ AÞ ¼

Pðû # x > Z [ AÞ

PðZ [ AÞ
¼

Ð x

21

Ð

A
f Wðt; zÞdzdt

Ð

A
f ZðzÞdz

where A is the set defined in Theorem 1.

The conditional density function f
û jZ[AðxÞ is obtained by differentiating F

û jZ[AðxÞ with

respect to x:

f
û jZ[AðxÞ ¼

dF
û jZ[AðxÞ

dx
¼

Ð

A
f Wðx; zÞdz
Ð

A
f ZðzÞdz

As a consequence, the conditional mean Ebðû jZ
TZ # g2Þ can be computed as:

Ebðû jZ
T Z # g2Þ ¼

Ð1

21
xð
Ð

A
f Wðx; zÞdzÞdx

Ð

A
f ZðzÞdz

¼

Ð

A
ð
Ð1

21
xf Wðx; zÞdxÞdz
Ð

A
f ZðzÞdz

ðA2Þ

The integral
Ð1

21
x f Wðx; zÞdx in (A2) can be computed as follows:

ð1

21

x f Wðx; zÞdx ¼

ð1

21

ðx 2 muÞ f Wðx; zÞdxþ mu

ð1

21

f Wðx; zÞdx

¼

ð1

21

ðx 2 muÞ f Wðx; zÞdxþ mu f ZðzÞ

The first term is obtained by replacing fw (x, z) given in (A1):

ð1

21

ðx 2 muÞf Wðx; zÞdx ¼
1
ffiffiffiffiffiffiffiffiffi
2pa
p

ð1

21

ðx 2 muÞe
2

1

2a
ðx 2 muÞ2 zTszu

	 
2

dxf ZðzÞ

¼ ðzTszuÞfZ ðzÞ
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In the last equation we used the value of integral:

1
ffiffiffiffiffiffiffiffiffi
2pa
p

ð1

21

ye
2

1

2a
ð y2zTszuÞ

2

dy ¼ zTszu

Hence,

ð1

21

xf Wðx; zÞdx ¼ ðzTszu þ muÞf ZðzÞ ðA3Þ

Replacing (A3) in (A2), we obtain:

Ebðû jZ
T Z # g2Þ ¼

Ð

A
ðzTszu þ muÞfZðzÞdz

Ð

A
fZðzÞdz

¼

Ð

A
ðzTszuÞfZðzÞdz
Ð

A
fZðzÞdz

þ mu ¼ mu ðA4Þ

In (A4) we use that
Ð

A
zi f ZðzÞdz ¼ 0 which implies

Ð

A
ðzTszuÞfZðzÞdz ¼ 0 (see (B7) below).

ii A similar argument holds for Ebðû
2 jZT Z # g2Þ:

Ebðû
2jZTZ # g2Þ ¼

Ð1

21
x2ð
Ð

A
f Wðx; zÞdzÞdx

Ð

A
f ZðzÞdz

¼

Ð

A
ð
Ð1

21
x2f Wðx; zÞdxÞdz
Ð

A
f ZðzÞdz

ðA5Þ

The numerator of (A5) can be computed as

ð1

21

x2f Wðx; zÞdx ¼

ð1

21

ðx 2 muÞ
2f Wðx; zÞdxþ 2mu

ð1

21

ðx 2 muÞf Wðx; zÞdx

þ m2
u

ð1

21

f Wðx; zÞdx ðA6Þ

We now compute each term of (A6). For the first term we replace the density function

fW (x, z) by Equation (A1):

ð1

21

ðx 2 muÞ
2f Wðx; zÞdx ¼

1
ffiffiffiffiffiffiffiffiffi
2pa
p

ð1

21

ðx 2 muÞ
2e

2
1

2a
½ðx2muÞ2zTszu�

2

dxf ZðzÞ

¼ ½aþ ðzTszuÞ
2� f ZðzÞ ðA7Þ

In the above equation we used the value of integral

1
ffiffiffiffiffiffiffiffiffi
2pa
p

ð1

21

y2e
2

1

2a
½y2zTszuÞ

2

dy ¼ aþ ðzTszuÞ
2
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For the second term of (A6) we use (A3):

2mu

ð1

21

ðx 2 muÞf Wðx; zÞdx ¼ 2muðz
TszuÞf ZðzÞ ðA8Þ

The third term in (A6) is

m2
u

ð1

21

f Wðx; zÞdx ¼ m2
u f ZðzÞ ðA9Þ

Replacing (A7), (A8) and (A9) into (A6) one obtains:

ð1

21

x2f Wðx; zÞdx ¼ ½aþ ðzTszuÞ
2 þ 2muðz

TszuÞ þ m2
u� f ZðzÞ ðA10Þ

Replacing (A10) into (A5) and using again
Ð

A
ðzTszuÞf ZðzÞdz ¼ 0, we obtain:

Ebðû
2jZT Z # g2Þ ¼ aþ m2

u þ

Ð

A
ðzTszuÞ

2f ZðzÞdz
Ð

A
f ZðzÞdz

: ðA11Þ

The conditional variance follows from (A4) and (A11):

Vbðû jZ
T Z # g2Þ ¼ aþ

A

Ð
ðzTszuÞ

2f ZðzÞdz

A

Ð
f ZðzÞdz

ðA12Þ

Now, by symmetry,
Ð

A
z2

i f ZðzÞdz ¼
Ð

A
z2

1 f ZðzÞdz and
Ð

A
zizj f ZðzÞdz ¼ 0 for i – j (see

(B8) below). It follows that:

A

ð

ðzTszuÞ
2f ZðzÞdz ¼ ðsT

zuszuÞ

A

ð

z2
1 f ZðzÞdz ðA13Þ

Using (A12), (A13) and the definition of a, a ¼ s 2
u 2 s T

zuszu, the conditional variance

is obtained:

Vbðû jZ
T Z # g2Þ ¼ s 2

u 2 s T
zuszu 1 2

Ð

A
z2

1 f ZðzÞdz
Ð

A
f ZðzÞdz

0

@

1

A

and this proves ii.

6.2. Appendix B: Proof of Proposition 1

i. We have that:

Jnþ1ðgÞ ¼

ðg

0

r n

�

2 e
2

r 2

2

� 0

dr ¼ r ne
2

r 2

2

�
�
�
�
�

0

g

þ n

ðg

0

r n21e
2

r 2

2 dr ¼ nJn21ðgÞ2 gne
2

g 2

2

and relation (19) is proved.
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The first two “J ” terms are:

J0ðgÞ ¼

ffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffi
2p
p

ðg

0

e
2

r 2

2 dr ¼
ffiffiffiffiffiffi
2p
p

ðFðgÞ2 Fð0ÞÞ ¼
ffiffiffiffiffiffi
2p
p

ðFðgÞ2 0:5Þ;

J1ðgÞ ¼

ðg

0

�

2 e
2

r 2

2

� 0

dr ¼ e
2

r 2

2

�
�
�
�
�
�

0

g

¼ 1 2 e
2

g 2

2

ii. We use the transformation to p-spherical coordinates. For a point z [ A with

z ¼ ðz1; : : : ; zpÞ, its p-spherical coordinates are ðr; u1; : : : ; up21Þ, where:

z1 ¼ r cos u1

z2 ¼ r sin u1 cos u2

z3 ¼ r sin u1 sin u2 cos u3

..

.

zp21 ¼ r sin u1 sin u2 : : : sinup22 cos up21

zp ¼ r sin u1 sin u2 : : : sinup22 sin up21

ðB1Þ

with r [ ½0; g�; u1 [ ½0;p�; : : : ; up22 [ ½0;p� and up21 [ ½0; 2p�. Using (B1), we

have that zT z ¼ r 2.

Let us denote by B the set defined as the Cartesian product

B ¼ ½0; g� £ ½0;p� £ : : : £ ½0;p� £ ½0; 2p�

The transformation (B1) maps the set A into the set B. The Jacobian of the

transformation (B1) is given by:

dz1dz2: : : dzp ¼ r p21 sin p22u1 sin p23u2: : : sin up22 dr du1: : : dup22dup21 ðB2Þ

For a positive integer n $ 0, let us denote by Tn the integral

Tn ¼

ðp

0

sinnu du

It can be shown that Tn obeys the following recursive relationship:

nTn ¼ ðn 2 1ÞTn22 ðB3Þ
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Using (B1) and (B2), the integrals
Ð

A
f ZðzÞdz and

Ð

A
z2

1 f ZðzÞdz are given by:

A

ð

f ZðzÞdz¼
1

ð
ffiffiffiffiffiffi
2p
p
Þp

B

ð

e
2

1

2
r 2

r p21 sinp22u1 sinp23u2: : :sinup22drdu1: : :dup22dup21)

A

ð

f ZðzÞdz¼
2p

ð
ffiffiffiffiffiffi
2p
p
Þp

Jp21ðgÞTp22Tp23: : :T1 ðB4Þ

and

A

ð

z2
1f ZðzÞdz¼

1

ð
ffiffiffiffiffiffi
2p
p
Þp

B

ð

e
2

1

2
r 2

r pþ1sinp22u1cos2u1sinp23u2: : :sinup22drdu1: : :dup21)

A

ð

z2
1 f ZðzÞdz¼

2p

ð
ffiffiffiffiffiffi
2p
p
Þp

Jpþ1ðgÞðTp222TpÞTp23: : :T1 ðB5Þ

Using (B3), one gets that (Tp22 – Tp) ¼ Tp22/p and replacing in (B5) it follows that

A

ð

z2
1 f ZðzÞdz¼

2p

pð
ffiffiffiffiffiffi
2p
p
Þp

Jpþ1ðgÞTp22Tp23: : :T1 ðB6Þ

From (B4) and (B6) it results that

1 2

Ð

A
z2

1f ZðzÞdz
Ð

A
f ZðzÞdz

¼ 1 2
Jpþ1ðgÞ

pJp21ðgÞ

Then, the recursive formula (19) obtained for Jn(g) is used and Equation (20) follows.

In Appendix A, we stated without proof that
Ð

A
z1 f ZðzÞdz and

Ð

A
z1z2 f ZðzÞdz were null.

We now proceed to prove this. Since
Ð p

0
sin p22u1 cos u1 du1 ¼ 0, it follows that:

A

ð

z1 f ZðzÞdz¼
1

ð
ffiffiffiffiffiffi
2p
p
Þ p

B

ð

e
2

1

2
r 2

r psinp22u1cosu1sinp23u2: : :sinup22drdu1: : :dup21)

A

ð

z1 f ZðzÞdz¼
2p

ð
ffiffiffiffiffiffi
2p
p
Þ p

JpðgÞTp23: : :T1

ðp

0

sinp22u1cosu1du1¼0 ðB7Þ

Also,

A

ð

z1z2 f ZðzÞdz¼
1

ð
ffiffiffiffiffiffi
2p
p
Þ p

B

ð

e
2

1

2
r 2

r pþ1sinp21u1cosu1sinp23u2cosu2:::sinup22drdu1:::dup21)

A

ð

z1z2 f ZðzÞdz¼
2p

ð
ffiffiffiffiffiffi
2p
p
Þ p

Jpþ1ðgÞTp24:::T1

ðp

0

sinp21u1cosu1du1

ðp

0

sinp23u2cosu2du2¼0 ðB8Þ

By symmetry,
Ð

A
zi f ZðzÞdz ¼

Ð

A
z1 f ZðzÞdz ¼ 0 and

Ð

A
zizj f ZðzÞdz ¼

Ð

A
z1z2 f ZðzÞdz ¼

0; i – j.
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Matei, A. and Y. Tillé. 2005. “Evaluation of variance approximations and estimators in

maximum entropy sampling with unequal probability and fixed sample size.” Journal of

Official Statistics 21(4): 543–570. Available at: https://www.scb.se/contentassets/

ca21efb41fee47d293bbee5bf7be7fb3/evaluation-of-variance-approximations-and-esti-

mators-in-maximum-entropy-sampling-with-unequal-probability-and-fixed-sample-

size.pdf (accessed February 2020).

Särndal, C.-E., B. Swenson, and J. Wretman. 1992. Model Assisted Survey Sampling.

New York: Springer-Verlag.

Received June 2018

Revised March 2019

Accepted June 2019

Journal of Official Statistics196

Unauthentifiziert   | Heruntergeladen  23.03.20 10:40   UTC

http://dx.doi.org/10.5705/ss.2013.244
http://dx.doi.org/10.5705/ss.2013.244
http://doi.org/10.2307/2290268
http://doi.org/10.2307/2290268
http://doi.org/10.1093/biomet/91.4.893
https://doi.org/10.1016/j.jspi.2003.11.011
https://doi.org/10.1016/j.jspi.2003.11.011
https://doi.org/10.1093/biomet/asp042
https://doi.org/10.1080/01621459.2016.1222285
https://doi.org/10.1214/aoms/1177700375
https://doi.org/10.1214/aoms/1177700375
https://doi.org/10.2307/2280784
https://lib.dr.iastate.edu/rtd/6460
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201000111249
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201000111249
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/evaluation-of-variance-approximations-and-estimators-in-maximum-entropy-sampling-with-unequal-probability-and-fixed-sample-size.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/evaluation-of-variance-approximations-and-estimators-in-maximum-entropy-sampling-with-unequal-probability-and-fixed-sample-size.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/evaluation-of-variance-approximations-and-estimators-in-maximum-entropy-sampling-with-unequal-probability-and-fixed-sample-size.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/evaluation-of-variance-approximations-and-estimators-in-maximum-entropy-sampling-with-unequal-probability-and-fixed-sample-size.pdf


Fully Bayesian Benchmarking of Small
Area Estimation Models

Junni L. Zhang1 and John Bryant2

Estimates for small areas defined by social, demographic, and geographic variables are
increasingly important for official statistics. To overcome problems of small sample sizes,
statisticians usually derive model-based estimates. When aggregated, however, the model-
based estimates typically do not agree with aggregate estimates (benchmarks) obtained
through more direct methods. This lack of agreement between estimates can be problematic
for users of small area estimates. Benchmarking methods have been widely used to enforce
agreement. Fully Bayesian benchmarking methods, in the sense of yielding full posterior
distributions after benchmarking, can provide coherent measures of uncertainty for all
quantities of interest, but research on fully Bayesian benchmarking methods is limited. We
present a flexible fully Bayesian approach to benchmarking that allows for a wide range
of models and benchmarks. We revise the likelihood by multiplying it by a probability
distribution that measures agreement with the benchmarks. We outline Markov chain Monte
Carlo methods to generate samples from benchmarked posterior distributions. We present two
simulations, and an application to English and Welsh life expectancies.

Key words: Small domain estimation; Bayesian hierarchical model; area-level model;
life expectancy.

1. Introduction

Small area estimation is the problem of obtaining estimates for many areas or domains

defined by social, demographic and geographic variables where the number of

observations in an area can be small. It has many practical applications, from monitoring

unemployment to the targeting of anti-poverty programs (Pfeffermann 2013; Rao and

Molina 2015), and is increasingly important for official statistics. In the United States, for

instance, county-level estimates of poverty rates from the Small Area Income and Poverty

Estimates (SAIPE) program are used to allocate federal funding (U.S. Census Bureau

2014). In areas where the number of observations is small, ‘direct’ methods, such as

estimating rates by dividing the number of events in the area by the population at risk,

perform poorly. Small area estimation models compensate for small sample sizes by

exploiting additional information, such as covariate data or values from similar areas.

Because of their practical importance, small area estimates often receive extensive

public scrutiny. This scrutiny typically includes a consistency check: estimates for small

areas should agree with aggregate estimates for large areas, which are generally obtained
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1 National School of Development, Center for Statistical Science and Center for Data Science, Peking
University, Beijing, 100871 China. Email: junnizhang@163.com
2 Bayesian Demography Limited, Christchurch, New Zealand. Email: john@bayesiandemography.com

Journal of Official Statistics, Vol. 36, No. 1, 2020, pp. 197–223, http://dx.doi.org/10.2478/JOS-2020-0010

Unauthentifiziert   | Heruntergeladen  23.03.20 10:41   UTC

http://dx.doi.org/10.2478/JOS-2020-0010


using direct methods. Model-based estimates of the number of poor people in each

county, for instance, should add up to direct estimates of the number of poor people in

the state. Minor discrepancies may be tolerated, but major discrepancies undermine

the credibility of the estimates. Moreover, if estimates are used to allocate funding,

discrepancies create grounds for dispute. Many statistical offices and funding bodies

accordingly have a “one- figure” policy, whereby estimates in different tables describing

the same phenomenon must all agree with each other (De Waal 2016, 232). The U.S.

Census Bureau, for instance, adjusts county-level small area estimates to agree with state-

level ones as part of the SAIPE program (U.S. Census Bureau 2014). Within the field of

small area estimation, the aggregate estimates are referred to as benchmarks, and

techniques for forcing small area estimates to agree with the benchmarks are known as

benchmarking (Pfeffermann 2013).

Many existing methods for benchmarking treat benchmarks as a type of constraint. The

methods differ, however, in the way that the constraints are interpreted, and in the way that

the constraints are incorporated into the estimation procedures. Some methods follow

a two-step procedure: first estimating the small area models, and then modifying the

resulting point estimators to satisfy the benchmarking constraints (You et al. 2004; Datta

et al. 2011; Berg and Fuller 2009; Berg et al. 2012; Fabrizi et al. 2012; Steorts and Ghosh

2013; Fabrizi et al. 2014; Ghosh et al. 2015). Some methods treat benchmarks as

constraints on the underlying small area parameters and estimate the small area models

under these constraints (Pfeffermann and Barnard 1991; Pfeffermann and Tiller 2006;

Fabrizi et al. 2012; Pfeffermann et al. 2014). Some methods estimate the small area

models in a way that the benchmarking constraints are satisfied for point estimators of the

small area parameters (You and Rao 2002, 2003; Wang et al. 2008; You et al. 2013; Bell

et al. 2013; Ranalli et al. 2018).

Most methods, including all of the ones cited above, focus on obtaining point estimates

of small area parameters and associated uncertainty measures. Some Bayesian

benchmarking methods, however, provide probability distributions for small area

parameters (Toto and Nandram 2010; Nandram et al. 2011; Nandram and Sayit 2011;

Vesper 2013). These methods are fully Bayesian in the sense that they yield a full posterior

distribution for all unknown quantities after benchmarking. On this definition of fully

Bayesian benchmarking, methods such as those of You et al. (2004) and Datta et al.

(2011), which derive posterior distributions without benchmarking but provide point

estimators after benchmarking, are not fully Bayesian. The advantage of having a full

posterior distribution is that it automatically provides measures of uncertainty for all

model parameters, small area parameters, and derived quantities.

In this article, we present an approach to fully Bayesian benchmarking that can be

applied to a wide range of small area models. We treat benchmarks as estimates for

underlying aggregate parameters. To measure agreement with the benchmarks, we specify

a probability distribution for the benchmarks conditional on the aggregate parameters. We

revise the likelihood function by multiplying the original likelihood function by the

probability distribution for the benchmarks. Multiplying the revised likelihood function by

the prior distribution then yields the benchmarked posterior distribution.

In the main body of the article, we focus on ‘area-level’ models, as opposed to ‘unit-

level’ models (Rao and Molina 2015). Area-level models relate small area direct
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estimators to area-specific covariates. The Fay-Herriot model (Fay and Herriot 1979), for

instance, is a popular area-level model used for the estimation of small area means. Unit-

level models relate the unit values of an outcome variable to unit-specific covariates. The

World Bank or ELL method (Elbers et al. 2003), for instance, is a widely used method for

estimating small area poverty indicators, in which a unit-level model is fitted using survey

data, and then applied to census data to obtain values of the outcome for all units. In the

online Supplemental data (see Section 5) we discuss how our methods could be extended

to unit-level models.

We implement our approach using Markov chain Monte Carlo (MCMC) methods. The

methods are designed to work with complicated models that would be difficult to

benchmark using previous fully Bayesian benchmarking approaches.

Our approach accommodates multiple benchmarks, and benchmarks that are

nonlinearly related to small-area quantities. There is little previous research on nonlinear

benchmarks: exceptions are Datta et al. (2011) and Fabrizi et al. (2012). In the application

section, we estimate age-specific mortality rates benchmarked to life expectancies, which

are nonlinearly related to the age-specific rates.

Our approach also allows control over the degree of agreement between model-based

estimates and benchmarks. In some applications, users require exact agreement between

small areas estimates and benchmarks, while in others, they may tolerate minor

discrepancies. We refer to methods that achieve complete agreement as exact

benchmarking, and methods that allow discrepancies as inexact benchmarking. Almost

all previous methods have implemented exact benchmarking. Exceptions include Bell et al.

(2013, Section 2), Nandram and Sayit (2011), and Vesper (2013).

The rest of the article is organized as follows. Section 2 describes our approach,

including an outline of the associated MCMC methods. Section 3 compares our approach

with previous approaches. Section 4 uses two simulation studies to illustrate the effect of

benchmarking on the performance of small area models. Section 5 applies our methods to

the problem of estimating district-level life expectancy in England and Wales. Section 6

summarizes the advantages of our methods.

2. A Fully Bayesian Approach to Benchmarking

2.1. Conceptual Framework

We start with a standard setup for the fully Bayesian estimation of area-level models. The

aim is to estimate area-level parameters g ¼ g1; : : : ; gnf g
`, such as means, rates, or

probabilities, on the n areas defined by a multiway classification constructed from

variables such as age, sex, and region. The data are area-level observations

y ¼ y1; : : : ; ynf g. In a hierarchical Bayesian model, the likelihood is p y jg
� �

, the prior

distribution is p f
� �

p g jf
� �

, where f is a vector of hyperparameters, and the posterior

distribution is

p g;f j y
� �

/ p f
� �

p g jf
� �

p y jg
� �

: ð1Þ

The prior may itself have a complicated hierarchical structure. Throughout the article, we

use Roman letters to denote data, and use Greek letters to denote parameters.
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We extend this setup to incorporate benchmarking. The statistician carrying out the

small area estimation is provided with a set of benchmarks m ¼ {m1; : : : ;md}`, with d

much less than n. The benchmarks are pre-existing summary statistics at a more aggregate

level than y. If y is numbers of people in the labor force disaggregated by age, sex, and

education level, for example, then m might be estimates of labor force participation rates

disaggregated only by sex. If y is death counts disaggregated by age, sex and region, then

m might be estimates of life expectancy by sex and region. The statistician is required to

make estimates of the area-level parameters g agree with the benchmarks m.

The benchmarks could be calculated from y, or from other data sources. Within the

small area estimation literature, benchmarking where m is calculated from y itself is

known as internal benchmarking, and benchmarking where m is calculated from other

sources is known as external benchmarking (e.g., Bell et al. 2013).

Decisions on whether to benchmark, on which statistics to benchmark to, on whether to

use internal or external benchmarking, and on the degree of agreement required between

small area estimates and benchmarks, are typically determined by the institutional setting

and the specifics of the application. Statistical agencies often have a policy of using direct

methods for aggregate measures where sample sizes are large, and using model-based

methods to disaggregate further, with the requirement that model-based estimates agree

with aggregate ones (Little 2012). In other words, statistical agencies require statisticians

to perform internal benchmarking.

If the small area estimates will be used to allocate funding, then exact benchmarking

may be required, to avoid surpluses or shortfalls. In contrast, if the main users of small area

estimates are researchers and policy analysts, then some discrepancies between small area

estimates and aggregates estimates may be acceptable.

We distinguish between the benchmarks and the underlying parameters that they

estimate. Let c ¼ c1; : : : ;cdf g
`denote the parameters that the benchmarks m estimate.

Vector c is derived from g through a deterministic benchmarking function c ¼ f(g),

which consists of d components cj ¼ f j g
� �

, j ¼ 1; : : : ; d. For each benchmarking

parameter cj, let dj denote the set of areas i such that gi contributes to cj. We require that

the dj do not overlap, in that each area i belongs to at most one dj. This restriction is

commonly used in applications of benchmarking.

The components of the benchmarking function are typically linear, so that

cj ¼
Xn

i¼1

bijgi; i ¼ 1; : : : ; n; j ¼ 1; : : : ; d; ð2Þ

where the bij are known constants and bij ¼ 0 for i � dj. Equivalently, c ¼ B`g where B

is a n £ d matrix of bij. For example, if g is labor force participation rates by age, sex and

education level, and c is labor force participation rates by sex, then dj consists of all areas

associated with sex j, and bij ¼ wi=
P

i 0[dj
wi 0 , where wi is the population count for area i.

However, the components of the benchmarking function may also be nonlinear. For

example, if g is mortality rates by age, sex and region, and c is life expectancy by sex and

region, then dj consists of all areas associated with each combination j of sex and region,

and fj is a nonlinear deterministic function of {gi : i [ dj} (Preston et al. 2001, chap. 3). In

the above formulation, we have assumed that there is only one set of benchmarks

corresponding to mutually exclusive sets of small areas. In the Supplementary data
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(Section 6) we discuss how our approach can be extended to allow for multiple sets of

benchmarks, for instance, with one set of benchmarks estimating labor force participation

rates by sex, and a second set of benchmarks estimating labor force participation rates

by age.

To measure agreement with the benchmarks, we specify a probability distribution for the

benchmarks conditional on the aggregate parameters, p m jc½ � m jc
� �

¼ p ½m jc�ðm j f ðgÞÞ.

We then multiply the original likelihood p( y j g) by this distribution. The modified

likelihood p y jg
� �

p m=c½ � m j f g
� �� �

is a compromise between the original likelihood and

the requirement to agree with the benchmarks. The component p m=c½ � m j f g
� �� �

pulls the

original likelihood towards the benchmarks. For values of g yielding larger (smaller)

values for p m=c½ � m j f g
� �� �

, the original likelihood is inflated (deflated).

In the special case of external benchmarking where m comes from completely separate

data sources from y and where p [m jc] describes the sampling distribution of m given c,

the revised likelihood gives the joint distribution of y and m given the parameters g. But in

external benchmarking where p [m jc] is not equal to the sampling distribution of m given

c, or in internal benchmarking, p [m jc ] cannot be interpreted as a standard component of

the likelihood, but rather as a device for enforcing the extra requirement to agree with the

benchmarks.

With the revised likelihood, the benchmarked posterior distribution is given by

p g;f j y;m
� �

/ p f
� �

p g jf
� �

p y jg
� �½m=c�

m j f ðgÞ
� �

: ð3Þ

In external benchmarking, a possible alternative approach is to incorporate the

benchmarks into the prior. Under this approach, conditional on the benchmarks m, the

parametersc are assumed to have a prior distribution p [c jm](c jm). There is a second prior

p*(c), implied by p(f)p(g jf) and c ¼ f(g). The two priors p [c jm ](c jm) and p*(c)

need to be combined. This can be regarded as a special case of Bayesian melding proposed

by Poole and Raftery (2000). Poole and Raftery (2000) note that the problem of combining

priors is addressed by the literature on combining expert judgements, with a standard

method being logarithm pooling, which leads to the pooled prior distribution for c,

~p c jm
� �

/ p* c
� �� �a

p c jm½ � c jm
� �h i12a

: ð4Þ

for some value 0 , a , 1. However, Equation (4) needs to be inverted, through a

complicated procedure, to the parameter space for (g,f) to yield a pooled prior distribution

~p g;f jm
� �

. Simulating from the corresponding posterior distribution, ~p g;f jm
� �

pð y jgÞ,

can be difficult with complicated models. Furthermore, logarithm pooling has undesirable

properties for probability calculations (O’Hagan et al. 2006, Subsection 9.2.2.).

Under external benchmarking, our approach corresponds to treating benchmarks as data

and incorporating them into the likelihood. This approach is also related to the literature on

combining expert judgements, in particular Morris (1974), Morris (1977), Lindley et al.

(1979), Lindley (1983), Roback and Givens (2001), and Albert et al. (2012), who argue for

treating expert judgements as data, and for building models of the accuracy of these

judgements. This approach avoids the limitations of logarithm pooling.
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2.2. Exact Benchmarking

Under exact benchmarking, model-based estimates are required to agree perfectly with the

benchmarks. We interpret perfect agreement to mean that

p ½m jc�ðm=cÞ ¼
1 if m ¼ c ;

0 otherwise:

(

ð5Þ

This interpretation of exact benchmarking is effectively the same as the one adopted by

Pfeffermann and Barnard (1991), Pfeffermann and Tiller (2006), Fabrizi et al. (2012), and

Pfeffermann et al. (2014), all of whom take frequentist approaches, and Nandram and

Sayit (2011), who take a fully Bayesian approach. These methods all treat the benchmarks

as constraints on the small area parameters.

When Equation (5) is plugged into Equation (3), the benchmarked posterior distribution

becomes a singular distribution concentrated on the region {(g,f) : f(g) ¼ m}. Every g in

the posterior distribution satisfies the restriction f(g) ¼ m. Therefore, any point estimate ĝ

of g, such as the posterior mean or posterior median, satisfies f ðĝÞ ¼ m. We show how

samples can be generated from the singular posterior distribution in Subsection 2.5.

2.3. Inexact Benchmarking

Under inexact benchmarking, p [m jc] is a non-degenerate distribution. The statistician can

define p [m jc] so that it operationalizes the definition required by the particular

institutional setting. For example, if it is required that most discrepancies are smaller than

a given tolerance a, such that Pr( jmj 2 cj j , a jcj) $ q for j ¼ 1; : : : ; d, then it may be

appropriate to specify p m jc½ � as

mj
ind, N cj;

a

z 12qð Þ=2

 !2
0

@

1

A; ð6Þ

where ,ind indicates independent distributions, and z 12qð Þ=2 is the upper (1 2 q)/2 quantile

of a standard normal distribution.

In some applications, the sampling distribution of m given c, p
½mjc�
sample; is known, and

it may be appropriate to incorporate the sampling distribution into the measure of

agreement. The measure can be customized by including a discrepancy parameter l, with

smaller values of l enforcing greater agreement. We illustrate with two examples.

In the first example, the data y are obtained from a survey, and the benchmarks m are

direct estimates calculated from y, with standard errors s. If the survey was implemented

well, then m should be unbiased for c, and s should be approximately correct. If each mj is

derived from a large number of observations, then we can assume that, conditional on the

cj, each mj is independently normally distributed with mean cj and standard deviation sj.

The sampling distribution p
½m jc�
sample is given by

p
½m jc�
sample m jc

� �
/ exp 2

Xd

j¼1

mj 2 cj

� �2

2s2
j

 !

: ð7Þ
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Incorporating a discrepancy parameter 0 , l # 1 into Equation (7) yields

p m jc½ � m jc
� �

/ exp 2
Xd

j¼1

mj 2 cj

� �2

2ls2
j

 !

: ð8Þ

When l ! 0, Equation (8) converges to Equation (5). Hence exact benchmarking is a

limiting case of inexact benchmarking.

In the second example, the data are counts of events that follow Poisson distributions.

We have yi , Poisson(wigi), where wi is the known exposure for area i. Let vj ¼
P

i[dj
wi

denote the total exposure associated with dj. Then cj ¼
P

i[dj
wigi=vj, and its estimate is

mj ¼
P

i[dj
yi=vj where

P
i[dj

yi , Poisson
P

i[dj wigi

� �
, Poisson vjcj

� �
. The sampling

distribution p
½m jc�
sample is given by

p
½m jc�
sample m jc

� �
/
Yd

j¼1

Poisson vjmj j vjcj

� �
: ð9Þ

Incorporating a discrepancy parameter 0 , l # 1 into (9) yields

p
½m jc�
sample m jc

� �
/
Yd

j¼1

Poisson lvjmj j lvjcj

� �
; ð10Þ

with convergence to exact benchmaking as l ! 0.

In the above examples of p m jc½ �, we have assumed conditional independence of mj’s

given the underlying parameters cj’s, and used simple models for p(mj jcj). This is similar

to assuming conditional independence of yi’s given gi’s and using simple models for

p( yi j gi). Unconditionally, the mj’s can have complicated correlations, such as correlations

between neighbouring time points or age groups. Such correlations are captured by the

prior model on the underlying benchmarking parameters c, which is implied by the prior

model on g, p(f)p(g jf), and the equality c ¼ f(g). The prior model on g typically uses

a complicated hierarchical structure to model relationship between the underlying

parameters, such as similarities between neighbouring time points or age groups.

The appropriate value for the discrepancy parameter l in any particular application

depends on the sizes of discrepancies between model-based estimates and benchmarks that

can be tolerated in that application. As we discuss in Subsection 2.6, the effects of

benchmarking on performance measures such as accuracy are difficult to predict. One

possible approach to setting l is to fit a model several times with alternative values for l,

and use the highest value that gives acceptable levels of discrepancy.

2.4. An Illustrative Analytical Example

To illustrate the benchmarked posterior distribution, we present an example in which the

distribution can be derived in closed form. The data y ¼ {yi, : : : , yn}` are generated and

modelled using

yi ,ind N gi;s
2

� �
ð11Þ

gi ,ind N m0; t
2

� �
; ð12Þ
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where m0, s 2 and t 2 are known. There is a single benchmark m ¼
Pn

i¼1wiyi estimating

benchmarking parameter c ¼
Pn

i¼1wigi, where the wi’s are a set of weights satisfyingPn
i¼1wi ¼ 1. Let w ¼ (w1, : : : , wn)` denote the vector of weights, and 1n a vector of n

ones. Then w`y ¼ m, w`g ¼ c, and w`1n ¼ 1. Under exact benchmarking, p ½m jc� is

given by Equation (5). Under inexact benchmarking, the sampling distribution p
½m jc�
sample is

given by

p
½m jc�
sample m jc

� �
, N c; w`w

� �
s2

� �
: ð13Þ

We incorporate a discrepancy parameter l into (13) and arrive at

p ½m jc� m jc
� �

, N c; l w`w
� �

s2
� �

; ð14Þ

where 0 , l # 1.

Let In be the n £ n identity matrix. As shown in the Supplemental data (Section 1),

Equations (5), (11), (12) and (14) yield posterior distributions for g that are multivariate

normal under no benchmarking (NB), exact benchmarking (EB), and inexact

benchmarking (IB), with means and variances

mNB ¼ 2
s2

s2 þ t2
1nm0 þ

t2

s2 þ t2
y; ð15Þ

SNB ¼
s2t2

s2 þ t2
In; ð16Þ

mEB ¼
s2

s2 þ t2
1n 2

1

w`w
w

� 	
m0 þ

s2

s2 þ t2

1

w`w
wmþ

t2

s2 þ t2
y; ð17Þ

SEB ¼
s2t2

s2 þ t2
In 2

1

w`w
ww`

� 	
; ð18Þ

mIB ¼ 1 2
t2

ls2 þ lþ 1ð Þt2

� 	
mNB þ

t2

ls2 þ lþ 1ð Þt2
mEB; ð19Þ

SIB ¼
s2t2

s2 þ t2
In 2

t2

ls2
�

þ lþ 1ð Þt2
�
w`w

ww`

" #

: ð20Þ

With no benchmarking, the posterior mean for gi equals the observation yi shrunk

towards the prior mean m0. With exact benchmarking, the posterior mean is instead shrunk

towards a linear combination of the prior mean m0 and the benchmark m. With inexact

benchmarking, the posterior mean is a compromise between the means under no

benchmarking and exact benchmarking. Benchmarking reduces posterior variance in this

setting, with exact benchmarking leading to larger reductions than inexact benchmarking.
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2.5. A General MCMC Approach to Sampling from a Benchmarked Posterior

Distribution

In practical applications, closed form expressions for the benchmarked posterior

distribution Equation (3) are seldom available, and posterior inference must be carried out

via simulation. We outline a general MCMC strategy for sampling from Equation (3).

We first discuss the case where the components of the benchmarking function are linear.

Under exact benchmarking, Equation (3) is a singular distribution concentrated on the

region {(g,f): B`g ¼ m}. We obtain draws from this singular distribution by choosing

an initial value g (0) that satisfies B`g (0) ¼ m, and then repeatedly iterating through the

following steps:

E1. Update g (t) jf (t21), g (t21), y subject to B`g (t) ¼ m.

E2. Update f (t) jg (t), f (t21), y.

Step E2 can be done using standard methods. Step E1 ensure that the constraint B`g ¼ m

continues to be satisfied. It is carried out as follows.

An area i1 is randomly selected from {1, : : : , n}. If area i1 does not belong to any dj, so

that gi1 is not subject to any benchmarking constraint, then gi1 is updated using standard

methods. If area i1 is the only area in an dj, then gi1 is fully determined by the benchmark

mj and is not updated. Otherwise, gi1 is updated through a Metropolis-Hastings step. A

proposal g*
i1

is generated from J g*
i1
jg
ðt21Þ
i1

� �
. Then another area i2 from the same dj that i1

belongs to is randomly selected, and g*
i2

is obtained as g*
i2
¼ g

ðt21Þ
i2
þ bi1j=bi2j g

ðt21Þ
i1

2 g*
i1

� �
,

which ensures that bi1jg
*
i1
þ bi2jg

*
i2
¼ bi1jg

ðt21Þ
i1
þ bi2jg

ðt21Þ
i2

. Setting g*
i ¼ g

ðt21Þ
i for i � {i1,

i2} yields a proposed value g* for which B`g* ¼ m continues to be satisfied.

To calculate the joint proposal density J g*
i1
; g*

i2

� �
j g

ðt21Þ
i1

; gðt21Þ
i2

� �� �
, we need to take

account of the fact that we could have arrived at g*
i1
; g*

i2

� �
in one of two ways: by drawing

g*
i1

and then calculating g*
i2

or by drawing g*
i2

and then calculating g*
i1

. The resulting

Metropolis-Hastings ratio is

r ¼
p g* jf
� �

p y jg*
� �

p g t21ð Þ jf
� �

p y jgðt21Þ
� �

" #

£
J g

ðt21Þ
i1
j g*

i1

� �
þ j bi1j=bi2j j J g

ðt21Þ
i2
j g*

i2

� �

J g*
i1
j g
ðt21Þ
i1

� �
þ j bi1j=bi2j j J g*

i2
j g
ðt21Þ
i2

� � : ð21Þ

Since the benchmarked posterior distribution Equation (3) under exact benchmarking is a

singular distribution, it is not immediately obvious that the above Metropolis-Hastings

algorithm has the desired convergence property. The Supplemental data (Subsection 2.1)

provides a proof that under exact benchmarking, the stationary distribution of chains

produced by the above algorithm is indeed Equation (3).

Under inexact benchmarking, the algorithm for sampling from Equation (3) is

I1. Update gðt2
1
2
Þ jfðt21Þ, g (t21), y subject to the constraint B`g (t21) ¼ c (t21), where

c (t21) ¼ B`g (t21).

I2. Update g (t) jf (t21), gðt2
1
2
Þ, y with no constraint.

I3. Update f (t) jg (t), f (t21), y.
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Step I1 is similar to step E1 with exact benchmarking, and step I3 is the same as step E2

with exact benchmarking. Step I2 can be carried out using Metropolis-Hastings updates

similar to those for an unbenchmarked model, except that the density p m=c½ �ðm jB`gÞ

needs to be accounted for in the Metropolis-Hastings ratio. Step I1 is not strictly necessary,

but speeds up the exploration of the parameter space when p m=c½ �ðm jB`gÞ is tightly

concentrated around the hyperplane defined by m jB`g. The Supplemental data

(Subsection 2.2) provides a proof that under inexact benchmarking, the stationary

distribution of chains produced by the above algorithm is the benchmarked posterior

distribution in Equation (3).

When the components of the benchmarking function are nonlinear, under inexact

benchmarking Equation (3) is a singular distribution concentrated on the region {(g,f) :

f(g) ¼ m}. There is generally no efficient way to implement a step similar to E1 or I1

which ensures that the constraint f(g) ¼ m or f(g) ¼ c (t21) continues to be satisfied.

Instead we use steps I2 and I3 for inexact benchmarking, and approximate exact

benchmarking by using inexact benchmarking with discrepancy parameter l close to zero.

We have implemented our general MCMC approaches with a specific family of area-

level hierarchical models:

yi j gi;s
2

,ind G gi;wi;s
2

� �
; ð22Þ

g gi

� �
jb; t2

,ind N x`
i b; t

2
� �

: ð23Þ

In Equation (22), yi is an observation for area i within a multiway classification, G

denotes the normal, Poisson or binomial distribution, wi is a known weight, exposure or

number of trials, and s 2 is a variance, used only with the normal distribution. In

Equation (23), g is the identity, log or logit link function. The transformed values g(gi) are

modelled using a structure similar to analysis of variance. Vector b contains batches of

coefficients representing main effects and interactions formed from the cross-classifying

dimensions. Vector xi is a vector consisting of ones and zeros indicating which main

effects and interactions are associated with each area i. We place no restrictions on the

prior for b, and it will typically have a complicated hierarchical structure. The

Supplemental data (Section 3) gives details of the specific MCMC samplers.

We have written R packages implementing the models, which can be obtained from

github.com/statisticsnz/R. The family of models included in the packages can

accommodate a wide range of real applications, and the packages are user-friendly,

making it easy for practitioners to implement the fully Bayesian benchmarking

approached presented in this article.

2.6. The Effects of External and Internal Benchmarking on Model Performance

External benchmarking allows information from the external data sources to be

incorporated into the analysis. When p [m jc] is constructed from a correctly specified

p
½m jc�
sample, external benchmarking should, on average, improve model performance as

measured by criteria such as accuracy and coverage.

The effect of internal benchmarking on accuracy and coverage is more ambiguous.

Internal benchmarking entails using data y twice: once when calculating benchmarks m,
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and again in p( y jg). If a correctly-specified model is subject to internal benchmarking,

then it is no longer correctly specified. Performance on accuracy and coverage can be

expected to suffer. Previous studies with frequentist and empirical Bayes approaches have

confirmed that this is indeed the case: when the unbenchmarked model is correctly

specified, benchmarking typically reduces accuracy and coverage (Pfeffermann and

Barnard 1991; Wang et al. 2008; Datta et al. 2011; Bell et al. 2013).

When the unbenchmarked model is correctly specified, methods of benchmarking that

enforce stronger forms of agreement with the benchmarks can be expected to perform

worse in terms of accuracy and coverage. For example, exact benchmarking can be

expected to have poorer accuracy and coverage than inexact benchmarking.

In real applications, however, the model is almost always misspecified. When the model

is misspecified, the effects of internal benchmarking on model performance are uncertain.

Previous simulation studies suggest that, depending on the details of the data and model,

internal benchmarking can sometimes improve performance (Pfeffermann and Tiller

2006; Nandram et al. 2011; Pfeffermann 2013; Vesper 2013; Ranalli et al. 2018).

Given the uncertainty about the effect of benchmarking on model performance, we

suggest that benchmarking not be seen as a method for protecting against model

misspecification. Instead, analysts should use standard model-checking tools such as

posterior predictive checks (Gelman et al. 2014, chap. 6) to detect possible problems with

their models, and adjust the models accordingly. Benchmarking should, rather, be seen as

a method for achieving agreement between model-based estimates and benchmarks.

3. Comparison with Previous Approaches

3.1. An Alternative Interpretation of Exact Benchmarking

In our interpretation of exact benchmarking, set out in Equation (5), the entire posterior

distribution must agree with the benchmarks. Under this approach, any standard point

estimate derived from the posterior distribution, such as the posterior mean or posterior

median, automatically agrees with the benchmarks.

Most previous approaches interpret exact benchmarking less strictly. Instead of working

with full distributions, they work only with point estimates. They require a specific point

estimate, ĝSpe, to agree with the benchmarks,

f ĝSpe
� �

¼ m: ð24Þ

You et al. (2004), Datta et al. (2011), and Ghosh et al. (2015), for example, obtain point

estimates ĝFB from a fully Bayesian model, and then adjust them to obtain a new set of

estimates ĝSpe that satisfy the benchmarking constraint. When the benchmarks are linear,

one such estimator is the raked or ratio-adjusted estimator,

ĝ
Spe
i ¼ ĝ FB

i

mjXn

i 0¼1
bi 0jĝ

FB
i 0

: ð25Þ

The raked estimator is easy to implement, and is widely used in practice, but has been

characterised as ad hoc (Ghosh et al. 2015). Datta et al. (2011) (henceforth DGSM) instead
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propose an estimator that minimizes the expected posterior loss based on a weighted

squared error loss function L g; ĝ
� �

¼
Pn

i¼1ri ĝi 2 gi

� �2
, where ri are known weights and

ĝ satisfies f ðĝÞ ¼ m. As DGSM point out, with the appropriate choice of ri, the raked

estimator can be derived as a special case of their estimator. Ghosh et al. (2015) argue that

the squared error loss function may not be appropriate for estimating positive quantities

such as income, and propose an estimator that minimizes the expected posterior loss based

on a variant of the Kullback-Leibler loss function.

Our approach to exact benchmarking enforces stronger forms of agreement with the

benchmarks. As discussed in Subsection 2.6, this can lead to poorer performance on

criteria such as accuracy and coverage, when the unbenchmarked model is correctly

specified. However, when the model is misspecified, depending on the details of the data

and model, enforcing stronger forms of agreement may sometimes improve performance,

as we illustrate in Subsection 4.1.

Requiring that the entire posterior distribution agree with the benchmarks, as we do with

exact benchmarking, means that the statistician does not have to choose a particular loss

function. Moreover, with the entire posterior distribution available, the statistician can

obtain a posterior distribution for any function of the small area parameters (Gelman et al.

2014, 261–262). For instance, given a posterior distribution for county-level income

levels, the statistician can derive a posterior distribution for county income rankings.

3.2. Previous Fully Bayesian Benchmarking Approaches

Toto and Nandram (2010) and Nandram et al. (2011) use fully Bayesian benchmarking on a

model where the posterior distribution is multivariate normal, and where there is a single

benchmark and a linear benchmarking function. Their model is specified at the unit level

rather than the area level. We discuss unit models further in the Supplemental data, Section 4.

Nandram and Sayit (2011) benchmark an area-level beta-binomial hierarchical

Bayesian model,

yi jgi ,ind Binomialðwi; giÞ; ð26Þ

gi jm; t ,ind Beta mt; 1 2 m
� �

t
� �

; ð27Þ

p m; t
� �

/ 1þ t2
� �21

; 0 , m , 1; t $ 0: ð28Þ

Here wi is a known number of trials for area i. The authors work with a single

benchmarking parameter c ¼
Pn

i¼1bigi, where bi ¼ wi=
P

i 0¼1 wi 0 . Instead of incorporating

the benchmark into the likelihood, Nandram and Sayit (2011) incorporate it into a prior

distribution for c, pðcÞ , Betaðmt0; ð1 2 mÞt0Þ. The authors consider three scenarios for

p(c): (1) exact benchmarking, with t0 ! 1 and p(c) a point mass at m; (2) inexact

benchmarking, with t0 specified by the user; and (3) inexact benchmarking, with m ¼ 1/2

and t0 ¼ 2, so that p(c) , Uniform[0, 1].

Let pNB(g1, : : : ,gn21, gn, m, t j y) denote the unbenchmarked posterior distribution

for (g, m, t). By using the identitygn ¼ c 2
Pn21

i¼1 bigi

� �
=bn, Nandram and Sayit (2011)

are able to work with (g1, : : : , gn21, c) instead of (g1, : : : ,gn21, gn), and derive the
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benchmarked posterior distribution for (g1, : : : , gn21, c, m, t) as

p g1; : : : ; gn21;c;m; t j y
� �

/ p c
� �

pNB g1; : : : ; gn21;
1

bn

c 2
Xn21

i¼1

bigi

 !

;m; t j y

 !

: ð29Þ

Nandram and Sayit (2011) use a Gibbs sampling algorithm to sample (g1, : : : , gn21, c,

m, t) from Equation (29). The full conditional distributions for gi (i ¼ 1, : : : , n 2 1) and

c are both proportional to the product of two density functions, one being a truncated beta

density and the other being a generalized beta density. Specialized algorithms are used to

draw samples from these distributions. After obtaining samples for (g1, : : : , gn21, c, m,

t), samples for gn are then obtained using the identity gn ¼ c 2
Pn21

i¼1 bigi

� �
=bn.

Implementation of the approach used by Nandram and Sayit (2011) depends on the

choice of which small area is labeled as area n and left out. This choice affects the specific

posterior distribution derived in Equation (29) and hence affects the computational

efficiency of the MCMC algorithms. Nandram and Sayit (2011) sort the areas in ascending

order of yi, with area n having the largest value of yi. When there are multiple benchmarks,

with this approach, one area needs to be left out in each dj. Poor choices may lead to poor

computational efficiency. In contrast, our MCMC approach in Subsection 2.5 does not

depend on the labeling of areas.

The approach of Nandram and Sayit (2011) is also difficult to generalize to nonlinear

benchmarking functions. Even with a single benchmarking parameter c ¼ f (g1, : : : ,gn)

where f is nonlinear, it can be difficult to write gn analytically as a function of g1, : : : ,

gn21, c. Therefore, it may not be possible to write out a benchmarked posterior

distribution similar to Equation (29), or to draw samples from it. In contrast, our approach

can accommodate nonlinear benchmarking functions.

Vesper (2013) works with the Fay-Herriot model (Fay and Herriot 1979):

yi j gi ,ind N gi;s
2

i

� �
; ð30Þ

gi jb; t
2

,ind N x`
i
b; t2

� �
; ð31Þ

p b; t2
� �

/ t2
� �2a21

e2b=t 2

; ð32Þ

where s 2
i is the variance of yi and is assumed known, xi is an observed vector of covariates

for area i, and a and b are known constants. There is a single benchmarking parameter

c ¼
Pn

i¼1bigi, and p c
� �

, N m;
Pn

i¼1b2
i s

2
i

� �
. The benchmarked posterior distribution is

similar to Equation (29) from Nandram and Sayit (2011). This approach is subject to the

same implementation limitations as that of Nandram and Sayit (2011).

4. Two Simulation Studies

4.1. Estimation of Fertility Rates from Registration Data

We use simulated data on births to examine how benchmarking affects accuracy,

coverage, and agreement between model-based estimates and benchmarks. We examine
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performance with correctly specified models and with misspecified models. All code and

data for the simulation are available at github.com/bayesiandemography/fertsim.

The simulated data consist of counts of births and reproductive-age women. With the

baseline ‘no change’ data sets, counts of births are generated using the model

yart ,ind Poissonðwartg
Tr
artÞ; ð33Þ

loggTr
art ,ind Nðbage-std

a þ breg-Tr
r þ btime-Tr

t ;s 2
TrÞ; ð34Þ

where yart is the number of births to women in age group a [ {15–19, : : : , 40–44} in

region r [ {1, : : : , 30} during period t [ {1, 2, 3}, wart is the corresponding person-years

of exposure, and gTr
art is the true underlying birth rate. We set wart ¼ 300 for all a, r, t, and

set sTr ¼ 0.1. Age effects bage-std
a are taken from the ‘standard’ fertility schedule in

Table 1; region effects have distribution breg-Tr
r ,ind Nð0; 0:12Þ; and time effects have

distribution btime-Tr
t ,ind Nð0; 0:12Þ.

To explore how benchmarking affects performance under model misspecification, we

also construct ‘change in level’ and ‘change in distribution’ data sets by perturbing the ‘no

change’ data set. The ‘change in level’ data set represents a sudden change in the level of

fertility in a subset of regions. Birth rates and counts are identical to the ‘no change’ data

set, except for areas in regions 26–30 during period 3, which we refer to as being

‘nonstandard’ areas. Log rates for the nonstandard areas are generated by adding log 0.2,

to the existing log rates. Counts for nonstandard areas are obtained by drawing new values

from Equation (33). The ‘change in distribution’ data set represents a sudden change in the

age-pattern, rather than the level, of fertility. Birth rates and counts are again identical

to the ‘no change’ data set except in regions 26–30 during period 3. Log rates for

nonstandard areas are generated by replacing the ‘standard’ age effects from Table 1 with

the ‘nonstandard’ age effects, and leaving region effects and time effects the same. Counts

for nonstandard areas are obtained by drawing new values from Equation (33).

We simulate an analysis seeking to estimate gTr
art. The simulated analysis model has

likelihood

yart ,ind PoissonðwartgartÞ; ð35Þ

and assumes that

log gart ,ind Nðb0 þ bage
a þ breg

r þ btime
t ;s2Þ: ð36Þ

Table 1. Age effects (exponentiated).

Standard Nonstandard

15–19 0.0288 0.0695
20–24 0.0713 0.1225
25–29 0.1083 0.0936
30–34 0.1210 0.0726
35–39 0.0653 0.0394
40–44 0.0127 0.0098

Total 0.4074 0.4074
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Equation (36) is correctly specified for the ‘no change’ data sets. However, it is

misspecified for the ‘change in level’ and ‘change in distribution’ data sets, since the true

data-generating processes for these data sets contain interactions.

The intercept term in the simulated analysis model has a proper but diffuse prior,

b0 , Nð0; 102Þ. The region effect has a normal prior breg
r , Nð0; t2

regÞ, with a weakly

informative half-t prior with seven degrees of freedom on the standard deviation (Gelman

et al. 2008), treg , tþ7 ð0; 0:252Þ. The age effect has a ‘random walk with noise’ (Prado and

West 2010, 119–120) prior,

bage
a ,ind Nðhage

a t 2
ageÞ ð37Þ

hage
a ,ind Nðh

age
a21v

2Þ ð38Þ

with h
age
0 , Nð0; 102Þ, tage , tþð0; 1Þ, and v , tþ7 ð0; 1Þ. The random walk with noise

prior recognizes the tendency for neighbouring age groups to have similar values. The

standard deviation parameter from Equation (36) has a weakly informative half-t prior,

s , tþ7 ð0; 0:252Þ. The time effect has the same prior as the region effect.

The analysis model is fitted with (i) no benchmarking, (ii) exact benchmarking, and

(iii) inexact benchmarking. Let vrt ¼
P

a wart ¼ 1; 800. The benchmarks are region-time

means mrt ¼
P

a yart=vrt, which estimate benchmarking parameters crt ¼
P

a wartgart=vrt.

Under exact benchmarking, p ½m jc�ðm jcÞ is given by Equation (5). Under inexact

benchmarking, p ½m jc�ðm jcÞ is given by Equation (10), which becomes

p ½m jc�ðm jcÞ /
Y30

r¼1

Y3

t¼1

Poissonðlvrtmrt j lvrtcrtÞ: ð39Þ

We consider the case where l ¼ 1, which allows discrepancies between model-based

estimates and benchmarks to vary in line with Poisson variation in birth counts. As

discussed in Subsection 2.3, lower values for l would lead to smaller discrepancies. We

use the posterior means of gart and crt as point estimators.

We also adjust the posterior means of gart from the ‘no benchmarking’ case to obtain the

raked estimator in Equation (25), and the DGSM estimator based on a weighted squared

error loss function. Following Datta et al. (2011, 580) and Wang et al. (2008), we set rart,

the weight in the weighted squared error loss function, equal to the inverse of the estimated

variance of the direct estimate yart /wart. Since these two estimators achieve exact

benchmarking, the corresponding point estimators of crt are equal to mrt.

We apply four performance measures. The first is

Drt ¼ E
j ĉrt 2 mrt j

mrt


 �
; ð40Þ

where ĉrt is the point estimator of crt. This measure captures discrepancies (i.e., levels

of disagreement) between the model-based estimates and benchmarks. With exact

benchmarking under our approach, the raked estimator, and the DGSM estimator, Drt

always equals 0.
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The second performance measure is the mean squared error from using the point

estimator ĝrt to estimate gTr
art,

MSEart ¼ Eðĝart 2 gTr
artÞ

2:
ð41Þ

This measure captures the accuracy of the point estimator.

The third measure, W
q
i , is the expected width of a (1 2 q) £ 100% credible interval for

gart. Let g
q=2
art and g

12q=2
art be the q/2 and 1 2 q/2 quantiles for the posterior distribution of

gart. Then

Wq
art ¼ E g

12q=2
art 2 g

q=2
art

� �
: ð42Þ

Values for W
q
i cannot be calculated for the raked and DGSM estimators, since these

estimators do not come with measures of uncertainty.

The fourth measure, C
q
art, is the expected coverage rate of a (1 2 q) £ 100% credible

interval for gTr
art,

Cq
art ¼ Pr g

q=2
art # gTr

art # g
12q=2
art

� �
: ð43Þ

Again, values for C
q
art cannot be calculated for the raked and DGSM estimators.

We use K ¼ 100 simulation replicates. As discussed in the Supplementary data, 100

replicates is enough to obtain stable estimates for the performance indicators we are

interested in. At each replicate, results for no benchmarking, exact benchmarking, inexact

benchmarking, raked estimators, and DGSM estimators are obtained for each of the ‘no

change’, ‘change in distribution’, and ‘change in level’ data sets, yielding 5 £ 3 ¼ 15 sets

of results. With the unbenchmarked model, the Gibbs sampler is run with four independent

chains, each with 20,000 iterations. Every 40th draw from the final 10,000 iterations of

each chain is recorded, yielding a combined total of 2,000 draws from the posterior

distribution. With the benchmarked models, which converge more quickly, the number of

iterations and thinning ratios are both reduced by a factor of five.

When calculating performance measures Drt, MSEart, W
q
art, and C

q
art, we use means

across K replicates to approximate E(·) or Pr(·) in (40)–(43). These measures are

calculated separately for each rt or art. Figure 1 summarizes the resulting distributions

across rt or art using boxplots, where W
q
art and C

q
art are calculated for q ¼ 0.95. The

median for each distribution is printed above the corresponding notch in the boxplot.

The top row of Figure 1 gives results for the ‘no change’ data sets, where the analysis

model is correctly specified. The model without benchmarking departs furthest from the

benchmarks, but has the lowest MSE. The version of our model with exact benchmarking

has the opposite strengths and weaknesses, agreeing exactly with the benchmarks (by

construction), but having the highest MSE. The raked and DGSM estimators also obtain

complete agreement, but with median MSE that is approximately 3–4% lower than the

model with exact benchmarking. The model with inexact benchmarking is in an

intermediate position, with moderate agreement and moderate MSE.

The models with no benchmarking, inexact benchmarking, and exact benchmarking

have coverage rates close to the nominal 95%, but the model without benchmarking

achieves this with the narrowest credible intervals. As noted above, the raked and DGSM

estimators do not have uncertainty measures and therefore do not have coverage rates.
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The second row of Figure 1 shows results for the ‘change in levels’ data sets. The rank

order of the discrepancy measures and MSEs is preserved. The rank order of the width of

credible intervals has changed, with the model without benchmarking having the widest

credible intervals. In general, credible intervals are wider than in the ‘no change’ case, but

coverage rates for a subset of areas are poor, with and without benchmarks. Similar results

are obtained with the ‘change in distribution’ data sets.

Figure 2 shows results for the ‘change in levels’ data sets, but distinguishing between

standard and non-standard areas. In the standard areas, performance is similar to the

overall picture in Figure 1. In the nonstandard areas, our benchmarked models have

smaller MSE than the non-benchmarked model, and the raked and DGSM estimators.

Coverage rates for the nonstandard areas are poor for all three versions of our model, but

the model with exact benchmarking has better coverage rates than the other two. As can be

seen in Figure 3, a similar pattern is found with ‘change in distribution’ data sets.

4.2. Estimation of Smoking Prevalence from Survey Data

In the second simulation we compare the performance of benchmarked and non-

benchmarked models when estimating finite-population quantities.

Ideally, the distinction between finite-population and super-population quantities should

be reflected in the benchmarking procedures, so that, for instance, agreement with m is

measured using the finite-population equivalent of c. We have not done so, on pragmatic

grounds. Using super-population quantities simplifies the MCMC computations, and when
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Fig. 1. Performance of models of fertility rates, by type of benchmarking and data set. The results are based on

K ¼ 100 replicates.
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sample sizes are large, as they typically are for aggregate quantities such as m andc, super-

population quantities closely approximate finite-population ones.

The simulation uses artificial surveys of smoking prevalence constructed from real data

from the 2013 New Zealand population census. The artificial surveys are generated by

randomly drawing records from a file containing unit-level census data on the population

aged 15 and over. The file contains information on age, sex, region within the country,

income level, and whether the respondent currently smokes. The file excludes the 8% of

people who did not answer the smoking question, leaving a total of 3.07 million records.
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Fig. 2. Performance of model of fertility rates when applied to ‘change in level’ data sets, distinguishing

between standard and nonstandard areas. The results are based on K ¼ 100 replicates.
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Fig. 3. Performance of model of fertility rates when applied to ‘change in distribution’ data sets, distinguishing

between standard and nonstandard areas. The results are based on K ¼ 100 replicates.
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At each replicate of the simulation, we construct a simulated survey data set by drawing a

sample of 60,000 records from the file. The sample is stratified by region, with simple

random sampling within each region. There are 16 regions in total, with populations

ranging from 23,000 to just over 1 million. Regional sample sizes are proportional to the

square root of regional population size.

Let Naslr be the number of people in age-group a [ {15–24, 25–34, : : : , 55–64,

65þ}, sex s, income level l [ {No income or loss, NZD1 – NZD20,000,

NZD20,001 – NZD40,000, NZD40,001 – NZD60,000, NZD60,001 – NZD100,000,

NZD100,001þ}, and region r [ {1, : : : ,16}. Let Yaslr be the number of people who

smoke. We treat the census file as the true finite population. Within the simulated analysis,

Naslr is known but Yaslr is not. The aim of the simulated analysis is to estimate finite-

population smoking prevalence by age, sex, and income, pasl ¼
P

r Yaslr=
P

r Naslr.

Let yaslr and naslr be the sample equivalents of Yaslr and Naslr. The model

yaslr ,ind Binomialðnaslr; gaslrÞ ð44Þ

logitðgaslrÞ ,ind N b0 þ bage
a þ bage

s þ bincome
l þ breg

r þ b
age:income
al ;s2

� �
ð45Þ

is fitted to the artificial survey data. Region is included in the model to account for the

stratified sample design. The age effects, income effects, region effects, and age-income

interaction all have normal priors with mean 0. However, following the approach that

Little (2011) suggests for statistical agencies that are reluctant to adopt informative priors,

we use improper uniform priors over the set of positive real numbers for the standard

deviation terms. We use an improper uniform prior for the sex effect.

The model is fitted without benchmarking, and with exact and inexact benchmarking.

The benchmarks are estimated mean smoking prevalence by income level

ml ¼

X
a;s;r

Naslryaslr=naslr
X

a;s;r
Naslr

:

The corresponding super-population benchmarking parameters are

cl ¼
a;s;r

X
Naslrgaslr=

a;s;r

X
Naslr:

The finite-population equivalent of cl is c fin
l ¼

P
a;s;r Yaslr=

P
a;s;r Naslr .

Under exact benchmarking, p ½m jc�ðm jcÞ is given by Equation (5). Under inexact

benchmarking, p ½m jc�ðm jcÞ is given by Equation (8), which becomes

p ½m jc�ðm jcÞ / exp 2
l

X ðml 2 clÞ
2

2ls2
l

0

@

1

A; ð46Þ

where sl is the standard error of using ml to estimate cl. We examine the cases where l ¼ 1

and where l ¼ 0.5. The l ¼ 1 case allows discrepancies between model-based estimates

and benchmarks to vary in line with sampling variation, while the l ¼ 0.5 case allows

smaller discrepancies.
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Benchmarks ml and standard errors sl are calculated using function svymean from R

package survey (Lumley 2004). Calculating standard errors that properly account for

the stratified sample design is complicated; function svymean uses replicate weights

(Lumley 2011, 32).

Performance measures Dl, MSEas1, W
q
asl, and C

q
asl are calculated for finite-population

smoking prevalence pasl. Here Dl is defined as

Dl ¼ E
j �c

fin
l 2 ml j

sl

 !

; ð47Þ

where �c
fin
l is the posterior mean of c fin

l . This measures discrepancies in units of standard

errors. To estimate pasl and c fin
l , it is necessary to estimate Yasl ¼

P
rð yaslr þ ynon

aslrÞ, where

ynon
aslr is the number of non-sampled people in area aslr who smoke. Draws from the

posterior distribution of ynon
aslr can be generated using ynonðtÞ

aslr , BinomialðNaslr 2 naslr; g
ðtÞ
aslrÞ,

where g
ðtÞ
aslr is the tth draw from the posterior sample for gaslr.

As with the fertility simulation, we use K ¼ 100 replicates. The Gibbs sampler is run

with six independent chains, each with 100,000 iterations. Every 250th draw from the final

50,000 iterations of each chain is recorded, yielding a combined total of 1,200 draws from

the posterior distribution.

The results from the simulation are summarized in Figure 4, with q ¼ 0.95.

Benchmarking improves agreement between the model-based estimates and the

benchmarks, with exact benchmarking giving the largest improvement, and inexact

benchmarking with l ¼ 1 the smallest. Exact benchmarking does not achieve complete

agreement, since the benchmarks are applied to super-population prevalences, rather than

finite population ones. However, the median absolute difference between model-based

estimates and benchmarks is only 0.01 standard errors.

Benchmarking degrades overall accuracy and coverage. However, the most striking

feature of the distributions of MSEasl, W0:95
asl , and C0:95

asl in Figure 4 is the long tails. These

long tails result from a small number of outliers, notably people aged 15–24 with incomes

of NZD100,000 or higher. This group has high smoking prevalence, even though youth

and high incomes are, in general, associated with low prevalence. With these particular

data, rather than providing robustness to outliers, benchmarking decreases robustness.
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Fig. 4. Performance of model of smoking prevalence, by type of benchmarking. The results are based on

K ¼ 100 replicates.
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5. Application

We now apply fully Bayesian benchmarking to a real data set. We estimate age-sex-

specific mortality rates for local authority districts in England and Wales, using as

benchmarks sex-specific life expectancies for regions. All code and data for the

application can be obtained from github.com/bayesiandemography/britmort.

Our data are counts of deaths and populations at risk in 2014, disaggregated into 20 age

groups, 2 sexes, and 348 local authority districts. The total number of deaths is 500,314,

and the total population at risk is 57,408,654. The median number of deaths per area is 8,

and 16% of areas have 0 deaths. Direct estimates of mortality rates (i.e., counts of deaths

for each area, divided by the corresponding population at risk) for five randomly-selected

districts are shown in Figure 5. Because the graphs are drawn on a log scale, estimates for

which the count of deaths and direct estimate are 0 are omitted. As is apparent from the

graphs, direct estimates of age-sex-specific mortality rates at the district level are unstable

below age 60.

Let yasd be the count of deaths for age group a, sex s and district d, and let gasd and wasd

be the corresponding mortality rate and population at risk. We apply the model

yasd ,ind PoissonðwasdgasdÞ ð48Þ

log gasd ,ind Nðb0 þ bage
a þ bsex

s þ bdis
d þ bage:sex

as ;s2Þ: ð49Þ

Age effects are assumed to follow a random walk with drift,

bage
a , t4ðh

age
a ; t2

ageÞ ð50Þ

h
age
0 , Nð0; 102Þ ð51Þ

hage
a , Nðh

age
a21 þ d

age
a21;v

2Þ; a . 0 ð52Þ

d
age
0 , Nð0; 1Þ ð53Þ

d age
a , Nðd

age
a21;w

2Þ; a . 0: ð54Þ
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Fig. 5. Direct estimates of mortality rates, by age and sex, in five randomly-selected local authority districts in

England and Wales, 2014. For some combinations of age, sex, and district, the counts of deaths, and hence direct

estimates, are 0. Estimates for these combinations are not shown, since the graph is on a log scale.
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The drift term accounts for the fact that log-mortality rates rise linearly over much of the

age range. The use of a t4 distribution in Equation (50) allows for occasional large

departures from trend, as occurs at age 0. The sex effect has a normal prior bsex
s , Nð0; 1Þ.

The district effect has a normal prior bdis
d , Nð0; t2

disÞ, with a weakly informative half-t

prior on the standard deviation, tdis , tþ7 ð0; 1Þ. The interaction has a normal prior

bage:sex
as , Nð0; t2

age:sexÞ, with a weakly informative half-t prior on the standard deviation,

tage:sex , tþ7 ð0; 0:5
2Þ. We use a smaller scale for the interaction than for the main effect on

the principle that interactions are typically smaller in size than main effects (Gelman et al.

2008). Standard deviations terms s, tage, v and w all have tþ7 ð0; 1Þ priors.

We benchmark the estimates to sex-specific life expectancies for regions. The region

is an administrative unit further up the English geographical hierarchy than the local

authority district. Counting Wales as one region, there were ten regions in England and

Wales in 2014. Life expectancy is the mean number of years a newborn baby would

live if prevailing mortality rates were to continue indefinitely. The procedure for

calculating life expectancy is given in Preston et al. (2001, chap. 3), but for our

purposes, the key point is that life expectancy is a nonlinear deterministic function of

age-specific mortality rates.

Let

zasr ¼
d[Dr

X
wasdgasd=

d[Dr

X
wasd ð55Þ

be the mortality rate in age group a, sex s and region r, where Dr is the set of d such that

district d belongs to region r. Life expectancy for sex s in region r is

csr ¼ f lifeðz1sr; : : : ; zAsrÞ; ð56Þ

where flife is the nonlinear function for calculating life expectancy from age-specific

mortality rates, and A ¼ 20 is the number of age groups. Similarly, let

zasr ¼
d[Dr

X
yasd=

d[Dr

X
wasd ð57Þ

be the direct estimate of the mortality rate in age group a, sex s, and region r. The

benchmark for sex s and region r is then

msr ¼ f lifeðz1sr; : : : ; zAsrÞ: ð58Þ

Since life expectancies are ordinarily reported to at most two decimal places, most users

can tolerate discrepancy of size 0.01. We specify agreement with the benchmarks as

msr ,ind Nðcsr; 0:0052Þ: ð59Þ

We fit our model with and without benchmarks, using four independent chains, each

with 80,000 iterations. Every 100th draw from the final 40,000 iterations of each chain is

recorded, yielding a combined total of 1,600 draws from the posterior distribution.

Benchmarking improves agreement between the modelled life expectancies by sex

and region and the benchmarks. Figure 6 compares benchmarks with point estimates
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(posterior medians) from models with and without benchmarking. Without

benchmarking, the model-based estimates are noticeably different from the benchmarks,

especially for males. With benchmarking, the model-based estimates and benchmarks

are indistinguishable.

Figure 7 shows life expectancies by sex and district, with and without benchmarking.

Benchmarking shifts most posterior medians. The shifts are larger in some regions, such as

the North East, than in others, such as London. Benchmarking changes the width of

credible intervals, but only very slightly. The mean width of credible intervals for all age-

sex-district-specific log-mortality rates increases from 0.33 to 0.34, and the mean width of

credible intervals for sex-district-specific life expectancies decreases from 1.33 to 1.32

(results not shown).

Figure 8 illustrates how benchmarking affects age-sex-specific mortality rates at the

district level. The percent differences between posterior medians of mortality rates from

benchmarked models and those from non-benchmarked models are all below 4%.
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6. Discussion

We conclude by summarizing the advantages of the fully Bayesian benchmarking methods

described in this article.

Our benchmarking methods allow full posterior distributions to be generated for a wide

range of models. With full posterior distributions, uncertainty measures can be

automatically produced for all unknown quantities in the small area models, as well as

derived quantities, such as the finite-population smoking prevalence ðc fin
l Þ in the smoking

simulation in Subsection 4.2, or life expectancy ðcsrÞ in the mortality application

in Section 5.

With some applications, it is not necessary to obtain complete agreement between

benchmarks and model-based estimates. Policy analysts, for instance, may have weaker

requirements for agreement among estimates than administrators. In such cases, inexact

benchmarking, using the methods described in this article, gives statisticians the ability to

control the level of agreement with the benchmarks. As illustrated by the fertility and

smoking simulations, using inexact benchmarking can achieve smaller mean squared

errors than using exact benchmarking.

Finally, in some applications, the most natural benchmarks are quantities that have a

non-linear relationship with the small area parameters, which can be accommodated under

our approach. In this article, we consider the case of life expectancies, but other non-linear

benchmarks such as growth rates and ratios can also be implemented using our methods.
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Book Review

Debra R. Miller1

Timothy P. Johnson, Beth-Ellen Pennell, Ineke A. L. Stoop, and Brita Dorer, eds. Advances in

comparative survey methods: Multinational, multiregional and multicultural contexts. Hoboken, NJ:

Wiley, 2019. ISBN 978-1-118-88498-0, 1104pps.

This book grew out of a 2016 multinational, multiregional, and multicultural contexts

(3MC) conference held in Chicago. The book follows in the steps of Harkness et al. (2003)

as well as Harkness et al. (2010). It is divided into 12 sections and 48 chapters. In addition

to an introduction, the sections include sampling approaches; cross-cultural questionnaire

design and testing; languages, translation, and adaptation; mixed mode and mixed

methods; response styles; data collection challenges and approaches; quality control and

monitoring; nonresponse; multi-group analysis; harmonization, data documentation, and

dissemination; and looking forward.

The book addresses an audience of survey researchers who collect and compare data

across nations, regions, and cultures. The book describes what 3MC researchers are

currently doing and guides others who are doing similar work. For 11 of the 12 sections,

the focus is on designing and implementing various stages of 3MC surveys. The final data

harmonization section is on recycling data from existing studies.

The introductory section presents the promise of 3MC research as the ability to treat

surveys as a unit of analysis based on the growing number of national-level surveys.

Importantly, the section expands the total survey error paradigm to include comparison

error for each model component. The section also promotes mixed methods research as a

validity framework.

The sampling approaches section includes chapters on GIS technology (for studies

where census data is not current) and within-household respondent selection (with an eye

toward future methods). The section discusses cluster and household selection (e.g., via

satellite photos) for readers interested in innovatively using GIS technology though the

discussion could serve monocultural researchers as well. The section also suggests that

cross-national surveys could serve to implement research on selection techniques for face-

to-face surveys.

The cross-cultural questionnaire design and testing section discusses questionnaire

design for comparative researchers in 3MC survey contexts. The section particularly

discusses population-specific sensitive questions, anchoring vignettes to avoid culturally-

based differential item functioning, differences in communication styles, bilingual

cognitive testing, and the comparability of behavior coding.
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The section on languages, translation, and adaptation initially discusses how to optimize

interview language choice across preparatory (researcher and field manager) and field

(interviewer and respondent) stages relative to group and individual level multilingualism.

The section suggests that administration language influences respondents’ answers,

especially for bilingual respondents. One chapter addresses readers who “collect,

organize, and make good use of” documentation (Behr et al. 2019, 341) and provides

information on the input and output of translation documentation. The section ends by

comparing translation measurement properties through a coding scheme based on the

Survey Quality Predictor software.

The mixed modes and mixed methods section distinguishes across- and within-country

mixed mode designs for reducing coverage and non-response error or to reduce cost. The

section continues by discussing mixed mode adjustment methods including logistic

regression, propensity score matching, calibration to predetermined values, and a multiple

imputation method. The section also discusses technological opportunities for expanding

mixed methods by distinguishing designed from organic data.

The section on response styles starts by questioning the cross-cultural comparability

of subjective probability response patterns. It then discusses attitudinal rating response

styles across cultures, particularly acquiescent and extreme response styles. One

recommendation is testing for measurement invariance. The section ends by discussing

translation of balanced or unbalanced response scales with reference to five surveys in

four countries and by cautioning against naı̈vely comparing data from different

countries and languages.

The section on challenges and approaches to data collection emphasizes dimensions

of social and cultural context, political context, economic conditions and infrastructure,

physical environment, and research traditions and experience. The chapter on sub-

Saharan Africa discusses challenges with not knowing what proportion of a population

is nomadic, language multiplicity, insecurity, and limited resources. It suggests that the

increase in communication hardware and software could mitigate data deprivation. The

chapter on the Middle East and Arab Gulf focuses primarily on Qatar and recommends

anchoring vignettes to address the limitation of directly-posed questions. The chapter

on Latin America and the Caribbean discusses five comparative survey projects and

cites challenges of increasing violence and lack of current census information. The

chapter on India and China suggests options for moving beyond the dominant face-to-

face mode.

The data collection section suggests study branding, collecting contact information,

between-wave contact, and customized approaches to respondents. The chapter on

multinational event history calendar interviewing promotes a standardized approach,

providing feedback to interviewers as soon as possible, adjusting the order of domains and

adapting interviewer training according to cultural differences, providing an additional

device on which respondents can see the calendar, and using paradata as a means to make

behavior coding more efficient. The chapter on the collection of biological samples in a

survey discusses but does not address differing cultural acceptability of obtaining blood

samples. A theoretical chapter discusses quality relative to principles of respect for

persons, beneficence, and justice. The section ends by discussing the General Data

Protection Regulation’s promise to harmonize legislation and practice.
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The quality control and monitoring section pays particular attention to survey

quality as pertaining to all survey life cycle phases. Two of the section’s five case

studies are set in India, one in the Kingdom of Saudi Arabia, and two in Europe. The

section emphasizes that firms as well as interviewers have fabricated data and

recommends sharing information concerning fabrication as a way of deterring firms

from the act.

The chapters in the nonresponse section provide a discussion of the sources of

nonresponse bias and how this may differ across cultures. The section lays out several

strategies for minimizing nonresponse across countries such as attending to

characteristics of sampling frames and gathering paradata. A nonresponse model for

within-household cooperation in the California Health Interview Survey desirably

provides a cultural ecosystems framework but is unfortunately based on phone numbers

as a proxy of community. The section ends by explaining how nonresponse arises

when non-national language speakers lack the option of answering in their native

language.

For analysts or data users, the multi-group confirmatory factor analysis section

addresses exact and partial measurement invariance as well as approximate measurement

invariance with Bayesian priors in Mplus.

The section on harmonization, data documentation, and dissemination introduces a

database of “22 large international survey projects encompassing 1721 individual

surveys from 142 countries” with nearly 2.3 million individuals (Granda 2019, 933). The

section defines survey data recycling as “a framework for integrating information from

extant survey and nonsurvey sources to create multicountry multiyear data sets”

(Slomczynski and Tomescu-Dubrow 2019, 937), drawing on total survey error, total

survey quality, and total quality management. One chapter identifies types of data

processing errors including illegitimate variables values, misleading variable values,

contradictory variable values, variable values discrepancy, and lack of variable value

labels. The section proposes classifying item metadata as new variables relevant for

assessing “intersurvey reliability and validity of variables created via ex post

harmonization of survey data” (Kołczyńska and Slomczynski 2019, 1027). Ultimately,

the section discusses the quality of existing design and post-stratification weights, as well

as the advantages of recalculating weights.

The final section on looking forward presents a concern that covering too many

populations or countries fails to allow properly handling processes. The section

summarizes prevailing problems of different research camps or traditions; the cost of 3MC

surveys; need for strong central leadership; need to strengthen user roles for policy impact;

and issues related to data quality such as overly specialized methodologists.

The book’s balance of qualitative and quantitative chapters accentuate mitigating total

survey error to enhance quality. Notably, “the overarching goal of 3MC surveys is to

minimize comparison error” (Scott et al. 2019, 719). Most chapters describe what 3MC

researchers are currently doing and offer practical suggestions for designing surveys to

mitigate error components. Furthermore, several chapters offer cautions for interpreting

existing data sets. Readers who conduct 3MC surveys, use 3MC survey data, or who want

to expand their awareness of quality assurance and control in such contexts will benefit

from reading the book.
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