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Are probability surveys bound to disappear for the 
production of official statistics? 

Jean-François Beaumont1 

Abstract 

For several decades, national statistical agencies around the world have been using probability surveys as their 
preferred tool to meet information needs about a population of interest. In the last few years, there has been a 
wind of change and other data sources are being increasingly explored. Five key factors are behind this trend: 
the decline in response rates in probability surveys, the high cost of data collection, the increased burden on 
respondents, the desire for access to “real-time” statistics, and the proliferation of non-probability data sources. 
Some people have even come to believe that probability surveys could gradually disappear. In this article, we 
review some approaches that can reduce, or even eliminate, the use of probability surveys, all the while 
preserving a valid statistical inference framework. All the approaches we consider use data from a non-
probability source; data from a probability survey are also used in most cases. Some of these approaches rely 
on the validity of model assumptions, which contrasts with approaches based on the probability sampling 
design. These design-based approaches are generally not as efficient; yet, they are not subject to the risk of bias 
due to model misspecification. 

 
Key Words: Statistical matching; Calibration; Non-probabilistic data; Data integration; Fay-Herriot model; Propensity 

score. 
 
 
1  Introduction 
 

In 1934, Jerzy Neyman laid the foundation for probability survey theory and his design-based 
approach to inference with an article published in the Journal of the Royal Statistical Society. His article 
(Neyman, 1934) piqued the interest of a number of statisticians at the time, and the theory was developed 
further in the following years. Still today, many articles on this topic are published in statistics journals. 
Rao (2005) provides an excellent review of various developments in probability survey theory during the 
20th century (see also Bethlehem, 2009; Rao and Fuller, 2017; Kalton, 2019). Nowadays, national 
statistical agencies, such as Statistics Canada and the Institut National de la Statistique et des Études 
Économiques (INSEE) in France, use probability surveys most often to get the information they seek on a 
population of interest. 

The popularity of probability surveys for producing official statistics stems largely from the non-
parametric nature of the inference approach developed by Neyman (1934). In other words, probability 
surveys allow for valid inferences about a population without having to rely on model assumptions. This is 
appealing ‒ even fundamental, according to Deville (1991) ‒ to national statistical agencies that produce 
official statistics. In fact, these agencies have historically been reluctant to take unnecessary risks, which 
are unavoidable for approaches that depend on the validity of model assumptions, especially when it is 
difficult to check the underlying assumptions. 
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However, estimates from probability surveys can prove inefficient, even to the point of being unusable, 
particularly when the sample size is small (see, for example, Rao and Molina, 2015). Furthermore, they 
are based on the assumption that non-sampling errors, such as measurement, coverage or non-response 
errors, are negligible. To minimize these errors, national statistical agencies often invest considerable 
resources. For example, questionnaires are tested to ensure that respondents fully understand them; survey 
data are validated using various edit rules; respondents are contacted again, if necessary, to confirm the 
data collected; non-respondent follow-ups are conducted to minimize the impact of non-response on the 
estimates, etc. Despite all these efforts, non-sampling errors persist in practice. There are, of course, 
adaptations of the theory for taking these errors into account. These adaptations necessarily come with 
model assumptions and thus with the risk of bias resulting from inadequate assumptions. Probability 
surveys are not a panacea but they are generally recognized as providing a reliable source of information 
about a population, except when non-sampling errors become dominant. Brick (2011) takes the argument 
further and defends the idea that a probability survey with a low response rate ‒ if properly designed ‒ 
usually provides estimates with smaller bias than those obtained from a volunteer non-probability survey. 
Dutwin and Buskirk (2017) show empirical results that corroborate this argument. 

For the past few years, a wind of change has been blowing over national statistical agencies, and other 
data sources are being increasingly explored. Five key factors are behind this trend: i) the decline in 
response rates in probability surveys in recent years; ii) the high cost of data collection; iii) the increased 
burden on respondents; iv) the desire for access to “real-time” statistics (Rao, 2020), in other words, 
having the ability to produce statistics practically at the same time or very shortly after the information 
needs are expressed; and v) the proliferation of non-probability data sources (Rancourt, 2019) such as 
administrative sources, social media, web surveys, etc. To control data collection costs of probability 
surveys and reduce the adverse effects of non-response on the quality of estimates, a number of authors 
have proposed and evaluated responsive data collection methods (e.g., Laflamme and Karaganis, 2010; 
Lundquist and Särndal, 2013; Schouten, Calinescu and Luiten, 2013; Beaumont, Haziza and Bocci, 2014; 
Särndal, Lumiste and Traat, 2016). Tourangeau, Brick, Lohr and Li (2017) review various methods and 
point out their limited success in reducing non-response bias and costs. Särndal et al. (2016) also reach the 
same conclusion regarding bias. Some surveys conducted by national statistical agencies still have very 
low response rates, and it becomes risky to rely solely on data collection and estimation methods to 
correct potential non-response biases. Indeed, a number of authors (e.g., Rivers, 2007; Elliott and Valliant, 
2017) pointed out the similarity between a probability survey with a very low response rate and a non-
probability survey. Yet, a non-probability survey has the advantages of having a usually much larger 
sample size and being less costly. Given the above discussion, some have come to believe that probability 
surveys could gradually disappear (see Couper, 2000; Couper, 2013; Miller, 2017). 

However, data from non-probability sources are not without challenges, as noted by Couper (2000), 
Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau (2013), and Elliott and Valliant 
(2017), among others. For example, it is well known that non-probability surveys that collect data from 
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volunteers can often lead to estimates with significant selection bias (or participation bias). Bethlehem 
(2016) provides a bias expression and argues that the potential for bias is usually higher for a non-
probability survey than for a probability survey affected by non-response. Meng (2018) illustrates that bias 
becomes dominant as the non-probability sample size increases, which significantly reduces the effective 
sample size. Therefore, the acquisition of large non-probability samples alone cannot ensure the 
production of estimates with an acceptable quality. The pre-election poll conducted by the Literary Digest 
magazine for predicting the outcome of the 1936 U.S. presidential election is a prime example of this 
(Squire, 1988; Elliott and Valliant, 2017). Despite a huge sample size of over two million people, the poll 
was unable to predict Franklin Roosevelt’s overwhelming victory. Instead, it incorrectly predicted a 
convincing victory for his opponent, Alfred Landon. The set of poll respondents, who were highly 
unrepresentative of the voting population, was made up mainly of car and phone owners as well as the 
magazine’s subscribers. Couper (2000) and Elliott and Valliant (2017) cite other more recent examples of 
non-probability surveys that led to erroneous conclusions. 

Selection bias is not the only challenge that must be overcome when using data from a non-probability 
source. Another major challenge is the presence of measurement errors (e.g., Couper, 2000). They can 
significantly impact the estimates, especially when data are collected without relying on an experienced 
interviewer. This is the case for most non-probability sources, in particular volunteer web surveys. 

The current context leads to the following question: How can data from a non-probability source be 
used to minimize, even eliminate, the data collection costs and respondent burden of a probability survey, 
all the while preserving a valid statistical inference framework and acceptable quality? That is the main 
question this article attempts to answer. 

Most of the methods we present integrate data from a probability survey and a non-probability source. 
Zhang (2012) discusses the concept of statistical validity when integrated data are used to make 
inferences. We contend that establishing a statistical framework that can be used to make valid inferences 
is essential for the production of official statistics, a point that also seems to be shared by Rancourt (2019). 
Without such a framework, the usual properties of estimators, such as bias and variance, are not defined. It 
then becomes impossible to select estimators based on an objective criterion such as, for example, 
choosing the linear unbiased estimator with the smallest possible variance. Without a valid statistical 
inference framework, estimates can be calculated, but all the usual tools for determining the quality of 
those estimates and drawing accurate conclusions about the population’s characteristics of interest are lost. 

In the rest of this article, we differentiate design-based approaches to inference, described in Section 3, 
from model-based approaches to inference, described in Section 4. For each approach, we consider two 
scenarios: In the first one, the data from the non-probability source match exactly the concepts of interest 
and are not fraught with measurement errors. Those data can therefore be used to replace the data from a 
probability survey. In the second scenario, the data from the non-probability source do not reflect concepts 
of interest or are subject to measurement errors. Although these data cannot be used to directly replace 
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data from a probability survey, they can still be used as auxiliary information to enhance it. In Section 5, 
we provide some additional thoughts. Let us first begin with some background in Section 2. 

 
2  Background 
 

One of the first steps to meet information needs is to define the target population for which that 
information is sought. We denote this target population by .U  Then, it is necessary to define the 
parameters of interest, i.e. what it is desired to know about the target population. In practice, it is often 
desired to estimate many parameters. To simplify the discussion, we suppose that only one parameter is of 
interest: the total of the variable ,y ,kk U

y


=   where ky  is the value of the variable y  for unit k  of 
the population .U  We use Y  to denote the vector containing the values ky  for .k U  Lastly, a set of 
procedures must be established for the estimation of the parameter   while taking into account various 
factors, such as the available budget, the respondent burden, the desired precision, etc. During this 
process, it is necessary to identify the data sources that will be used ‒ probabilistic or not ‒ and a statistical 
inference framework that will allow for assessing the properties of the estimates produced, such as bias 
and variance. 

The above sequence, which starts with defining the target population and parameters of interest, 
followed by the data sources and estimation procedures, is consistent with the proposal by Citro (2014). 
She suggests that national statistical agencies first determine the information needs along with potential 
users. Next, they can work at identifying the data source(s) that will meet those needs while preserving an 
acceptable quality of estimates, keeping costs within the established budget and controlling for respondent 
burden. It seems preferable to avoid the reverse procedure, however tempting it is, of first identifying 
available data sources and then artificially determining the needs based on what can be produced by these 
sources. In general, this kind of procedure cannot adequately meet users’ actual needs. 

We assume that we have access to data from a non-probability source (e.g., administrative data, web 
survey data, etc.). Values are observed for a few variables, including a variable *,y  for all units of a 
subset of ,U  denoted as NP .s  The variable *y  is not necessarily equal to y  because of conceptual 
differences and/or measurement errors. At least, it is hoped that there is a strong association between the 
two variables. We denote the inclusion indicator in NPs  as ;k  in other words, 1k =  if unit k  is in 

NPs  and 0,k =  otherwise. The vector of the inclusion indicators k  for k U  is denoted by .δ  

Data from a probability survey may also be available. In that case, a sample Ps  of the population U  is 
randomly selected with probability ( ) .Pp s Z  The matrix Z  contains information available on the 
sampling frame that is used to define the sampling design, such as stratum identifiers for each unit of the 
population. The sample inclusion indicators, ,kI ,k U  are defined as follows: 1kI =  if unit k  is 
selected in the sample ;Ps  otherwise, 0.kI =  We use I  to denote the vector containing the sample 
inclusion indicators for .k U  The probability that unit k  of the population U  is chosen in the sample 
is denoted by ( ) .k kE I = Z  Most of the time it is known or can be approximated. We assume that 



Survey Methodology, June 2020 5 

 

 
Statistics Canada, Catalogue No. 12-001-X 

0,k  .k U  For each unit ,Pk s  the values of certain variables are collected, which may or may 
not include the variable .y  

We use Ω  to denote the set of all the auxiliary data used to make inferences. Among other things, Ω  
includes the design information, ,Z  if a probability sample is used, and potentially other auxiliary 
variables such as calibration variables, matching variables or explanatory variables of a model (see 
Sections 3 and 4). The inclusion indicator k  can also be used as an auxiliary variable either for 
stratifying the population or for calibration (see Section 3). The vector δ  can thus be included in Z  
and .Ω  

The following two assumptions are used throughout the article: 

Assumption 1: I  is independent of Ω  and Y  after conditioning on .Z  
Assumption 2: δ  and I  are independent after conditioning on Ω  and .Y  
 

Assumption 1 implies that the values of the variables included in Ω  and Y  are not affected by 
whether or not a unit is included in the sample .Ps  This is implicit in the literature on probability surveys 
and results from the very definition of the sampling design, which depends only on .Z  Assumption 2 is 
automatically satisfied if the non-probability source (and thus )δ  is available prior to selecting the 
probability sample. Note that if k  is used as an auxiliary variable to stratify the population, then δ  is 
included in Ω  and assumption 2 is still satisfied. It will not be satisfied if being selected in Ps  impacts the 
provision of data to the non-probability source. For example, being selected in Ps  (and contacted) could 
be an indirect reminder for the selected individual to fill out forms required by the government (non-
probability source). It can be expected that assumptions 1 and 2 are satisfied in most cases. 

The union of ,Ω ,δ I  and Y  contains all the information used for making inferences. The various 
approaches to inference set out in Sections 3 and 4 differ in what they treat as fixed and what they treat as 
random. For example, in the design-based approach to inference, everything is considered fixed except for 
the vector ;I  in other words, design-based inferences are conditional on ,Ω Y  and .δ  To simplify the 
notation, we use PΩ  to denote the union of ,Ω Y  and .δ  Thus, design expectations are denoted as 
( )PE  Ω  rather than ( ) ., ,E  Ω Y δ  In the design-based approach to inference, an estimator ̂  of   is 

usually chosen so that the design bias, ( )ˆ ,PE  − Ω  is zero or negligible. Under assumptions 1 and 2, 
we note that ( ) ( ) .k P k kE I E I = =Ω Z  For estimating the total ,kk U

y


=   an estimator of 
the form ˆ

P
k kk s

w y


=   is frequently used, where kw  is a survey weight for unit .k  The standard 
basic weight is 1.k kw  −=  This weight ensures that the estimator ̂  is exactly design-unbiased for .  
The basic weight can then be modified using calibration techniques (e.g., Deville and Särndal, 1992; 
Haziza and Beaumont, 2017). The advantage of this approach is its non-parametric nature: no model 
assumption is needed for making valid inferences about the population because the first two design 
moments are controlled by the statistician and are usually known. Yet, the approach is not free of 
assumptions, for example to ensure the consistency and asymptotic normality of estimators, but it does not 
require any parametric model. 
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In practice, non-response is often observed in probability surveys as well as other non-sampling errors. 
Non-response of some sample units is often viewed as an additional phase of sampling that is not 
controlled by the statistician. In other words, the non-response mechanism is not known, unlike the 
sampling design. Assuming an adequate model for the non-response mechanism, estimators with little or 
no bias can be obtained, for example by weighting the responding units by the inverse of their estimated 
response probability. However, this requires careful modelling of the response indicators. In the rest of 
this paper, we ignore non-sampling errors and assume that the estimates from the probability survey are 
not biased or, at least, that their bias is small compared to the bias of the estimates from the non-
probability source alone. This assumption may not always be satisfied in practice, but it is reasonable in 
many contexts (see Brick, 2011), especially in large surveys conducted by national statistical agencies. 

The acquisition of data from non-probability sources is generally inexpensive compared to the cost of 
collecting data from a probability survey. Therefore, they would ideally be used to replace data from a 
probability survey. This data replacement is valid only if * ,k ky y .k U  This assumption will not be 
satisfied with all non-probability data sources, but may be realistic with some administrative data sources. 
In Sections 3 and 4, we will differentiate the methods based on the assumption that *

k ky y=  from the 
methods not requiring this assumption. Several methods described in Sections 3 and 4 are also reviewed in 
the upcoming article by Rao (2020) that was presented to Statistics Canada in summer 2018. 

 
3  Design-based approaches 
 

Design-based approaches yield design-consistent estimators of   even when the non-probability 
source produces estimates with a significant selection bias. In this context, the purpose of using a non-
probability sample is to reduce the variance of estimators of .  The efficiency gains achieved can be used 
to justify a reduction of the probability sample size, thereby a reduction of the data collection costs and 
respondent burden. The methods that we consider in Sections 3.1 and 3.2 require collecting the values of 
the variable of interest y  in the probability sample, just like small area estimation methods described in 
Section 4.4. However, the efficiency gains are usually expected to be more modest than those obtained 
using small area estimation methods. In Section 3.1, we consider the scenario *

k ky y=  whereas in 
Section 3.2, we consider the scenario * .k ky y  
 

3.1  Weighting by the inverse of the probability of inclusion in the combined 
sample 

 

The ideal case occurs when the non-probability sample is a census, i.e., NP .s U=  In that case, the 
value of the parameter of interest kk U

y


=   can be directly calculated without worrying about bias 
or variance since *

k ky y=  is assumed in this section. In general, we expect under-coverage in the sense 
that NPs  is smaller than the population .U  In a design-based approach, the potential under-coverage bias 
can be addressed by selecting a probability sample Ps  from U  and collecting the values of the variable y  
for the sample units. Ideally, the probability sample is drawn from NPU s−  but it is possible that the 
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units in NPs  cannot be linked to those of the sampling frame U  to establish the set NP .U s−  In general, 
the larger the non-probability sample, the more it is possible to reduce the size of the probability sample 
without jeopardizing the desired precision of the estimates. 

It seems desirable to estimate   using all the data collected in the combined sample NP .Ps s s=   
The inclusion indicator in s  can be defined as ( )1 .k k k kI I = + −  To obtain a design-unbiased 
estimator of ,  each unit k s  is weighted by 1

k kw  −=  where ( ) .k k PE I = Ω  Under 
assumptions 1 and 2, ( )k P kE I =Ω  and we obtain 

 ( ) ( )1 .k k P k k kE I   = = + −Ω   

The resulting estimator is written: 

 ( )
NP

1ˆ 1 .
P

k k k k kk s k s k s
k

w y y y 
  

= = + −    (3.1) 

Note that estimator (3.1) requires the indicator k  to be available for all units in the sample .Ps  For 
the units NP ,Pk s s   we have two values: ky  and * .ky  In principle, we should have * ,k ky y=  but 
it is possible that this relationship is not exactly satisfied. These units can be used to validate the 
assumption * .k ky y  If significant differences are observed, it may be preferable to not consider this 
approach and to rely on the methods in Section 3.2 that use data from the non-probability source as 
auxiliary data. If we trust the data quality of the non-probability source, it may be advisable not to collect 
the variable y  in the probability sample for the units also present in the non-probability sample in order to 
reduce the data collection costs and respondent burden. 

We can view the problem as if we had two sampling frames: U  and NP .s  A sample Ps  is drawn 
randomly from U  and a census is taken from NP .s  The probability of selection in the sample ,s

( )Pr ,Pk s Ω  can then be calculated for each unit ,k U  and the estimator (3.1) is recovered by 
weighting each unit k s  by the inverse of that probability. This approach was proposed by Bankier 
(1986) to address the problem of multiple sampling frames. In the context of integrating a probability and 
non-probability sample, estimator (3.1) was proposed by Kim and Tam (2020). 

The last sum of (3.1) is a design-unbiased estimator of ( )
NP

1 .k k kk U k U s
y y

  −
− =   If a 

vector of auxiliary variables, ,kx  is available for Pk s  as well as the total kk U
= xT x  then the 

weight 1 k  in (3.1) can be replaced with a calibrated weight kw  (e.g., Deville and Särndal, 1992; 
Haziza and Beaumont, 2017). The calibrated weights minimize a distance function between kw  and 
1 ,k ,Pk s  under the constraint of satisfying the calibration equation .

P
k kk s

w


= xx T  Ideally, 
the calibration is done only on the portion not covered by the non-probability sample, NP ;U s−  i.e., the 
calibration vector ( )1 k k− x  is used, and the calibration equation becomes: ( )1 x

P
k k kk s

w 


− =  

NP
.x kk U s −  This is not possible when 

NP
kk U s − x  is unknown. 

 
Remark: If assumption 2 is not appropriate, then ( ) ( ) .k P k kE I E I  =Ω Z  To get around this 
problem, all the units for which the data were collected after selecting the sample Ps  can be removed 
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from NP .s  Assumption 2 is then satisfied, but a lot of available data may be omitted. To take advantage of 
the full set NP ,s  it is necessary to make a few assumptions and partially depart from the design-based 
approach. Assuming that ( ) ( )Pr 1 , , ,k P k kE I I = =Ω Y Ω  we can use Bayes’ theorem to show that 

 ( )
( )

( )
1 Pr 1 1, ,

Pr 1 0, , ,
1 Pr 1 ,

k k
k k k

k

I
I


 



− = =
= = =

− =
Y Ω

Y Ω
Y Ω

  

for the units NP .k U s −  Therefore, estimating ( )k PE I Ω  requires postulating a model for .k  
Under some assumptions, ( )Pr 1 1, ,k kI = = Y Ω  can be estimated using the data from the 
probability sample and, for example, a logistic regression model. Estimating ( )Pr 1 ,k = Y Ω  can be 
done using the methods described in Section 4.3 that do not rely on the validity of assumption 2, such as 
the method by Chen, Li and Wu (2019). These methods require that the auxiliary variables used to model 
this probability be available for all units of the combined sample NP .Ps s s=   Unlike in Section 4.3, 
here we can take advantage of the availability of ky  for all units of both samples, and we can use the 
variable of interest as an auxiliary variable. Then,   is estimated by replacing k  in (3.1) with an 
estimate of ( )Pr 1 0, , .k kI = = Y Ω  Similar approaches were proposed by Beaumont, Bocci and 
Hidiroglou (2014) to take into account late respondents in Statistics Canada’s National Household Survey, 
i.e., households that responded to the initial questionnaire after the follow-up probability sample of non-
respondents was drawn. 
 

3.2  Calibration of the probability sample to the non-probability source 
 

Data from non-probability sources, such as those provided by web panel respondents, can be fraught 
with measurement errors large enough to cast doubt on the assumption that * .k ky y  Therefore, such 
data cannot be used to directly replace the values of the variable .y  However, they can be used as 
auxiliary data to enhance the probability survey using the calibration technique. The non-probability 
source contains the values *

ky  for NPk s  and potentially the values of other variables. From all these 
variables, it is possible to form a vector of auxiliary variables * ,kx  available for NP ,k s  that could 
include an intercept. Its total is denoted as *

NP

* * .k k kk s k U


 
= = xT x x  Another vector of auxiliary 

variables, ,x k  may also be available for ,Pk s  as well as its total for the entire population ,U
.kk U

= xT x  The calibrated weights ,kw ,Pk s  are obtained by minimizing a distance function 
between kw  and 1 ,k ,Pk s  under the constraint of satisfying the calibration equation 

 
*

*
.

P

k
kk s

k k

w


 
=  

   


x

x

Tx
Tx

  

Note that this calibration can be done only if *
kx  is available in the probability sample for all units 

NP .Pk s s   The estimator of   is again written as ˆ ,
P

k kk s
w y


=   where kw  is the calibrated 

weight satisfying the above calibration equation. No model assumption is required for the validity of the 
approach, and the resulting estimates remain design-consistent regardless of the strength of the 
relationship between ky  and the auxiliary variables kx  and * .kx  A strong relationship will help reduce the 
design variance of ˆ, ( )ˆvar .P Ω  Kim and Tam (2020) discuss the use of such calibration. 
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Canada’s Labour Force Survey (LFS) provides an example of a potential application for this 
calibration method. The unemployment rate, defined as the number of unemployed persons divided by the 
number of persons in the labour force, is a key parameter of interest that the LFS estimates. To improve 
the precision of the LFS estimates, a calibration variable indicating whether an individual is receiving 
employment insurance could be effective because there is definitely a connection between receiving 
employment insurance and being unemployed. The total of this calibration variable, the number of 
employment insurance beneficiaries, is needed for implementing this calibration and is available from an 
administrative source. However, applying this method would require adding a question to the LFS to 
identify LFS respondents who are receiving employment insurance. This information could also be 
obtained through a linkage between the LFS and the administrative source. It remains to be determined 
whether such a calibration variable could yield significant gains in the LFS. 

 
4  Model-based approaches 
 

Model-based approaches can eliminate the selection bias of the non-probability source and enable valid 
statistical inferences, provided that their underlying assumptions hold. The objective of the methods in 
Sections 4.1, 4.2 and 4.3 is to reduce respondent burden and costs by eliminating data collection for some 
variables of interest in a probability sample. The greater the number of variables of interest for which the 
values are not collected, the greater the reduction in data collection costs and respondent burden. 
However, these methods assume that the variables of interest are measured without error in the non-
probability sample ( )* .k ky y=  

From the non-probability sample NP ,s  we can obtain the naive estimator 
NP

NP NPˆ
kk s

N y n


=   
of the total ,  where NPn  is the number of units in NPs  and N  is the size of the population .U  It is well 
known that the selection bias of the naive estimator may be significant (see, for example, Bethlehem, 
2016). The objective of the methods in Sections 4.1, 4.2 and 4.3 is to reduce the bias of the naïve estimator 
by using a vector of auxiliary variables, .kx  We use X  to denote the matrix that contains the values of 
vector ,kx .k U  We assume that kx  is measured without error in both samples NPs  and .Ps  

Section 4.4 briefly discusses small area estimation and the area-level model of Fay and Herriot (1979). 
Small area estimation methods are generally used to improve the precision of estimates for population 
sub-groups (domains) that have a small probability sample size. They require collecting the variable y  in 
the probability sample, but not in the non-probability sample. Therefore, they do not require the condition 

* .k ky y=  Ideally, the non-probability sample contains variables correlated to .y  
 

4.1  Calibration of the non-probability sample 
 

The most natural approach to correcting the selection bias of a non-probability source is to model the 
relationship between the variable of interest ky  and the auxiliary variables kx  and then predict the total 
  by predicting the variable ky  for each unit outside the non-probability sample. This prediction 
approach is described in Royall (1970) and generalized in Royall (1976); see also Elliott and Valliant 
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(2017). Readers are referred to Valliant, Dorfman and Royall (2000) for more details. With this approach, 
inferences are conditional on δ  and .X  As a result, Y  is considered random as well as Ω  (unless 

).Ω X=  If a probability sample is used, I  is also considered random. It is usually assumed that the 
nonprobability sample selection mechanism is not informative: 

Assumption 3: Y  and δ  are independent after conditioning on .X  
 

Assumption 3 is the key to eliminating the selection bias. The more access we have to auxiliary 
variables that are strongly related to both ky  and ,k  the more plausible assumption 3 becomes. In other 
words, the richer X  is, the more the conditional independence between Y  and δ  becomes a realistic 
assumption. This assumption, called the exchangeability assumption, is discussed in Mercer, Kreuter, 
Keeter and Stuart (2017). Schonlau and Couper (2017) also discuss the selection of auxiliary variables and 
emphasize their key role in reducing selection bias. 

Often, a linear model is considered where it is assumed that the observations ky  are mutually 
independent with ( )k kE y =X x β  and ( )var ,k ky vX  where β  is a vector of unknown model 
parameters and kv  is a known function of .x k  The best linear unbiased predictor of   (see, for example, 
Valliant, Dorfman and Royall, 2000) is given by 

 ( )
NP NP NP

BLUPˆ ˆ ˆ ˆ ,xx β T β x βk k k kk s k U s k s
y y

  − 
  = + = + −    (4.1) 

where 

 ( )
NP NP

1
1 1ˆ .k k k k k kk s k s

v v y
−

− −
 

=  β x x x   

The predictor BLUP̂  can also be re-written in the weighted form 
NP

BLUPˆ ,C
k kk s

w y


=   where 

 ( ) ( )
NP NP

1
1 11 .xx x x T xC

k k k k k k kk s k s
w v v

−
− −

 
 = + −   (4.2) 

It can easily be shown that C
kw  is a calibrated weight that satisfies the calibration equation 

NP
.C

k kk s
w


= xx T  Therefore, the prediction approach is equivalent to calibration when a linear model 

is used to describe the relationship between ky  and .kx  The calibration equation satisfies what Mercer 
et al. (2017) call the composition assumption. This approach requires knowing the vector of control totals 

.xT  If it is unknown, an alternative is to replace it in (4.1) or (4.2) with an estimate, ˆ ,
P

k kk s
w


= xT x  

from a probability survey (Elliott and Valliant, 2017). If assumptions 1 to 3 are satisfied, it can be shown 
that the predictor BLUP̂  is unbiased, i.e., ( )BLUPˆ , 0,E  − =δ X  whether xT  or ˆ

xT  is used, 
provided that the latter is design-unbiased, i.e., ( )ˆ .PE =x xT Ω T  Of course, the unbiasedness property 
of the predictor BLUP̂  requires the linear model to be valid. 

Remark: In practice, auxiliary variables for which the population total is known are usually few in number 
and not sufficiently predictive of the variable y  for eliminating the selection bias. These may be 
supplemented with other auxiliary variables for which the total can be estimated using an existing 
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probability survey. Therefore, the vector of population totals may be a blend of known and estimated 
totals. If the probability survey itself is calibrated to known population totals, then only the estimated 
totals ˆ

xT  from the probability survey can be used. 

A linear model is not always appropriate. This is the case when the variable y  is categorical. Another 
typical example occurs when it is desired to estimate the total of a quantitative variable in a domain of 
interest. The variable y  is then defined as the product of that quantitative variable and a binary variable 
indicating domain membership. To model such a variable, it is natural to consider a mixture of a 
degenerate distribution at 0 and a continuous distribution. When the relationship between ky  and kx  is 
not linear, model-assisted calibration of Wu and Sitter (2001) can be used to preserve the weighted form 
of the predictor   while taking into account the non-linearity of the relationship. Suppose that we replace 
the above linear model with a non-linear (or non-parametric) model such that ( ) ( ) ,k kE y h=X x  
where ( )h   is some function. The Wu and Sitter (2001) calibration first involves predicting ky  by 

( )ˆˆ ,k ky h= x ,k U  where ( )ˆ
kh x  is a model-based estimate of ( ) .kh x  Then, the total 

ˆ ˆy kk U
T y


=   is calculated, and weights, MC ,kw NP ,k s  are found that satisfy the calibration 

equation: 

 
NP

MC

ˆ

1
.

ˆkk s
yk

N
w

Ty

 =  
   

   

In other words, the equation (4.2) can be used, where k
x  is replaced with ( )ˆ1, .ky  This method 

requires knowing the population size N  as well as the vector kx  for all units in the population .U  If N  
and ŷT  are unknown, they can be replaced with estimates from a probability survey. For example, we can 
replace N  with ˆ

P
kk s

N w


=   and ŷT  with ˆ
ˆ ˆ .

P
y k kk s

T w y


=   The approach can also be extended to 
the case of multiple variables of interest. 

We mentioned that the selection bias may be considerably reduced if kx  is rich and contains variables 
that are related to both k  and ,ky  which makes assumption 3 more realistic. It can therefore be useful in 
practice to consider a large number of potential auxiliary variables and select the most relevant ones using 
a variable selection technique. Chen, Valliant and Elliott (2018) suggest the LASSO technique for 
selecting auxiliary variables and show its good properties. 

It should be noted that the predictor BLUP̂  reduces to the naive estimator, NPˆ ,  in the simplest case 
possible where only one constant auxiliary variable is used: 1,kx = .k U  The naive estimator is 
usually highly biased. Its bias can be significantly reduced if the population U  can be subdivided into H
disjoint and exhaustive post-strata, ,hU 1, , ,h H=  of size .hN  The post-stratification model, 
( ) ,k hE y =X ,hk U  is then postulated, which is an important special case of the above linear 

model. Assuming that the variance ( )var ky X  is constant for ,hk U  the predictor BLUP̂  is written: 
BLUP

1
ˆ ˆ ,H

h hh
N 

=
=   where 

NP,

NPˆ ,
h

h k hk s
y n


=  NP, hs  is the set of units in hU  that are part of the 

sample NPs  and NP
hn  is the size of NP, .hs  If the population sizes hN  are unknown, they can be replaced 

with estimates, 
,

ˆ ,
P h

h kk s
N w


=   from a probability survey, where ,P hs  is the set of units in hU  that are 
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part of the sample .Ps  Regression trees could prove to be an interesting approach for forming post-strata, 
especially when the auxiliary variables are categorical. 

If multiple categorical auxiliary variables are available, it can be useful to form a large number of post-
strata to reduce the selection bias. If many auxiliary variables are crossed, the sample sizes NP

hn  could 
become very small, thereby making the estimators ˆ

h  very unstable. Gelman and Little (1997) suggest 
using a multi-level regression model to obtain estimators h  more stable than ˆ .h  They then consider the 
post-stratified predictor: MRP

1
ˆ .H

h hh
N 

=
=   Nowadays, this method is known as Mr.P or MRP 

(Multilevel Regression and Poststratification); see, for example, Mercer et al. (2017). A similar approach 
would use small area estimation methods (Rao and Molina, 2015) to stabilize the estimators ˆ .h  
Although such methods are likely to produce much more precise estimates of the average of variable y  
over the population ,hU  it remains to be determined whether such methods can produce significant 
efficiency gains for estimating the overall total   compared to the simple post-stratified predictor 

BLUP
1

ˆ ˆ .H
h hh

N 
=

=   It seems that regression trees provide another way to control the instability of the 
estimators ˆ

h  since a criterion is generally used to prevent an overly narrow subdivision of the 
population. These various methods warrant further investigation in future research. Precise estimation of 
population sizes ,hN  if not known, is also a problem not to be overlooked when the population is divided 
into a large number of post-strata. 

 
4.2  Statistical matching 
 

Statistical matching, or data fusion, is an approach developed for combining data from two different 
sources that contain both source-specific variables and common variables. Readers are referred to 
D’Orazio, Di Zio and Scanu (2006) or Rässler (2012) for a review of statistical matching methods. In the 
context of this article, statistical matching involves modelling the relationship between ky  and the 
auxiliary variables ,kx  which are common to both sources, using data from the non-probability sample. 
As with calibration, the non-probability sample selection mechanism is assumed to be non-informative, 
and the auxiliary variables must be chosen carefully in order to make assumption 3 as plausible as 
possible. Once a model has been determined, it is used to predict the y  values in a probability sample. 
Statistical matching can be viewed as an imputation problem with an imputation rate of 100%. The 
predictor of ,  obtained from the probability sample, takes the form: SM impˆ ,

P
k kk s

w y


=   where 
imp
ky  is the imputed value for the unit .Pk s  As in calibration, inferences are conditional on δ  and .X  

Assumption 3, in a statistical matching context, can be viewed as analogous to the Population Missing At 
Random (PMAR) assumption introduced by Berg, Kim and Skinner (2016) in a non-response context. 

If the linear regression model ( )k kE y =X x β  is used, the imputed value for the unit Pk s  is 
imp ˆ
k ky = x β  and the resulting predictor is given by SMˆ ˆˆ . = xT β  If assumptions 1 to 3 are satisfied and 
( )ˆ ,PE =x xT Ω T  statistical matching produces an unbiased predictor, SMˆ ,  i.e., ( )SMˆ ,δ XE  − =  

0. Also, if ,k kv = x λ  for a certain known vector ,λ  it can be shown that ( )
NP

ˆ 0,k kk s
y


− = x β  and 

the predictor SM̂  is equivalent to the predictor BLUP̂  if we replace xT  in (4.1) with ˆ .xT  It can also be 
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shown that, for a post-stratification model where we impute ,ky , ,P hk s  with imp ˆ ,k hy =  the 
predictor SM̂  reduces to SM

1
ˆ ˆˆ .H

h hh
N 

=
=   Therefore, statistical matching and calibration produce 

similar predictors, even identical in some cases, when a linear model is postulated and the totals xT  are 
estimated. 

Choosing between statistical matching or calibration can depend on the user’s perspective. For 
example, if it is the content of the non-probability source, in terms of variables of interest, that is relevant 
to the user, then it seems natural to weight the non-probability sample in the hopes of reducing the 
selection bias for all variables of interest. The calibration technique or the methods in Section 4.3 are 
obvious choices for such weighting. Conversely, if instead it is the content of the probability survey that is 
relevant, then statistical matching is the appropriate choice. This method enriches the probability survey 
by imputing the missing variables of interest. 

Statistical matching is easily generalized to non-linear or non-parametric models such that 
( ) ( ) .k kE y h=X x  The imputed values imp

ky  are simply obtained by predicting the missing values ,ky
,Pk s  using the chosen model. The predictor SM impˆ

P
k kk s

w y


=   remains unbiased if assumptions 
1 to 3 are satisfied and if ( )imp , 0.k kE y y− =δ X  Donor or nearest neighbour imputation is a non-
parametric imputation method commonly used for handling non-response (see, for example, Beaumont 
and Bocci, 2009) that does not require a linear relationship between ky  and .kx  In the context of 
matching non-probability and probability samples, donor imputation was popularized by Rivers (2007). 
For a given unit ,Pk s  the method involves finding the nearest donor, with respect to the auxiliary 
variables ,x  among the units of the non-probability sample and replacing the missing value ky  with the 
y  value from this donor. For donor imputation, the condition ( )imp , 0k kE y y− =δ X  is satisfied if, 

for each recipient ,Pk s  the donor has exactly the same values of x  as the recipient. When one or 
more auxiliary variables are continuous, this condition is satisfied only asymptotically in general. A very 
large non-probability sample provides a large pool of donors, which should help to approximately satisfy 
this condition. 

Remark: In some applications, a very large non-probability panel of volunteers, NP ,s  is available, which 
contains a few auxiliary variables for matching, ,x  but no variable of interest. Ideally, the variables of 
interest would be collected for all units of the panel NP ,s  but that is impossible due to the cost and the 
burden on the panel members. Therefore, in practice, a sub-sample *

NPs  of NPs  is selected using random 
or non-random sampling methods. Quota sampling (e.g., Deville, 1991) is often considered in this context. 
In addition to collecting the variables of interest for all units of *

NP ,s  there may also be interest in 
collecting other auxiliary variables for matching in order to enhance the vector .x  The matching can then 
be done to the probability sample, often much smaller in size, as long as the latter contains the same 
auxiliary variables as those of the non-probability sub-sample *

NP .s  By carefully choosing the auxiliary 
variables for the matching, the potential for bias reduction is increased (Schonlau and Cooper, 2017). The 
implementation proposed by Rivers (2007) is slightly different. Rivers (2007) suggests conducting the 
matching between the probability sample and the panel NPs  using the auxiliary variables available in both 
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sources. The variables of interest are collected only for the set of donors in NPs  who have been matched to 
a unit in the probability sample, which allows for a significant reduction of data collection costs and 
burden. The implicit assumption is that the panel members, initially volunteers, are more likely to respond 
than individuals chosen at random in the population. Obviously, non-response is unavoidable, and this 
problem must be dealt with, potentially through imputation. The advantage of this method is that the 
matching is carried out using the panel NPs  rather than a sub-sample of this panel; the pool of donors is 
larger. However, the matching cannot be done using the enhanced vector of auxiliary variables because it 
is not available for the units in NP ,s  which limits the potential for bias reduction. 

Lavallée and Brisbane (2016) point out the connection between statistical matching and indirect 
sampling (Lavallée, 2007; Deville and Lavallée, 2006). They propose an estimator obtained by imputing 
each missing value ,ky ,Pk s  by a weighted average of the y  values of nearest donors. In reality, 
their estimator can also be obtained equivalently by imputing the missing values using fractional donor 
imputation (for example, Kim and Fuller, 2004). The use of more than one donor to impute the missing 
values yields a typically modest variance reduction. 

Several imputation methods used in practice can be considered linear (Beaumont and Bissonnette, 
2011). This is the case for linear regression imputation, donor imputation and fractional donor imputation. 
An imputation method is said to be linear if the imputed value imp ,ky ,Pk s  can be written as 

NP

imp ,k kl ll s
y y


=   where kl  is a function of δ  or X  but not of .Y  For example, for donor or 

nearest-neighbour imputation, 1kl =  if the unit NPl s  is the donor for the recipient ;Pk s  
otherwise 0.kl =  For a linear imputation method, the estimator SM impˆ

P
k kk s

w y


=   can be 
rewritten as a weighted sum over the non-probability sample: 

NP

SMˆ ,l ll s
W y


=   where lW =  

.
P

k klk s
w 

  Therefore, for linear imputation methods, statistical matching is an alternative to 
calibration and to the methods in Section 4.3 if the objective is to properly weight the non-probability 
sample. 

So far, we have considered only the estimation of the total .kk U
y


=   However, the probability 

sample contains other variables, and there may be interest in the relationship between two or more 
variables, some from the probability survey and others imputed from the non-probability sample. As an 
example, suppose that the estimation of the total k kk U

y y


=   is of interest, where ky  is a variable 
collected in the probability survey, but not available in the non-probability sample. It could, for example, 
define membership in a domain of interest. Statistical matching can be used to estimate this parameter by 

SM impˆ .
P

k k kk s
w y y


=   We use Y  to denote the vector that contains the values of the variable ,ky  

.k U  It can be shown that SM̂  is unbiased, ( )SMˆ , , 0,E  − =δ X Y  if assumptions 1 to 3 are 
satisfied in addition to the following assumption: 

Assumption 4: Y  and Y  are independent after conditioning on δ  and .X  
 

Assumption 4 is known as the conditional independence assumption in the statistical matching 
literature. 
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4.3  Inverse propensity score weighting 
 

Instead of modelling the relationship between ky  and ,kx  the relationship between k  and kx  could 
be modelled. The main advantage of this approach is to simplify the modelling effort when there are 
multiple variables of interest since there is always only one variable .k  With this approach, inferences 
are conditional on Y  and .X  Also, it is usually assumed that assumption 3 is valid and thus

( ) ( )Pr 1 , Pr 1 .k k = = =Y X X  The probability of participation ( )Pr 1k kp = = X  is 
then estimated by ˆ ,kp  and the estimate 

NP

PS PSˆ
k kk s

w y


=   is calculated, where PS ˆ1 .k kw p=  The 
assumption that 0,kp  ,k U  must be made. It is called the positivity assumption by Mercer et al. 
(2017). It may also be required in the calibration and statistical matching approaches. For example, empty 
post-strata ( )NP 0hn =  may occur if it is not satisfied. To fix this issue, these empty post-strata are usually 
collapsed with other non-empty post-strata. This collapsing may jeopardize the validity of assumption 3 if 
the collapsed post-strata are different. 

The estimation of kp  can be achieved by postulating a parametric model ( ); ,k kp g= x α  where g  
is some function, normally bounded by 0 and 1, and α  is a vector of unknown model parameters. The 
logistic function ( ) ( ) ( ); exp 1 expk k kg   = +

 
x α x α x α  predominates in the applications (see Kott, 

2019, for a recent application). The estimator of α  is denoted by α̂  and the estimated probability by 
( )ˆˆ ; .k kp g= x α  Ideally, α  would be estimated using kx  for all the units in the population U  similar 

to what would be done in a non-response context. For example, assuming the logistic function is used, α  
could be estimated by solving the maximum likelihood equation: 

 ( )  ( )
NP

.α x x α x 0k k k k k kk U k s k U
p p

  
− = − =    (4.3) 

This is impossible when kx  is not known for all units NP ,k U s −  which is almost always the 
case in practice. Iannacchione, Milne and Folsom (1991) proposed another unbiased estimation equation 
for α  (see also Deville and Dupont, 1993): 

 
( )NP

.
x

x 0
α

k
kk s k U

kp 
− =   (4.4) 

The main advantage of equation (4.4) is that it does not require knowing kx  for each unit 

NP .k U s −  However, it is necessary to have access to the vector of totals kk U x  from an 
external source. An interesting property of equation (4.4) is that the resulting weights ( )PS ˆ1k kw p= α  
satisfy the calibration equation 

NP

PS ,k k kk s k U
w

 
= x x  just like the weights C

kw  given in (4.2). 
Indeed, it can be shown that solving (4.4) yields PS C

k kw w=  if the model ( ) ( ) 1
11k k kp v

−
− = +α x α  is 

used. However, this is a less natural model than the above logistic model for modelling a probability. 

To get around the problem of missing values ,kx NP ,k U s −  Chen et al. (2019) suggest 
estimating ( )k kk U

p
 α x  in (4.3) using a probability survey. The equation to be solved becomes: 

 ( )
NP

.x α x 0
P

k k k kk s k s
w p

 
− =   (4.5) 
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Equation (4.5) is unbiased conditionally on Y  and X  provided that the probability survey allows for 
unbiased estimation, conditionally on Y  and ,Ω  of any population total that is not a function of δ  such 
as ( ) .k kk U

p
 α x  Assumptions 1 and 3 are required, but not assumption 2. Using the idea of 

Iannacchione et al. (1991), an alternative to (4.5) is obtained by solving: 

 
( )NP

.
x

x 0
α P

k
k kk s k s

k

w
p 

− =   (4.6) 

Equation (4.6) produces weights ( )PS ˆ1 αk kw p=  that satisfy the calibration equation 
NP

PSxk kk s
w


=  

x
P

k kk s
w

  (see also Lesage, 2017; Rao, 2020). The estimators of α  obtained using (4.5) or (4.6) are 
likely less efficient than those obtained using (4.3) or (4.4). If ,kx NP ,k U s −  or the vector 

kk U x  is known, then using (4.3) or (4.4) is preferable. Otherwise, the estimating equations (4.5) or 
(4.6) can be used provided that kx  is collected in a probability survey. Note that the indicators k  do not 
need to be observed in the probability sample. 

Equations (4.5) and (4.6) may be more difficult to solve than equations (4.3) and (4.4) and may not 
have a solution. Consider, for example, the case where there is only one auxiliary variable: 1.kx =  
Using (4.5) or (4.6), it can be seen that the estimated probability reduces to: NPˆ .

P
k kk s

p n w


=   If 
the size of the probability sample is sufficiently large, it is expected that ˆ0 1.kp   For small sample 
sizes, it may happen that ˆ 1kp   due to the variability of .

P
kk s

w
  In that case, equations (4.5) and 

(4.6) would not have a solution if the logistic function is used since it requires that ˆ0 1.kp   To 
avoid this issue, it may be helpful to consider other functions not bounded by 1, such as ( );x αkg =  

( )exp .x αk
  

Kim and Wang (2019) suggest using the probability sample to estimate the participation probability. 
Assuming the logistic function is used, the equation to be solved is: 

 ( )  ( ) .
P P P

k k k k k k k k k kk s k s k s
w p w w p 

  
− = − =  α x x α x 0   

The method requires knowing the indicators k  in the probability sample and the validity of 
assumptions 1, 2 and 3 to ensure the estimating equation is unbiased. Also, the probability sample size is 
usually small relative to the non-probability sample size, and it can be numerically difficult to estimate ,α  
especially when kx  contains a large number of variables and the overlap between the two samples is 
small. 

Lee (2006), see also Rivers (2007), Valliant and Dever (2011) and Elliott and Valliant (2017), 
proposes to combine the two samples and then estimate kp  using logistic regression. It seems that the 
author implicitly assumes that the two samples do not overlap, i.e., that 0k =  for all units in .Ps  Using 
again the logistic function, the resulting estimating equation is: 

 ( )  ( )
NP

NP 1 ,α x α x 0
P

k k k k k kk s k s
p w p

 
− − =   (4.7) 
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where NP
k  is a certain weight for the units in the non-probability sample. The method is somewhat 

similar to the one proposed by Chen et al. (2019), but the estimating equation (4.7) is not unbiased, 
conditionally on Y  and ,X  unlike equations (4.5) and (4.6). However, if we assume NP 1k =  and if 

 max ;kp k U  is small, equation (4.7) becomes approximately equivalent to equation (4.5). Yet Lee 
(2006) does not directly use the estimated probabilities resulting from (4.7). The author uses them only to 
order the union of the two samples and then create homogeneous classes. Using homogeneous classes 
brings some robustness to model misspecification and can help prevent very small estimated probabilities 
and thus very large weights. In the context of non-response, forming homogeneous imputation or 
reweighting classes was studied by Little (1986), Eltinge and Yansaneh (1997), and Haziza and Beaumont 
(2007), among others. Haziza and Lesage (2016) illustrate the robustness of the method when the function 
( );kg x α  is misspecified. The method is used regularly in Statistics Canada surveys for dealing with 

non-response. 

Rather than using (4.7), homogeneous classes could be formed by starting with the unbiased equations 
(4.5) or (4.6). These initial estimated probabilities are denoted by ( )0 ˆˆ ; .k kp g= x α  The sample 

NPPs s s=   can then be sorted by 0ˆ kp  and divided into C  homogeneous classes of equal or unequal 
sizes. The set of units in Ps  that are part of class c  is denoted by ,P cs  whereas the set of units in NPs  that 
are part of class c  is denoted by NP, .cs  The weight PS

kw  for a unit NP, ck s  is equal to the inverse of the 
estimated participation rate in class c  and is given by PS NPˆ ,k c cw N n=  where 

,

ˆ
P c

c kk s
N w


=   and 

NP
cn  is the number of units in NP, cs  This weight ensures the calibration property: 

NP,

PS ˆ .
c

k ck s
w N


=  

The number of classes must be large enough to capture a high percentage of the variability of the initial 
probabilities 0ˆ ,kp  thereby reducing the bias. On the other hand, it must not be too large to prevent the 
occurrence of empty classes since the weights PS NPˆ

k c cw N n=  cannot be calculated if NP 0.cn =  
Regression trees can prove to be an effective alternative for forming classes. In a non-response context, 
they have been studied by Phipps and Toth (2012). The estimator 

NP

PS PSˆ
k kk s

w y


=   obtained after 
forming homogeneous classes has exactly the same form as the post-stratified estimator described in the 
calibration approach in Section 4.1; the only difference is that the classes are built by modelling k  rather 
than .ky  

Assumption 3 may not be realistic in some contexts so that ( ) ( )Pr 1 , Pr 1 .k k =  =Y X X  
In this case, the participation probability ( )Pr 1 ,k kp = = Y X  might be modelled using a vector of 
explanatory variables * ,kx  defined using the variable of interest ky  (or variables of interest if there are 
several) and potentially other auxiliary variables .kx  A parametric model, ( )* ; ,k kp g= x α  can be 
considered for modelling the participation probability. Equations (4.5) and (4.6) cannot be used to 
estimate α  because ky  (and therefore * )kx  is not available in the probability sample. However, an 
equation similar to (4.6) can be used: 

 
( )NP *

.
;

x
x 0

x α P

I
k I

k kk s k s
k

w
g 

− =   (4.8) 
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The vector ,I
kx  of the same size as ,α  contains calibration variables, also called instrumental variables 

in the econometric literature. We use IX  to denote the matrix that contains the values of vector ,I
kx  

.k U  Equation (4.8) requires knowing the calibration variables I
kx  for both samples. However, the 

explanatory variables *
kx  can be observed only for the units in the non-probability sample. Equation (4.8) 

produces weights ( )PS * ˆ1 ;k kw g= x α  that satisfy the calibration equation 
NP

PSx I
k kk s

w


=  
.x

P

I
k kk s

w
  An equation similar to (4.8) was originally proposed by Deville (1998) to deal with non-

response (see also Kott, 2006; Haziza and Beaumont, 2017). Equation (4.8) is unbiased, conditionally on 
,Y X  and ,IX  if the instrumental variables I

kx  can be selected such that the following assumption is 
satisfied: 

Assumption 5: δ  and IX  are independent after conditioning on Y  and .X  

Assumption 3 is no longer required, but is replaced with another assumption. The choice of 
instrumental variables I

kx  that satisfy assumption 5 is not always obvious in practice. They must not be 
predictive of k  after conditioning on * .kx  Ideally, for efficiency reasons, the instrumental variables are 
selected so as to be predictive of *

kx  without compromising assumption 5. Unlike equations (4.5) and 
(4.6), equation (4.8) cannot be used to form homogeneous classes because the participation probabilities 

( )* ˆˆ ;k kp g= x α  cannot be calculated for the units in the probability sample. As such, the property of 
robustness that comes with homogeneous classes is lost. Because of these drawbacks, equation (4.8) 
should be considered only when there are strong reasons to believe that assumption 3 is not appropriate. 

Once weights PS
kw  have been calculated using one of the methods in this section, they can still be 

adjusted through calibration. The objective of this calibration is to improve the precision of the estimator 
PS̂  and also obtain a double robustness property (see Chen et al., 2019). 

In general, the variable y  is observed for the entire non-probability sample, and the inverse 
propensity-score weighted estimator, 

NP

PS PSˆ ,k kk s
w y


=   or a weighted estimator obtained by 

calibration or statistical matching can be used. Sometimes, the non-probability sample is too large and the 
variable y  can only be collected for a sub-sample of NP .s  Quota sampling (e.g., Deville, 1991) is a 
commonly used method for drawing the sub-sample if auxiliary variables are available for NP .k s  An 
alternative to quota sampling is to calculate the weights PS

kw  for the entire non-probability sample and use 
them to select a random sub-sample with probabilities proportional to the weights. The variable y  is then 
collected only for the sub-sample, and the estimates are obtained as if the sub-sample was drawn from the 
population using an equal probability design. This approach is called inverse sampling in the literature on 
probability surveys (see, for example, Hinkins, Oh and Scheuren, 1997; or Rao, Scott and Benhin, 2003) 
and was proposed by Kim and Wang (2019) for non-probability samples. 

 
4.4  Small area estimation 
 

In most surveys, it is desired to estimate the total of the variable y  not just for the entire population 
,U  but also for different subgroups of the population, called domains. Probability surveys conducted by 
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national statistical agencies generally produce reliable estimates for domains with a sufficient number of 
sample units. Their bias is controlled through the various sampling and data collection procedures, and 
their variance is typically small enough to draw accurate conclusions. When the domain of interest 
contains few sample units, the survey estimates may become unstable to the point of being unusable even 
when their bias stays under control. To remedy a lack of data in a domain of interest, small area estimation 
methods may be considered. These methods offset the lack of observed data in a domain through model 
assumptions that link auxiliary data to survey data. Two types of models are commonly used: unit-level 
models and area-level models. The area-level model of Fay and Herriot (1979) is undoubtedly the most 
popular. It requires auxiliary data to be available at the domain level only, unlike unit-level models, which 
require auxiliary variables for each unit of the population .U  Readers are referred to Rao and Molina 
(2015) for an excellent coverage of the various approaches. Below, we focus on the Fay-Herriot model. 

Suppose it is desired to estimate D  totals, ,
d

d kk U
y


=  1, , ,d D=  where dU  are D  

disjoint subsets of the population. Using a probability survey, d  can be estimated by ˆ
d =  

,
,

P d
k kk s

w y
  where ,P ds  is the set of sample units that fall within domain .d  The estimator ˆ

d  is called 
the direct estimator of d  because it only uses y  values of units belonging to domain .d  Small area 
estimation techniques generally lead to indirect estimators that combine the sample y  values of domain 
d  with y  values of units outside domain .d  We assume that a vector of auxiliary variables is available at 
the area level, and these variables come from sources independent of the probability sample. This vector 
for domain d  is denoted by .dx  For example, the vector ( )NPˆ,d d d dN N  =x  could be considered, 
where dN  is the population size in domain ,d

NP,

NP * NPˆ
d

d k dk s
y n


=   is the average of variable *y  

in a non-probability sample, NP, ds  is the set of units in the non-probability sample that are in domain d  
and NP

dn  is the size of the non-probability sample in domain .d  If the population size dN  is unknown, it 
can be replaced with an estimate independent of the probability survey. We use X  to denote the matrix 
that contains the values of vector ,dx 1, , .d D=  Note that the vector δ  is hidden in the matrix X  in 
this section. 

The Fay-Herriot model has two components: the sampling model and the linking model. The sampling 
model is based on the assumption that, conditionally on ,PΩ  the direct estimators ˆ

d  are independent and 
unbiased, i.e., ( )ˆ .d P dE  =Ω  Their design variance is denoted by ( )ˆvar .d d P = Ω  The 
sampling model is usually written in the form: 

 ˆ ,d d de = +  (4.9) 

where de  is the sampling error such that ( ) 0d PE e =Ω  and ( )var .d P de =Ω  The independence 
assumption of the estimators ˆ

d  (and therefore of the sampling errors )de  can be questioned when the 
strata do not coincide with the domains of interest. Section 8.2 of Rao and Molina (2015) discusses 
methods that take into account correlated sampling errors. In practice, it is often assumed that these 
correlations are weak, and they are ignored. 
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The linking model assumes that, conditionally on ,X  the totals d  are independent, ( )XdE  =  
x βd
  and ( ) 2 2var ,d d vb =X  where db  are known constants used for controlling heteroscedasticity 

and β  and 2
v  are unknown model parameters. The linking model is usually written in the form: 

 ,x βd d d db v = +  (4.10) 

where dv  is the model error such that ( ) 0dE v =X  and ( ) 2var .d vv =X  When the parameters of 
interest, ,d  are totals, it is often appropriate to let .d db N=  From (4.9) and (4.10), we obtain the 
combined model: 

 ˆ ,x βd d da = +  (4.11) 

where d d d da b v e= +  is the combined error. When using the Fay-Herriot model (4.11), inferences are 
usually made conditionally on .X  It can easily be shown that ( ) 0dE a =X  and ( )var Xda =  

2 2 ,d v db  +  where ( )d dE = X  is called the smooth design variance (Beaumont and Bocci, 
2016; and Hidiroglou, Beaumont and Yung, 2019). 

Now suppose that it is desired to predict the total d  using a linear predictor LIN
1

ˆ ˆ ,D
d di ii

  
=

=   
where di  are constants to be determined. A linear predictor uses all the data from the probability sample 
for predicting ,d  not just the data from domain .d  This explains how it derives its efficiency. However, 
not all linear predictors are appropriate for predicting .d  A strategy often used for determining the 
constants di  is to minimize the variance of the prediction error, ( )LINˆvar ,d d − X  subject to the 
constraint that the predictor must be unbiased, ( )LINˆ 0.d dE  − =X  The resulting predictor, called 
the Best Linear Unbiased Predictor (BLUP), is denoted by BLUPˆ ,d  and can be written in the form (see, for 
example, Rao and Molina, 2015): 

 ( )BLUPˆ ˆ ˆ1 ,x βd d d d d    = + −  (4.12) 

where ( )2 2 2 2
d d v d v db b   = +  is bounded by 0 and 1, and 

 
1

2 2 2 2
1 1

ˆˆ .
D D

d d d
d

d dd v d d v db b


   

−

= =

 
= 

 + + 
 

x x x
β   

The predictor (4.12) is a weighted average of the direct estimator ˆ
d  and a prediction, ˆ ,d

x β  often 
called the synthetic estimator. More weight is given to the direct estimator when the smooth design 
variance, ,d  is small relative to the variance of the linking model, 2 2 .d vb   The predictor BLUPˆ

d  is then 
similar to the direct estimator. This situation normally occurs when the sample size in the domain is large. 
Conversely, if the direct estimator is unstable and has a large smooth design variance, more weight is 
given to the synthetic estimator. If the number of domains is large, the prediction variance of BLUPˆ ,d  

( )BLUPˆvar ,d d − X  is approximately equal to .d d   Since ( )ˆvar ,d d d  − =X  the constant 

d  can be interpreted as being a variance reduction factor resulting from using BLUPˆ
d  instead of ˆ .d  

Therefore, the variance reduction is greater when d  is small, i.e., when the direct estimator is not precise. 
On the other hand, if the linking model is not properly specified, there is greater risk of significant bias 
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when d  is small. To better understand this point, suppose that the real linking model is such that 
( ) ( )d dE  =X x  for some function ( ) .   Under this model, it can be shown that the bias of the 

predictor BLUPˆ
d  is given by 

 ( ) ( ) ( )( )BLUP
0

ˆ 1 ,X x x βd d d d dE     − = − − −  (4.13) 

where 

 ( )
1

0 2 2 2 2
1 1

.
D D

d d d
d

d dd v d d v db b


   

−

= =

 
= 

 + + 
 

x x x
β x   

If the linear model ( )d d =x x β  is valid, the bias disappears. Otherwise, the bias is not zero and 
increases as d  decreases or as the specification error of the linking model, ( ) 0 ,d d −x x β  increases. 
When d  is close to 1, the bias is usually negligible, but so is the variance reduction. 

Remark: Note that the predictor BLUPˆ
d  and the bias (4.13) depend on the variance 2 .v  If the linear model 

(4.10) is not valid, the parameters β  and 2
v  no longer exist. Yet, the linking model (4.10) can still be 

postulated and its parameters can be estimated from the observed data as if the model were valid. The 
model variance 2 ,v  which enters in the calculation of the predictor BLUPˆ

d  and the bias (4.13), can be 
viewed as being the value towards which an estimator of 2

v  converges. 

The predictor (4.12) cannot be calculated because it depends on the unknown variances 2
v  and .d  

When 2
v  and d  in (4.12) are replaced with estimators 2ˆ v  and ˆ ,d  the BLUP (4.12) becomes the 

empirical best linear unbiased predictor, denoted as EBLUPˆ .d  There are a number of methods for 
estimating 2

v  (see Rao and Molina, 2015). One of the most commonly used methods is restricted 
maximum likelihood. To estimate ,d  we assume that a design-unbiased estimator of d  is available, 
denoted by ˆ .d  This assumption is formally written: ( )ˆ .d P dE  =Ω  It follows that 
( )ˆ .d dE  =X  Therefore, the estimator ˆ d  is unbiased for ,d  but can be very unstable when the 

domain sample size is small. A more efficient approach for estimating d  involves modelling ˆ d  given 
the auxiliary variables .dx  In practice, a linear model is often used for ( )ˆlog ,d  and it is assumed that 
the model errors follow a normal distribution (for example, Rivest and Belmonte, 2000). Beaumont and 
Bocci (2016), see also Hidiroglou et al. (2019), provide a method of moments for estimating d  that does 
not require the normality assumption. 

The Fay-Herriot model requires the availability of auxiliary data only at the domain level. The variable 
y  must be measured without error in the probability survey, but it is not essential for the auxiliary source 

to be perfect. This leaves the door open to all kinds of files external to the probability survey such as big 
data files. Kim, Wang, Zhu and Cruze (2018) is a recent example where an extension of the Fay-Herriot 
model was used with auxiliary data from satellite images. Small area estimation methods often achieve 
significant and sometimes impressive variance reductions (see, for example, Hidiroglou et al., 2019). The 
trade-off for obtaining these gains is the introduction of model assumptions and the risk that these 
assumptions do not hold. Therefore, model validation is a critical step in producing small area estimates, 
as in any model-based approach. 
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Small area estimation methods are generally used to improve the efficiency of estimators for domains 
with a small sample size. They could also be used to reduce the data collection costs and respondent 
burden by reducing the overall sample size of a probability survey for a few, if not all, survey variables. 
The estimates obtained from the reduced sample and the Fay-Herriot model, for example, could thus have 
a precision similar to the direct estimates from the probability survey obtained from the full sample. In this 
context, small area estimation methods would not be used to improve the precision for domains containing 
few units, but instead to reduce the overall data collection effort while preserving the quality of the 
estimates. 

 
5  Conclusion 
 

In this paper, we presented several methods that use data from a non-probability source while 
preserving a statistical framework that allows for valid inferences. This, in our view, is essential for 
national statistical agencies because, without this framework, the usual measures of the quality of the 
estimates, such as variance or mean square error estimates, disappear and it becomes difficult to draw 
accurate conclusions. Using data from a non-probability source is not without risk. For model-based 
approaches, it seems unavoidable to plan enough time and resources for modelling. The literature on 
classical statistics is replete with tools for validating model assumptions. Although this topic was not 
adequately covered in the previous sections, careful validation of the assumptions is still a critical step in 
the success of these approaches (Chambers, 2014) and is one of the recommendations made by Baker 
et al. (2013). 

Estimating the variance or mean square error of the estimators described in the previous sections is 
also an important topic that we omitted. Yet, this problem does not pose any particular difficulties, in 
general, and a number of methods exist for variance or mean square error estimation. For design-based 
approaches, the topic has been extensively covered in the literature (see, for example, Wolter, 2007). This 
is also true for small area estimation methods (see Rao and Molina, 2015) and for the calibration approach 
(see Valliant, Dorfman and Royall, 2000). Nevertheless, it might be useful that research be undertaken to 
adequately address this issue in some specific cases, such as weighting by inverse propensity score or 
statistical matching by nearest donor. 

We assumed that the non-probability source was a subset of the population of interest and that it may 
be subject to measurement errors. However, there are other potential flaws with non-probability sources. 
For example, they may contain duplicates or units outside the population. This could make some of the 
methods discussed in this article unusable, especially the design-based methods. Therefore, it might be 
useful to tackle these problems in the future. 

We mainly limited ourselves to describing several methods that use data from a non-probability 
sample, whether or not combined with data from a probability survey, once all the data have been 
collected and processed. There are a number of other methods that use data from non-probability sources 
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during the various stages of a probability survey. For example, one or more non-probability sources can be 
used to create a sampling frame or improve its coverage. These sources can also be used in a multi-frame 
sampling context, to replace data collection for certain variables, or to impute the missing values in a 
probability survey. These topics were not covered in this article, but are reviewed in Lohr and 
Raghunathan (2017). 

The literature on integrating data of a probability and non-probability sample is quite recent. However, 
there are a number of methods that combine data from two probability surveys (e.g., Hidiroglou, 2001; 
Merkouris, 2004; Ybarra and Lohr, 2008; Merkouris, 2010; and Kim and Rao, 2012). Such methods may 
be used to first combine two probability surveys before integrating them with a non-probability source 
using one of the methods in Section 4. For example, if the total xT  is unknown, it may be possible to 
estimate it using more than one probability survey and then use this estimated total in the calibration 
approach. It still needs to be assessed whether such a strategy would yield significant efficiency gains. 

Are probability surveys bound to disappear for the production of official statistics? The question is 
relevant in the current context of surveys conducted by national statistical agencies where high data 
collection costs and increasingly lower response rates are observed. In our opinion, the time has not yet 
come because the alternatives are not reliable and general enough to eliminate the use of probability 
surveys without severely sacrificing the quality of the estimates. In Section 4, we mentioned that 
calibration and weighting by inverse propensity score could eliminate the use of a probability survey, 
provided that a vector of population totals xT  is available from a census or a comprehensive 
administrative source. In general, these known totals will not be numerous and effective enough to 
sufficiently reduce the selection bias of a non-probability sample. To get around this problem, the 
suggestion has been made in the literature to complement xT  with other totals estimated using a good-
quality probability survey. It seems to us that this is the way to significantly reduce bias and to really take 
advantage of calibration and weighting by inverse propensity score methods presented in Section 4. Of 
course, some probability surveys with very low response rates and/or data of questionable quality could 
occasionally be eliminated in favour of data from non-probability sources. In our view, most surveys 
conducted by Statistics Canada do not fall into this category. Although they are not perfect, they continue 
to provide reliable information to meet users’ needs and to make informed decisions. The complete 
elimination of probability surveys seems highly unlikely in the short or medium term. However, it can be 
expected that their use will be reduced in the future in order to control costs and respondent burden. 
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Local polynomial estimation for a small area mean under 
informative sampling 

Marius Stefan and Michael A. Hidiroglou1 

Abstract 

Model-based methods are required to estimate small area parameters of interest, such as totals and means, when 
traditional direct estimation methods cannot provide adequate precision. Unit level and area level models are 
the most commonly used ones in practice. In the case of the unit level model, efficient model-based estimators 
can be obtained if the sample design is such that the sample and population models coincide: that is, the 
sampling design is non-informative for the model. If on the other hand, the sampling design is informative for 
the model, the selection probabilities will be related to the variable of interest, even after conditioning on the 
available auxiliary data. This will imply that the population model no longer holds for the sample. Pfeffermann 
and Sverchkov (2007) used the relationships between the population and sample distribution of the study 
variable to obtain approximately unbiased semi-parametric predictors of the area means under informative 
sampling schemes. Their procedure is valid for both sampled and non-sampled areas. Verret, Rao and 
Hidiroglou (2015) studied alternative procedures that incorporate a suitable function of the unit selection 
probabilities as an additional auxiliary variable. Their procedure resulted in approximately unbiased empirical 
best linear unbiased prediction (EBLUP) estimators for the small area means. In this paper, we extend the 
Verret et al. (2015) procedure by not assuming anything about the inclusion probabilities. Rather, we 
incorporate them into the unit level model via a smooth function of the inclusion probabilities. This function is 
estimated via a local approximation resulting in a local polynomial estimator. A conditional bootstrap method 
is proposed for the estimation of mean squared error (MSE) of the local polynomial and EBLUP estimators. 
The bias and efficiency properties of the local polynomial estimator are investigated via a simulation. Results 
for the bootstrap estimator of MSE are also presented. 

 
Key Words: Local polynomial estimation; EBLUP estimation; Augmented model; Nested error model; Informative 

sampling; Conditional bootstrap. 
 
 
1  Introduction 
 

Population totals and means are often required for small subpopulations (or areas). When the inference 
is based on the area specific sample data, the resulting small area parameter estimators (direct estimators) 
are not of adequate precision due to the small area specific sample sizes. As a result, it becomes necessary 
to borrow strength across areas. Indirect estimators (predictors) that borrow strength are obtained when a 
model is used for the population of small areas. The model provides a link to related small areas. As a 
consequence, a model-based small area indirect estimator uses all the observations in the national sample, 
as well as the observations from the small area. 

Suppose that the population of interest, U  of size ,N  consists of M  non-overlapping areas with iN  
units in the thi  small area iU ( )1, , .i M=  A sample, ,s  of m  areas is first selected using a specified 
sampling scheme with inclusion probabilities i imp = ( )1, , ,i M=  where ip  denotes the 
selection probability of small area .i  Subsamples is  of specified sizes in  are independently selected from 
each small area iU  according to a specified sampling design with selection probabilities j ip  

( )1
1 .iN

j ij
p

=
=  The inclusion probabilities are j i i j in p =  with sampling weights 1 .j i j iw  −=  

We consider the selection probabilities j ip  proportional to a size measure, ,ijc  related to the response 
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variable :ijy  that is 
1

.iN
j i ij ikk

p c c
=

=   We assume that all small areas are sampled, that is .m M=  
The resulting overall sample size is 

1
.M

ii
n n

=
=   

The basic population nested error regression model introduced by Battese, Harter and Fuller (1988) is 
given by 

 , 1, , ; 1, , ,x βT
ij ij i ij iy v e j N i M= + + = =  (1.1) 

where ijy  is the value of the response variable for unit j  in small area ,i ( )11, , ,x T
i j ij ijpx x=  is the 

vector of covariates, ( )0 1, , ,β T
p  =  is the vector of fixed effects, and ( )iid 2~ 0,i vv N   are the 

random small area effects independent of the unit level errors ( )iid 2~ 0, .ij ee N   The estimation of small 
area means, 1

1
,iN

i i ijj
Y N y−

=
=   is of primary interest. 

If the sampling design is non-informative for the model, that is if the model (1.1) holds for the sample, 
then efficient model-based estimators of the small area means iY  can be obtained using empirical best 
linear unbiased prediction (EBLUP) (see Rao and Molina, 2015, Chapter 6 for an excellent account of the 
procedure). In this case, both the sample and population models coincide, allowing the use of (1.1) on the 
sample data to estimate .iY  

If the selection probability j ip  is related to ijy  even after conditioning on ,ijx  the sampling design is 
informative and the model (1.1) no longer holds for the sample. Consequently, the EBLUP estimator, that 
is based on (1.1) for the sample, may be heavily biased. It is, therefore, necessary to develop estimators 
that can account for sample selection, thereby reducing estimation bias. To this end, Verret et al. (2015) 
augmented model (1.1) by including the variable ( ) ,j ig p  where ( )j ig p  is a specified function of the 
probability .j ip  Their model for the sample is given by 

 ( )0 0 0 0 , 1, , ; 1, , ,x βT
ij ij j i i ij iy g p v e j n i M= + + + = =  (1.2) 

where ( )iid 2
0 0~ 0,i vv N   and independent of ( )iid 2

0 0~ 0, ,ij ee N   and ( )0 00 01 0, , , .T
p  =β  Verret 

et al. (2015) checked the adequacy of (1.2) after fitting the model to sample data ( ), , ,xij ij j iy p  
1, , ; 1, , ,ij n i M= =  for different choices of ( )g   that provide the best fit to the data. They 

suggested the following four possibilities for the choice of ( ) :j ig p ,j ip ( )log ,j ip ( ) 1
j i i j iw n p −

=  
and 1 .i j i j in w p −=  Since their sample model is parametric, the EBLUP theory can be used to estimate 
the relevant parameters using model (1.2).  

Verret et al. (2015) illustrated via a simulation that the resulting EBLUP estimator, denoted as VRHˆ ,iY  
obtained under (1.2), performs well under informative sampling design by reducing both bias and mean 
squared error as compared to the EBLUP estimator, EBLUPˆ ,iY  obtained from the sample data under the 
non-augmented model (1.1). Their simulation study compared their approach to the one used in 
Pfeffermann and Sverchkov (2007). Their simulation results showed that the bias-adjusted estimator of 
Pfeffermann and Sverchkov (2007) performed well under informative sampling in terms of bias, but that 
its MSE is significantly larger than the corresponding MSE of the EBLUP estimator based on the 
augmented model. 
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In this paper, we make no assumptions concerning the form of the function ( ) .j ig p  Instead, we 
incorporate the ’sj ip  into the model (1.1) via an unknown smooth function ( )0 .j im p  Our smooth 
function ( )0m   does not have a parametric form such as the one in Verret et al. (2015). We suppose that 

( )0m   can be locally approximated by a polynomial of order .q  For each point l  in small area ,kU  the 
corresponding polynomial is obtained by the Taylor expansion of ( )0 j im p  in a neighbourhood of .l kp  
For each point ( ),l k  in the population, we replace ( )0 j im p  by the corresponding parametric 
approximation and fit the resulting model just as in parametric fitting. We refer to this method as 
parametric polynomial localization. 

This local approximation results in an augmented model that is semi-parametric. Such models have 
been applied to small area estimation by Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008). 
These authors chose a technique based on penalized splines to estimate the non-parametric part of their 
models. Breidt and Opsomer (2000) and Breidt, Opsomer, Johnson and Ranalli (2007) used the local 
polynomial technique in survey sampling theory to construct model-assisted estimators. Their estimators 
were based on non-parametric models without random effects. To the best of our knowledge, the 
estimation of a small area mean ,iY  based on a local polynomial technique under semiparametric models 
has hardly been investigated. 

The paper is structured as follows. Section 2 provides a review of two methods that result in estimators 
that account for sample selection: these methods were developed by Pfeffermann and Sverchkov (2007) 
and by Verret et al. (2015). In Section 3, we present a three-step procedure to estimate the proposed semi-
parametric augmented model and the small area mean iY  using a local polynomial approximation. We 
label the resulting estimator of the small area mean as LPˆ .iY  The mean squared error (or MSE) of LPˆ

iY  is 
estimated in Section 4 by a parametric conditional bootstrap method. The conditional bootstrap method is 
also used to estimate the MSE of EBLUP estimators obtained under augmented model (1.2). In Section 5, 
we conduct a simulation study under the design-model (or )pm  framework to compare the bias and MSE 
of the new estimator LPˆ

iY  to the EBLUP estimator, as well as to the two estimators discussed in Verret 
et al. (2015). We also study the performance of the conditional bootstrap procedure in estimating the MSE 
of the proposed local polynomial and EBLUP estimators studied in Verret et al. (2015). The performance 
is evaluated in terms of mean relative bias and mean confidence interval level. Concluding remarks are 
given in Section 6. 

 
2  Existing methods 
 

Suppose that the population model (1.1) holds for the sample. Let X i  be the area mean of the 
population values .ijx  Then the EBLUP estimator of X βT

i i iv = +  is given by 

 ( )EBLUP ˆ ˆˆ ˆˆ ˆ ,X β X x βTT
i i i i i i i iv y  = + = + −  (2.1) 

where ( )2 2 2ˆ ˆ ˆ ˆ ,i v v e in   = +
1

,in
i ij ij

y y n
=

=  1
x xin

i ij ij
n

=
=   are the unweighted sample 

means of the response variable y  and the covariates ,x  and ( )ˆˆˆ .T
i i i iv y= − x β  The estimator of the 

regression vector β  in (1.1) is 
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 ( ) ( )
1

1 1 1 1

ˆ ˆ ˆ .β x x x x x
i in nM MT

ij ij i i ij i i ij
i j i j

y 

−

= = = =

   = − −   
   
     (2.2) 

The estimated variance components ( )2 2ˆ ˆ,v e   are obtained by the Henderson method of fitting of 
constants (HFC) or restricted maximum likelihood (REML) (see Battese et al., 1988 and Chapter 7 in Rao 
and Molina, 2015). The EBLUP estimator of the area mean iY  may be written in terms of EBLUPˆ i  as 

 ( ) ( ) EBLUP EBLUP1ˆ ˆˆ .X x βT
i i i i i i i i

i

Y N n n y
N

 = − + + −
 

 (2.3) 

Note that EBLUP EBLUPˆ ˆi iY   if the sampling fraction i in N  is sufficiently small. The EBLUP estimator 
EBLUP

îY  is design consistent under simple random sampling (SRS) or stratified SRS with proportional 
allocation within small area ,iU  leading to equal ’s.j ip  

Pfeffermann and Sverchkov (2007) studied the estimation of small area means under informative 
sampling, assuming the following model for the sample data 

 ;  1, , ; 1, , ,x αT
ij ij i ij iy u h j n i M= + + = =  (2.4) 

where ( )iid 2~ 0, ,i uu N   and ( )iid 2~ 0, .ij i hh j s N   They assumed that the unit design weight 
1

j i j iw  −=  is random with conditional expectation 

 
( ) ( )

( )
, , ,

exp ,

x x

x a
si j i ij ij i si j i ij ij

T
i ij ij

E w y v E w y

k dy

=

= +  (2.5)
 

where a  and d  are fixed unknown constants and  

 ( )
1

exp .
iN

i T
i ij ij i

ji

N
k dy N

n =

 
= − − 

 
 x a   

The Pfeffermann and Sverchkov (2007) estimator of iY  provides protection against informative sampling 
supposing that this assumption holds. The estimator is given by 

 ( ) ( )  ( )PS EBLUP 21ˆ ˆˆˆ ˆ ,X x αT
i i i iu i i i i i i h

i

Y N n n y N n d
N

  = − + + − + −
   (2.6) 

where EBLUPˆ ˆ ˆX αT
iu i iu = +  is the EBLUP estimator of X αT

iu i iu = +  under the sample model 
(2.4) and d̂  is an estimator of d  in the model (2.5) for the weights .j iw  The last term in (2.6) corrects for 
any bias due to informative sampling under (2.5). Pfeffermann and Sverchkov (2007) obtained the 
estimator d̂  of d  in (2.5) by regressing the sampling weights j iw  on ( )exp .T

i ij ijk dy+x a  The 
coefficients ,ik a  and d  may be estimated by fitting the model (2.5) using the NLIN procedure in SAS or 
function nls in Splus. This involves iterative calculations and the initial values for a  and d  are obtained 
by regressing ( )log j iw  on x ij  and .ijy  Initial values for ˆ ,ik 1, ,i M=  are taken as .i i ik N n=  
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The Verret et al. (2015) estimator is obtained when the EBLUP theory is applied to model (1.2). Let 
( )( )aug ,x x TT

ij ij j ig p=  be the vector x ij  augmented by the variable ( ) ,j ig p iG  the area mean of the 
population values ( ) ,j ig p  and 0 0 0 0 .T

i i i iG v = + +X β  The EBLUP estimator of 0 i  is given by 

 ( ) ( )EBLUP
0 0 0 0 0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ,X β X x βTT
i i i i i i i i i i i iG v y G g     = + + = + − + −  (2.7) 

where ( )2 2 2
0 0 0 0ˆ ˆ ˆ ˆ ,i v v e in   = + ( )1

in
i j i ij

g g p n
=

=   and ( )0 0 0 0
ˆˆˆˆ .T

i i i i iv y g = − −x β  
The parameters, ( )0 0,β   are estimated by 

 ( ) ( ) ( )
1

aug aug aug aug aug
0 0 0 0

1 1 1 1

ˆ ˆ ˆ ˆ, ,β x x x x x
i in nM MT TT

ij ij i i ij i i ij
i j i j

y  

−

= = = =

   = − −   
   
     (2.8) 

with ( )aug aug
1

, .in TT
i ij i i ij

n g
=

= =x x x  The model parameters ( )2 2
0 0ˆ ˆ,v e   are estimated by HFC or 

REML method. The estimator of the area mean ,iY  denoted VRHˆ ,iY  may be written in terms of EBLUP
0ˆ i  as 

 ( ) ( ) ( ) VRH EBLUP
0 0 0

1ˆ ˆ ˆˆ .X x β TT
i i i i i i i i i i

i

Y N n n y G g
N

  = − + + − + −
 

 (2.9) 

 
3  The local polynomial estimator 
 
3.1  The estimation of a small area mean 
 

The objective is to estimate the mean iY  for small area iU  for 1, , .i M=  Splitting the population 

iU  into observed units in the sample, is  of size ,in  and non-observed units in the non-sampled portion, 

i i is U s=  of size ,i iN n−  we can express iY  as 

 
1

.
i i

i ij ij
j s j si

Y y y
N  

 
= + 

 
   (3.1) 

Given that we do not know the y  values for the non-observed units in sets is  for 1, , ,i M=  we 
need to estimate them. Denoting as ˆ ijy  the estimator of ijy  for such units, the resulting estimator of the 
mean iY  is 

 
1ˆ ˆ .

i i

i ij ij
j s j si

Y y y
N  

 
= + 

 
   (3.2) 

We obtain estimators ˆ ijy  of ,ijy  for ,ij s  based on an augmented model that includes an unknown 
smooth function of the selection probabilities ,j ip  denoted ( )0 .j im p  The proposed augmented semi-
parametric sample model is given by 

 ( )1 0 1 1 , 1, , ; 1, , ,x βT
ij ij j i i ij iy m p v e j n i M= + + + = =  (3.3) 
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where ( )iid 2
1 1~ 0,i vv N   and independent of ( )iid 2

1 1~ 0, .ij ee N   The vector ( )1, ,= T
ij ij ijpx xx  in model 

(3.3) represents the covariates ijx  without a constant (i.e., the intercept) and ( )1 11 1, ,= T
p β  a 

vector of fixed effects. Model (3.3) is semi-parametric as the response variable ijy  depends linearly on the 
vector of auxiliary variables, ,ijx  and the probability of selection j ip  enters non-parametrically through 
the smooth function ( )0 .m   

We assume that model (3.3) has a similar covariance structure with the one associated with model 
(1.2): the small area effects 1iv  and random errors 1ije  are iid, normally distributed and independently of 
one another. However, the semi-parametric model (3.3) is more flexible than the parametric model (1.2), 
as it does not force the function ( )0 j im p  to be of a specific form. There is a disadvantage to this set-up. 
Since model (3.3) is not a linear mixed model, the general EBLUP theory given in Section 2 cannot be 
applied directly to obtain estimators of ( )0 ,j im p 1β  and 1 .iv  Consequently, we propose to estimate (3.3) 
by combining the EBLUP theory for linear mixed models and the local polynomial technique (Fan and 
Gijbels, 1996). 

We estimate (3.3) in three steps. In the first step, we obtain estimates of ( )0 ,j im p ( )0ˆ ,j im p  
1, , , 1, , ,ij N i M= =  for all units in the population. These estimates are local in character as 

they are based on the local polynomial technique. Estimates ( )0ˆ , j i im p j s  for the observed units are 
then used in the second step to obtain global estimators of 1β  and 1 , 1, , .iv i M=  We denote these 
estimators as glo,1β̂  and glo,1ˆ , 1, , .iv i M=  Finally, in the third step, we use the local estimators 

( )0ˆ j im p  for the unobserved units, obtained in the first step, and the global estimators glo,1β̂  and glo,1ˆ iv  
obtained in the second step, to estimate ijy  for  ij s  and 1, , .i M=  The resulting estimators of 

,ijy  denoted as ˆ ,ijy  are 

 ( )glo,1 0 glo,1
ˆˆ ˆ ˆ , .x βT

ij ij j i i iy m p v j s= + +   (3.4) 

The ˆ ’sijy  are incorporated into equation (3.2) to obtain the estimator of the small area mean ˆ .iY  

We now proceed to describe the first step in more detail. Following Ruppert and Matteson (2015), we 
estimate the values of the unknown function ( )0 l km p  for all units kl U  and small areas ,k  with 

1, , ,k M=  by using local polynomial regression. Local polynomial regression is based on the 
principle that a smooth function can be approximated locally by a low-degree polynomial. We 
approximate ( )0 j im p  in model (3.3) by a thq -degree polynomial, say ( )1 ,j im p  using a Taylor 
expansion around .l kp  The approximation is given by 

 ( ) ( ) ( ) ( ) ( )1 0 0
1

1
, ; 1, , ,

!

q
aa

j i l k l k j i l k i
a

m p m p m p p p j s i M
a=

= + −  =  (3.5) 

where ( ) ( )
0

a
l km p  is the tha  derivative of ( )0 j im p  evaluated at .l kp  The function ( )1 j im p  depends 

on ,kl U  but we suppress this dependence to simplify the notation.  

For each point ,l kp ; 1, , ,kl U k M =  in model (3.3) we replace ( )0 j im p  by its 
approximation ( )1 j im p  given by (3.5). The resulting model is given by 
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 ( ) ( ) ( ) ( )1 0 0 1 1
1

1
,  ; 1, , .

!
x β

q
a aT

ij ij l k l k j i l k i ij i
a

y m p m p p p v e j s i M
a=

= + + − + +  =  (3.6) 

Model (3.6) is an approximate local model for (3.3) depending on the point kl U  of the population. 
Estimates of 1β  and 1iv  based on (3.6) will be denoted by loc,1β̂  and loc,1ˆ .iv  Notice that (3.6) allows the 
estimation of ( )0 ,l km p  the value of the smooth function ( )0 m  at a point .l kp  We express (3.6) as  

 ( )1 0 1 1
1

: ; 1, , ,x β
q

aT
ij ij a j i l k i ij i

a
y u u p p v e j s i M

=
= + + − + +  =  (3.7) 

where ( ) ( )
0 !a

a l ku m p a=  for 0, , .a q=  Model (3.7) is a linear mixed model with fixed 
parameters ( )1 0, , , qu uβ  and random small area effects 1 , 1, , .iv i M=  

Let 0û  be an estimator of 0u  obtained by fitting model (3.7). An approximate estimator of 
( )0 0l km p u=  is given by ( )0 0ˆ ˆ .l km p u=  Since we require estimators of ( )0 l km p  for kl U  and 

1, , ,k M=  we use 
1=

= 
M

ii
N N  models (3.7). As pointed out by an Associate Editor, if N  is 

large, estimating the values of ( )0 m  for all points in the population can be computationally intensive. 

It is more convenient to work with matrix notation. To this end, we define ( )1, , ,
i

T
i i iny y=y

( )1, , ,X x x
i

TT T
i i in= ( ) ( )( )0, 0 1 0, , ,m

i

T
i i n im p m p= ( )1 11 1, ,v T

Mv v=  and ( )1 1 1 1, , .e
i

T
i i ine e=  

Model (3.3) can be expressed in a matrix form by stacking the observations, and the resulting equation is 

 1 0 1 1,y Xβ m Zv e= + + +  (3.8) 

where ( )1col ,i M i =y y ( )1col ,i M i =X X ( )0 1 0,col ,i M i =m m  1diag  =
ii M nZ 1  and 1e =  

( )1 1col .ei M i   

For unit l  in small area ,kU  we define the ( )1 +n q  matrix: 

 

( ) ( )

( ) ( )

1 1 1 11

,

1
M M

q
l k l k

q
n M l k n M l k

p p p p

p p p p

 − −


= 


 − − 

Q   

where 
1=

= 
M

ii
n n  is the total sample size. Let ( ) ( ) ( ) ( ) ( )( )1

0 | 0 | 0 |, 1!, , ! Tq
l k l k l km p m p m p q=u

represent the vector of derivatives of the function ( )0m   evaluated at .l kp  The terms Q  and u  depend 
on the unit kl U  where the localization is realized. We omitted their dependence on the unit l  from 
small area kU  in order not to burden the notation. We define vector 1m  obtained by stacking the n  values 
of the function ( )1 m  defined by (3.5). That is, 1 1 1,col ( )m mi M i =  with 1, 1 1|( ( ), ,m i im p=  

1 ( )) .
i

T
n im p  This allows to approximate 0m  by 0 1.m m  The vector 1m  is given by 1 .=m Qu  It 

then follows that an approximation to (3.8) in a neighbourhood of kl U  is 

 1 1 1.y Xβ Qu Zv e= + + +  (3.9) 

Equations (3.8) and (3.9) are the matrix form equivalents of equations (3.3) and (3.7), respectively. The 
matrix X  in (3.9) does not include the constant term that represents the intercept, because this term is 
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already included in .Q  Equation (3.9) is a standard linear mixed effects model with fixed parameters 
( )fixed 1 ,= TT Tβ β u  and random small area effects 1 .v  We denote by ( ) 2

1 1 ,v MV = =v G I ( )1e iV =  
2
1R I

ii e n=  and ( )  1 1diag  = = i M iV e R R  as the respective covariance matrices of 1 ,v 1ie  and 

1.e  The covariance matrix of iy  is given by ( ) 2 2
1 1 .

i ii i v n e nV  = = +y V J I  The matrices MI  and 

inI  are the identity matrices of order M  and in  respectively, whereas 
inJ  is the square matrix of order 

in  with all its elements equal to 1. It follows that ( )  1diag .i M iV  = =y V V  

Assume that V  is known and that 1v  and 1e  are normally distributed. Using classical EBLUP theory, 
estimators of fixedβ  and 1v  can be obtained by minimizing 

 ( ) ( )1 1
1 1 1 1 1 1.− − = − − − − − − +

T Ty Xβ Qu Zv R y Xβ Qu Zv v G v   

Note that all the observations that are included in   are equally weighted. However, we need to modify 
  to be in line with how local polynomial estimation is carried out. To this end, referring back to 
equation (3.7), we estimate its parameters by associating kernel weights ( )( )j i l kK p p h h−  to each 
sampled unit ; 1, , .ij s i M =  These kernel weights are chosen so as to give a larger weight to the 
sample points that are close to ,kl U  and a smaller weight to those that are further away. The weight 

( )K  is a probability density function and h  is a bandwidth controlling the size of the local 
neighbourhood. We explain in Section 3.2 how an optimal bandwidth can be obtained. Let W  be the 

n n  diagonal matrix of kernel weights given by 

 
1
1

1
diag .

i

j i l k

j n
i M

p p
K

h h 

 

−   
=  

  
W   

The matrix W  depends on unit l  from small area kU  and the bandwidth .h  We do not include the 
subscripts kl U  and h  in the definition of the matrix ,W  in order not to burden notation. Following 
Wu and Zhang (2002), the incorporation of the kernel weights in   lead us to minimize W  where 

 ( ) ( )1 2 1 1 2 1
1 1 1 1 1 1 ,− − = − − − − − − +

T T
W y Xβ Qu Zv W R W y Xβ Qu Zv v G v   

and 1 2W  represents the square root of the matrix .W  

Estimating the parameters of (3.9) by minimizing W  is equivalent to estimating those given by 

 1 2 1 2 1 2 1 2
1 1 1.W y W Xβ W Qu W Zv e= + + +  (3.10) 

The weighted EBLUP based on (3.9) with the matrix of weights given by W  corresponds to a classical 
EBLUP obtained from model (3.10). Define 1 2 ,y W yw =  1 2 1 2,X W X W Qw =  and 1 2 .Z W Zw =  
Equation (3.10) can be rewritten as 

 fixed 1 1.y X β Z v ew w w= + +  (3.11) 

Let ( )loc, fixed loc,1
ˆ ˆ ˆ,=

TT Tβ β u  and ( )loc,1 loc,11 loc,1ˆ ˆ ˆ, ,= T
Mv vv  be the EBLUP estimators of the fixed 

and random effects of (3.11). The estimators loc, fixedβ̂  and loc,1v̂  are based on local estimators of the 
variance components ( )2 2

1 1, .v e   The estimators of these components, denoted as 2 2
loc,1 loc,1ˆ ˆ( , ),v e   are 
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obtained using HFC or REML methods under model (3.11). Given that 0 |( ( ),u l km p=  
( ) ( )1
0 0( ) 1!, , ( ) !) ,q T

l k l km p m p q  an estimator 0ˆ ( )l km p  of 0 ( )l km p  is the first component 0û  of ˆ .u  

Notice that loc,1
ˆ ,β ( )0ˆ l km p  and loc,1ˆ kv  could be used to obtain local estimates loc,ˆ kly  for the unknown 

value ,kly  where ( )loc, loc,1 0 loc,1
ˆˆ ˆ ˆT

kl kl l k ky m p v= + +x β  for .kl s  However, a referee pointed out 
that, in practice, this methodology would not likely to be well behaved because it requires a strong balance 
of the small areas across the range of the probabilities .l kp  If this balance is not respected, the resulting 
estimation would suffer severely from this localization. As a consequence, we opted for a global 
estimation of 1β  and 1 .v  

We now explain the second step of our procedure. Parameters 1β  and 1v  can be estimated globally 
based on the estimations ( )0ˆ j im p  and the auxiliary data ijx  associated with the sample units. For 

 ij s  and 1, , ,i M=  define a new variable, say ,  as 

 ( )0ˆ , ; 1, , .= −  =ij ij j i iy m p j s i M   

The n  values ij  represent the differences between the observed ’sijy  and their local estimators 
( )0ˆ .j im p  Using model (3.3),   satisfies the following model  

 glo,1 glo,1 glo,1 , ; 1, , ,x βT
ij ij i ij iv e j s i M = + +  =  (3.12) 

where ( )2
glo,1 glo,1~ 0,i vv N   and ( )2

glo,1 glo,1~ 0, .ij ee N   The subscript glo indicates that (3.12) is a 
global model. 

Given that (3.12) represents a parametric linear mixed effects model, we can use the classical 
(unweighted) EBLUP to estimate its parameters. Let glo,1β̂  and glo,1ˆ iv  be the respective empirical best 
linear unbiased estimators of glo,1β  and glo,1 .iv  Let ( )2 2

glo,1 glo,1ˆ ˆ,v e   be the estimators of the variance 
components ( )2 2

glo,1 glo,1,v e   where HFC or REML can be used to estimate these parameters. We estimate 
( )2 2

1 1 1 1, , ,i v ev  β  of model (3.3) by ( )2 2
glo,1 glo,1 glo,1 glo,1

ˆ ˆ ˆ ˆ, , ,i v ev  β  using model (3.12). The global 
estimators glo,1

ˆ ,β glo,1ˆ iv  and ( )2 2
glo,1 glo,1ˆ ˆ,v e   are free of bias caused by informative sampling design 

because ij  is no longer related to the ’sj ip  after conditioning on .ijx  

The third step estimates the non observed ijy  values, for  ij s  and 1, , ,i M=  by plugging into 
equation (3.4): i. the local estimators ( )0ˆ j im p  for ,ij s  obtained in the first step, and ii. the global 
estimators glo,1β̂  and glo,1ˆ iv  obtained in the second step. The resulting ˆ ’s,ijy  for ,ij s  are inserted into 
(3.2) to compute the estimator ˆ .iY  Note that îY  requires ijx  and j ip  are known for all the units of the 
population. A referee pointed out that, in practice, this assumption may limit the applicability of the 
proposed procedure. This could be remedied if National Statistical Offices provided access to the selection 
probabilities of all units, as they may be needed in applications such as this one.  
 

3.2  Bandwidth selection 
 

Local polynomials require the specification of the kernel ( ) ,K   the order of the polynomial fit ,q  as 
well as the bandwidth .h  Fan and Gijbels (1996) state that values of q  larger than 1 do not bring a 
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significant improvement as compared to the linear fit ( )1 .q =  Fan and Gijbels (1996) also state that the 
choice of h  is far more important than the degree of the polynomial. In what follows, we use a normal 
density kernel, and chose q  equal to one, as this leads to satisfactory results for most applications.  

The optimal h  is determined using the cross-validation method (CV). For a given ,h  compute the 
estimator of ijy  given by (3.4) using the sample that remains after the thj  unit has been removed from 

.is  Denoting the resulting estimator of ijy  as ,ijy  we follow Wu and Zhang (2002) and define the CV 
criterion as 

 ( ) ( )2

1

1 1
CV .

i

M

ij ij
i j si

h y y
M n= 

= −    

The term 1 in  takes into account the number of observations within small area .iU  The optimal 
bandwidth opth  is obtained by minimizing the ( )CV .h  Given opt ,h  the local polynomial estimator of the 
small area mean iY  given by (3.2) is denoted as LPˆ .iY  

 
4  MSE estimation based on the bootstrap  
 

The MSE estimation of small area estimators is a challenging problem even in the case of classical 
EBLUP estimators. The general EBLUP theory provides a closed form approximation to ( )EBLUPˆMSE iY  
based on a linearization method. Using this approximation, an estimator for ( )EBLUPˆMSE iY  can be 
obtained (see Prasad and Rao, 1990 for details). Verret et al. (2015) used the closed form approximation to 
estimate the mean squared error estimator for VRH

îY  given in (2.9). This was possible because estimator 
VRH

îY  is a standard EBLUP obtained under a linear mixed model that includes the additional known 
variable ( ) .j ig p  No new theory is needed to estimate the MSE of VRHˆ .iY  In our case, given the repeated 
local estimation of model (3.6), it is not possible to obtain a closed-form approximation to the mean 
squared error of LPˆ ,iY ( )LPˆMSE ,iY  nor for its estimator ( )LPˆmse .iY  We used two variants of the 
bootstrap procedure to estimate the MSE of the small area estimators that we have discussed so far. For 
estimating the MSE of EBLUPˆ ,iY  we used an unconditional bootstrap, whereas for LPˆ ,iY VRH1

îY  and VRH2ˆ ,iY  
we used a conditional bootstrap. We proceed to describe how each bootstrap type is computed. 

We first describe the unconditional bootstrap. This is a variant of the parametric bootstrap of Hall and 
Maiti (2006), proposed by González-Manteiga, Lombardia, Molina, Morales and Santamaria (2008). This 
procedure can be used for estimating the MSE of EBLUP

îY  that is based on model (1.1) because the 
estimates of the various parameters in model (1.1) do not depend on the selection probabilities 

: ; 1, , .j i ip j s i M =  The y  values are predicted by generating ( )* 2ˆ~ 0,i vv N   and
( )* 2ˆ~ 0, ,ij ee N   where ( )2 2ˆ ˆ,v e   are the HFC or REML estimators of ( )2 2, .v e   Using the EBLUP 

estimator β̂  of ,β  bootstrap values of ijy  are obtained as 

 * * *ˆ , ; 1, , .x βT
ij ij i ij iy v e j U i M= + +  =  (4.1) 

The bootstrap version of the target parameter iY  is computed as * 1 *
1

.iN
i i ijj

Y N y−
=

=   The bootstrap 
version of the EBLUP estimator EBLUP

îY  is given by 
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 ( )EBLUP* * *1ˆ ˆ ,
i i

i ij ij
j s j si

Y y y
N  

= +    

where * * *ˆˆ ˆT
ij ij iy v= +x β  and ( )* *ˆ ˆ, ivβ  are the EBLUP estimators of ( ), ivβ  that are based on 

( )* , , ,ij ij iy j sx  for 1, , .i M=  Repeating the above procedure B  times, the bootstrap estimator 
of ( )EBLUPˆMSE iY  is 

 ( ) ( ) ( )( )2
EBLUP EBLUP* *

boot
1

1ˆ ˆmse ,
B

i i i
b

Y Y b Y b
B =

= −  (4.2) 

where ( )EBLUP*
îY b  and ( )*

iY b  are the values of EBLUP*
îY  and *

iY  for the thb  bootstrap replicate. Since the 
estimators ( )2 2ˆ ˆ ˆ, ,v e β  are severely biased due to the informative sampling design, we expect that 

( )EBLUP
boot

ˆmse iY  will be a biased estimator of ( )EBLUPˆMSE .iY  This is because it is based on the 
population model (1.1), and that this model does not hold for the sample.  

We now turn to the estimation of ( )LPˆMSE iY  via the conditional bootstrap. Recall that LP
îY  is based 

on the augmented model (3.3). It is therefore natural to use this model when we estimate the precision of 
the local polynomial estimator. It is not possible to use the parametric unconditional bootstrap as it would 
require the generation of bootstrap values ( )* *,ij j iy p  for both ijy  and ,j ip  and this would imply that we 
would need to know how the ’sijy  are related to the selection probabilities .j ip  As the Associate Editor 
pointed out, the exact relationship between ijy  and j ip  is not known in practice. We therefore opted to 
keep the selection probabilities j ip  associated with the initial sample, and generate bootstrap values only 
for the response variable .ijy  The resulting bootstrap is conditional on , ; 1, , ,j i ip j U i M =  
and it is for this reason that we label it as conditional parametric bootstrap. It has been used by Rao, 
Sinha and Dumitrescu (2014), and more recently by Chatrchi (2018) to estimate the MSE under a 
penalized spline mixed model.  

In our context, for estimating ( )LPˆMSE ,iY  we proceed as follows. We generate ( )* 2
1 glo,1ˆ~ 0,i vv N   

and ( )* 2
1 glo,1ˆ~ 0, ,ij ee N   and obtain the bootstrap responses 

 ( )* * *
1 glo,1 0 1 1

ˆ ˆ , ; 1, , .x βT
ij ij j i i ij iy m p v e j U i M= + + +  =  (4.3) 

The ( )0ˆ ’sj im p  were estimated using the local model (3.6). The triplet ( )2 2
glo,1 glo,1 glo,1

ˆ ˆ ˆ, ,v e β  was 
estimated using the global model (3.12) and the sample data ( ), , , ; 1, , .ij ij j i iy p j s i M =x  
The population bootstrap mean is * 1 *

1 11
.iN

i i ijj
Y N y−

=
=   Let *

glo,1
ˆ ,β ( )*

0ˆ j im p  and *
glo,1ˆ iv  be bootstrap 

versions of estimators glo,1
ˆ ,β ( )0ˆ j im p  and glo,1ˆ ,iv  that are based on bootstrap data ( )*

1 , , ,xij ij j iy p  
; 1, ,ij s i M =  and the opth  obtained with the original data set ( ), , ,xij ij j iy p ;ij s  

1, , .i M=  We did not re-compute the optimal *
opth  associated with ( )*

1 , , ,xij ij j iy p ;ij s  
1, , ,i M=  as it would result in far too many computations in the Monte Carlo study. The bootstrap 

procedure is therefore conditional on , ; 1, , =j i ip j U i M  and opth  obtained with the initial 
sample. Given that is  is the set of non-sampled units in area ,i  the predicted bootstrap values *

1ˆ ijy  for 
,ij s  are obtained as 

 ( )* * * *
1 glo,1 0 glo,1

ˆˆ ˆ ˆ .x βT
ij ij j i iy m p v= + +  (4.4) 
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The resulting estimator of *
1iY  is 

 ( )* * *
1 1 1

1ˆ ˆ .
i i

i ij ij
j s j si

Y y y
N  

= +    

Repeating the above procedure B  times, the conditional bootstrap estimator of MSE of the local 
polynomial estimator of iY  is given by 

 ( ) ( ) ( )( )2
LP * *

boot 1 1
1

1ˆ ˆmse  ,
B

i i i
b

Y Y b Y b
B =

= −  (4.5) 

where ( )*
1̂iY b  and ( )*

1iY b  are the values of *
1̂iY  and *

1iY  for the thb  bootstrap replicate.  

The conditional bootstrap can also be used for estimating the mean squared error of an EBLUP 
estimator, VRHˆ ,iY  based on the augmented model (1.2) proposed by Verret et al. (2015). We included this 
procedure in the simulation given in Section 5, to get an idea of how the resulting MSE estimators 
compare to those obtained for LPˆ .iY  The steps for obtaining the ( )VRHˆmse iY  are similar to those used for 
obtaining the mse of the local polynomial estimator LPˆ .iY  In this case, bootstrap values for the responses 

ijy  are based on the augmented model (1.2) and the estimators ( )0 0
ˆ ˆ, β  and ( )2 2

0 0ˆ ˆ,v e   obtained when 
the classical EBLUP theory is used with the sample data ( )( ), , , ; 1, , .ij ij j i iy g p j s i M =x  

 
5  Simulation study 
 

The set-up of the simulation study follows the one used in Verret et al. (2015). We considered a 
population with M = 15 small areas and iN = 15 units within each small area. The relatively small 
number of small areas and units within areas were chosen so as to alleviate the computational burden. We 
used a single auxiliary variable .x  The population x -values were generated from a gamma distribution 
with mean 10 and variance 50. The population ijy -values were generated by the following model 

 4 ; 1, , 15; 1, , 15,ij ij i ijy x v e i j= + + + = =  (5.1) 

where ( )iid 2~ 0,i vv N   and ( )iid 2~ 0,ij ee N   with 2 =v 0.5 and 2 =e 2. 

We considered a single sample size, =in 3, within a small area. We used Conditional Poisson 
Sampling (CPS) to select unequal probability samples within the small areas, with probabilities 
proportional to specified sizes ijc  (see Tillé, 2006, Chapter 5). We considered two different choices of the 
sizes ijc  in the simulation study. The first choice uses 

 
( )1

exp ,
3 5

i ij ij
ij

e

v e
c





+  
= − +  

  
 (5.2) 

where ( )iid~ 0, 1 .ij N  The size measures (5.2) are equivalent to those used by Pfeffermann and Sverchkov 
(2007) in their simulation study and satisfy the relationship (2.5) on the weights 1 .j i j iw  −=  

The second choice of size measures, following Asparouhov (2006), involves two different types of size 
measures: invariant (I) and non-invariant (NI). For the invariant case, ijc  is independent of iv  given ;ijx  
otherwise, it is called non-invariant. Invariant size measures are given by 
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1

*
2

1 1
1 exp 1 .ij ij ijc e e

 

−
   

= + − + −   
   

 (5.3) 

Non-invariant size measures are taken as 

 ( ) ( )
1

* *
2

1 1
1 exp 1 ,ij i ij i ijc v e v e

 

−
    

= + − + + − +   
   

 (5.4) 

where the random pair ( )* *,i ijv e  is generated independently of ( ),i ijv e  using the same distributions as iv  
and .ije  These size measures were used by Asparouhov (2006). The coefficient   controls for the 
variation of the weights and the value   controls the level of informativeness of the sampling design. We 
chose = 0.5 and 1, 2, 3=  and   corresponding to several levels of informativeness generated by 

ijc  in (5.3) and (5.4). Increasing   decreases informativeness, with =   corresponding to non-
informative sampling. If some of the ’sj i  exceeded one, they were set to one, and the probabilities were 
recomputed for the remaining units. 
 

5.1  Performance of the local polynomial estimator of 
i

Y  
 

We compared the bias and mean squared error of the estimators EBLUPˆ ,iY VRH
îY  and LPˆ .iY  The EBLUP 

estimator EBLUP
îY  based on (1.1) assumes that the sample model coincides with the population model, 

thereby ignoring the informativeness of the sampling design. We studied two versions of VRH
îY  

investigated by Verret et al. (2015) for various choices of ( )g   that account for informativeness. They are 
EBLUP estimators based on the augmented sample model (1.2). They are denoted as VRH1

îY  when 
( ) =j i j ig p p  and VRH2

îY  when ( ) ( )log .j i j ig p p=  We report results only for these g  functions, as 
they outperform others given in Verret et al. (2015). Finally, LP

îY  represents our new local polynomial 
estimator. 

The bias and the mean squared error of the estimators were computed using =R 1,000 simulated 
samples selected under a design-model approach. For each run, 1, , ,r R=  we first generated the 
population ijy -values under the population model (5.1) and computed ( ) ,r

iY  the mean of the small area i  
in the thr  generated population. Samples of sizes 3=in  were then selected within the small areas using 
CPS with probabilities proportional to specified sizes ( )r

ijc  given by (5.2) for the Pfeffermann and 
Sverchkov (2007) (PS) size measures, and (5.3) and (5.4) corresponding to the invariant and non-invariant 
cases in the case of the Asparouhov (2006) (AP) size measures. From each simulated sample r
( )1, , ,r R=  the estimates ( )EBLUPˆ ,r

iY ( )VRH1ˆ ,r
iY ( )VRH2ˆ r

iY  and ( )LPˆ r
iY  were computed for each small area 

.iU  An optimal bandwidth ( )
opt

rh  was found for ( )LPˆ r
iY  using the cross-validation criterion. A grid of the 

form (0.01, 0.02, 0.03, …, 0.15) covered the possible values for ( )
opt

rh  in populations generated by (5.1). 

For a given estimator of the small area mean ,iY  we considered the following performance measures: 
 

Average Absolute Bias 

 
1

1
AB AB ,

=
= 

M

i
iM
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where 

 ( ) ( )( )
1

1 ˆAB .
R

r r
i i i

r
Y Y

R =
= −   

Average Root Mean Squared Error 

 ( ) ( )( )2

1 1

1 1 ˆRMSE .
M R

r r
i i

i r
Y Y

M R= =
= −    

Table 5.1 reports on the average absolute bias ( )AB  of estimators EBLUPˆ ,iY VRH1ˆ ,iY VRH2
îY  and LP

îY  under 
the PS size measures (5.2) and AP size measures (5.3 and 5.4) for 1, 2, 3=  and .  

 
Table 5.1 
Average absolute bias ( )AB  for the PS and AP size measures 
  
                            Estimator  
 
Generation  
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.309 0.020 0.004 0.011 
 AP 1=  I 0.431 0.002 0.036 0.004 

NI 0.425 0.010 0.035 0.005 
2=  I 0.206 0.017 0.022 0.024 

NI 0.219 0.019 0.016 0.016 
3=  I 0.139 0.005 0.012 0.033 

NI 0.137 0.008 0.013 0.019 
=   I 0.008 0.008 0.008 0.026 

NI 0.006 0.006 0.006 0.021 

 
As observed in Verret et al. (2015), the AB  of the EBLUP estimator EBLUP

îY  with just the auxiliary 
variable ,x  is quite a bit larger than those based on the augmented models ( j ip  and log ( )),j ip  and the 
local polynomial method. This holds regardless of how the size measures have been generated (PS or AP). 
The AB  of EBLUP

îY  attains its highest value (0.431) when the design is very informative ( )1 , =  and 
decreases as   increases. This observation also holds for the estimators based on the augmented models. 
The inclusion of j ip  or ( )log ,j ip  as an augmenting variable, in the model results in small AB’s,  with 
the highest being 0.036. Comparing the AB’s  of the local polynomial estimator LP

îY  to those associated 
with the VRH augmented models, we observe that they are comparable for 1=  and 2, =  and 
slightly larger for 3.   

Table 5.2 reports the simulation results on the average root mean squared error ( )RMSE  of the 
estimators for both the PS size measures (5.2) and the AP size measures (5.3 and 5.4) for 1, 2, 3=  and 

.  The EBLUP, EBLUPˆ ,iY  based on model (1.1) without the augmenting variable ( ) ,j ig p  has the largest 
RMSE’s  (0.740 for I and 0.752 for NI) for the AP size measures corresponding to 1, =  and 0.685 for 
the PS size measure. The RMSE  decreases as   increases: 0.608 for I and 0.610 for NI in the case of 
non-informative sampling ( ) . =   The RMSE’s  for VRH1ˆ ,iY VRH2

îY  and LP
îY  are significantly smaller 

than those associated with EBLUP
îY  when sampling is very informative ( )1=  and for the PS size 
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measure. There are small differences in terms of RMSE  between our non-parametric approach and the 
parametric approach in Verret et al. (2015). 
 
Table 5.2 
Average root mean squared error ( )RMSE  for the PS and AP size measures 
  
                            Estimator 
 
Generation 
of 

j i
p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.685 0.229 0.200 0.200 
 AP 1=  I 0.740 0.089 0.170 0.087 

NI 0.752 0.158 0.200 0.149 
2=  I 0.644 0.562 0.568 0.557 

NI 0.650 0.557 0.555 0.555 
3=  I 0.617 0.588 0.591 0.612 

NI 0.619 0.587 0.589 0.607 
=   I 0.608 0.619 0.621 0.626 

NI 0.610 0.622 0.625 0.629 

 
When the sampling is less informative ( )3 , =  the local linear estimator LP

îY  is better than EBLUPˆ ,iY  
but its RMSE  is slightly larger than those associated with the parametric estimators VRH1

îY  and VRH2ˆ .iY  In 
this case, we observe that the estimated function ( )0 j im p  is close to a flat line, and this implies that the 
local linear approximation is not as appropriate. This explains why LP

îY  is slightly worse than VRH1
îY  and 

VRH2
îY  when the level of informativeness of the sampling is low. A local polynomial estimator performs 

well when the function ( )0 m  is meaningfully non-constant. 

When the sample is non-informative ( ) , =  EBLUP
îY  is better than VRH1ˆ ,iY VRH2

îY  and LP
îY  in both 

invariant and non-invariant case. This conclusion is somewhat different from that of Verret et al. (2015) 
where for =   their estimators EBLUPˆ ,iY VRH1

îY  and VRH2
îY  have equal AB  and RMSE  values. Verret 

et al. (2015) used both larger populations and samples, and this may explain why their augmented models 
produced estimators as good as the population model under non-informative sampling designs. Under our 
simulation set-up, we found that the AB  and RMSE  of the EBLUP are small for   values larger than 6: 
this corresponds to a sample design that is almost non-informative. In this case, we recommend using 
EBLUP. 
 

5.2  Performance of the MSE estimators 
 

We now turn to the performance of the bootstrap procedures for estimating the MSEs of the EBLUP, 
VRH and local polynomial estimators. Let îY  be an estimator of iY  and ( )boot

ˆmse iY  be the bootstrap 
estimator of ( )ˆMSE .iY  From =R 1,000 simulated populations and samples, we first computed 
measures of MSE values as 

 ( ) ( ) ( )( )2

1

1ˆ ˆMSE ,
=

= −
R

r r
i i i

r
Y Y Y

R
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where ( )r
iY  is the true mean, and ( )ˆ r

iY  is the value of the estimator for the thr  population. Let 

( )boot
ˆmse iY  be the bootstrap estimator of ( )ˆMSE .iY  It is denoted as ( )EBLUP

boot
ˆmse iY  for the EBLUP 

estimator EBLUPˆ ,iY  and corresponds to the parametric (unconditional) bootstrap method given by 
equation (4.2). For our local polynomial estimator LP

îY  and the Verret et al. (2015) estimators, VRH1
îY  

and VRH2ˆ ,iY  the mse values, denoted as ( )LP
boot

ˆmse iY  and ( )VRH 
boot

ˆmse ,j
iY  for 1=j  and 2=j  

respectively, are computed using the conditional parametric bootstrap method of Section 4. For each 
selected sample in the thr  simulated population ( )1, , ,r R=  we used =B 400 bootstraps to 
compute the thr  value of ( )boot

ˆmse ,iY  that we denote as ( ) ( )boot
ˆmse .r
iY  We considered two measures to 

evaluate the performance of ( )boot
ˆmse :iY  average absolute relative bias and average confidence 

interval. These measures are defined as follows: 
 

Average Absolute Relative Bias: 

 
( )( )

( )
boot

1

ˆmse1
ARB = 1 ,ˆMSE=

−
M i

i i

E Y

M Y
  

where  

 ( )( ) ( ) ( )boot boot
1

1ˆ ˆmse = mse .
=


R
r

i
r

E Y Y
R

  

 

Average Confidence Level: 

 
1

1
CL = CL ,

=

M

i
iM

  

where ( ) ( )( )1
1

CL = I IC−
=


R r r

i ir
R Y  and ( ) ( ) ( ) ( )boot

ˆ ˆIC 1.96 mse .rr r
i iY Y = 

  
 

Table 5.3 reports simulation results on the average relative bias ( )ARB  of the MSE estimators for both 
the PS size measures (5.2) and Asparouhov size measures (5.3 and 5.4) for 1, 2, 3=  and .  

 
Table 5.3 
Average relative bias (%) of mse ( )ARB  for the PS and AP size measures 
  
                            Estimator  
 
Generation 
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 25.4 3.9 3.4 7.7 
 AP 1=  I 39.9 9.7 14.4 7.5 

NI 46.6 4.1 8.7 10.0 
2=  I 16.0 2.9 3.8 5.9 

NI 21.4 3.8 3.5 5.8 
3=  I 13.4 6.1 6.4 5.8 

NI 15.4 7.3 7.4 8.8 
=   I 4.6 4.2 4.5 6.2 

NI 6.1 6.4 6.3 6.9 
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The ARB  of EBLUPˆ ,iY  based on the model without the augmenting variable ( ) ,j ig p  is very large 
when the sampling is very informative ( )1 : =  39.9% for I and 46.6% for NI. The ARB  gradually 
decreases to around 5% under non-informative sampling ( ) . =   The ARB’s  of both the parametric 
and non-parametric estimators are smaller in general than 10%, with the exception of 14.4% for the VRH2

îY  
estimator that uses ( )log j ip  as an augmenting variable. 

Table 5.4 reports simulation results on the average confidence level ( )CL  associated with the MSE 
estimators for both the PS size measures (5.2) and the AP size measures (5.3 and 5.4) for 1, 2, 3=  and 
  and nominal level of 0.95. 

 
Table 5.4 
Average confidence level of mse ( )CL  for the PS and AP size measures 
  
                            Estimator  
 
Generation  
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.898 0.937 0.941 0.936 
 AP 1=  I 0.856 0.918 0.908 0.928 

NI 0.834 0.930 0.920 0.934 
2=  I 0.916 0.937 0.936 0.932 

NI 0.907 0.936 0.933 0.936 
3=  I 0.922 0.927 0.926 0.934 

NI 0.918 0.930 0.933 0.926 
=   I 0.937 0.935 0.935 0.938 

NI 0.934 0.934 0.933 0.931 

 
The EBLUP estimator EBLUP

îY  has the worst coverage when the sample design is very informative. The 
coverage improves as the design becomes less informative. The coverage of the other estimators is 
between 93% and 95%, with the exception of VRH2

îY  (the one that includes log ( ))j ip  with coverage 
slightly lower.  

 
5.3  Inclusion of an augmenting variable 
 

The local polynomial approach results in an automatic way of obtaining a reasonable augmented model 
that is a function of the selection probabilities .j ip  However, given that one does not know whether the 
design is informative or not, should we always include an augmenting variable in the model? If the sample 
design is not informative it is reasonable to use model (1.1). Note that in this case, including the 
augmenting variables, j ip  or ( )log ,j ip  has a very small impact either on the absolute relative bias of 
the estimator and absolute relative bias of the estimated MSE. A similar conclusion was obtained in Verret 
et al. (2015) who used a larger population and sample size.  

The same question arises with respect to the use of the local polynomial procedure. In this case, the 
conclusions are not quite as clear. If the design is very informative, the local polynomial approach gains in 
terms of absolute bias and mean squared error when 1=  or 2. =  When the sampling design is less 
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informative ( )3=  the parametric approach in Verret et al. (2015) is the better choice, but by a very 
small margin. 

In a practical situation, the value of   is not known and the decision to use the augmenting variable in 
a parametric or nonparametric model should be taken. To this end, we follow the suggested procedure in 
Verret et al. (2015) to provide some guidelines on how to decide on this choice for an arbitrary data set. 
Define ,ij i iju v e= +  and fit the following model 0 1= + +ij ij ijy x u   to the sample data by 
ordinary least squares (OLS). The residuals are 0 1 ,ij ij iju y x = − −  where 0  and 1  are the 
OLS estimators of 0  and 1  respectively. Figure 5.1 displays residual plots of ( )( )0ˆ , ,j i ijm p u  

1, , ; 1, ,ij N i M= =  for the AP measures 1, 2, 3=  and   in the invariant case. For 
1, =  the relationship between iju  and ( )0ˆ j im p  is clearly linear, suggesting that the design is 

informative. As   increases, the design is less informative. Note that ( )0 j im p  is constant when 
. =   Similar observations hold for the non-invariant case. For the PS size measures the graph 

resembled the one given in Figure 5.1 when 1. =  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.1  Residual plots for the population: AP invariant size measures. 

 
 

Table 5.5 provides the estimated correlation coefficients, ( )( )0ˆ ˆ= cor , ,ij j iu m p  for PS and AP 
size measures for 1, 2, 3=  and .  
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Table 5.5 
Estimated correlation coefficient ( )( )0ˆ ˆ= cor ,

ij j i
u m p  for the PS and AP size measures 

 

Estimated correlation coefficient AP PS 
1 =  2 =  3 =   =   

I NI I NI I NI I NI 

̂  0.870 0.850 0.450 0.510 0.240 0.210 0.007 0.001 0.800 

 
In terms of RMSE,  we noticed in Section 5.1 that EBLUP

îY  is better than the estimators based on 
augmented models for 6.   Results not presented in Table 5.5 show that for 6,   the absolute 
value of the correlation coefficient is less than 0.1. On the basis of this limited simulation, a user could 
decide on the choice of the estimator to use for a real data set as follows: i. If ̂  is larger than 0.5, use 

LPˆ ;iY  ii. If ̂  is less than 0.1, use EBLUPˆ ;iY  iii. otherwise use VRH1
îY  or VRH2ˆ .iY  

 
6  Concluding remarks 
 

In this paper, we studied the estimation of a small area mean under informative sampling by using an 
augmented model approach where the augmenting variable is a smooth function ( )0 j im p  of the selection 
probability .j ip  Our augmented model is semi-parametric. It differs from Verret et al. (2015), in that 
nothing was assumed about the augmenting function ( )0 .m   

We proposed a three-step procedure to estimate the augmented semi-parametric model. Firstly, local 
polynomial fits were estimated for each unit of the population (sampled and non-sampled). Secondly, 
given these local fits a new dependent variable was defined to obtain global estimators of the regression 
parameters and the small area effects. The resulting estimators were used to compute the predicted values 
of the dependent variable, ,y  for all non-sampled units. Finally, using the observed sample values of ,y  
and the predicted values of ,y  we computed the local polynomial estimator LP

îY  for the small area 
mean .iY  

We adopted the conditional parametric bootstrap method to estimate the mean squared error of the 
newly proposed estimator. The conditional bootstrap is a modified version of the parametric bootstrap 
estimator method of Hall and Maiti (2006). 

We carried out a simulation study to compare the bias and mean squared error performance of the 
usual EBLUP, EBLUPˆ ,iY  the augmented EBLUP of Verret et al. (2015), VRHˆ ,iY  and the proposed local 
polynomial estimator, LPˆ .iY  As expected, EBLUP

îY  exhibited large bias under informative sampling. The 
new estimator LP

îY  had equal or smaller MSE than VRH
îY  when the sample design was highly informative. 

If the sample design is less informative, it is better to use one of the two estimators in Verret et al. (2015): 
that is, augment the basic model with either j ip  or ( )log .j ip  Note that in doing so, the gains are very 
small. If the sampling design is very slightly or not at all informative, then estimator EBLUP

îY  based on the 
population model should be used. 
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We also evaluated the performance of the mean squared error bootstrap estimation for the estimators 
EBLUPˆ ,iY VRH

îY  and LPˆ ,iY  in terms of average absolute relative bias ( )ARB  and average confidence level 
( )CL .  The conditional bootstrap provides a good way to estimate the mean squared errors. 

The advantage of the local polynomial approach is that it provides an automatic way of augmenting the 
model when the design is informative. Its biggest disadvantage is its computational burden both in terms 
of parameter estimation and associated reliability. The procedure outlined in Section 5.3 suggests a way to 
determine whether it is worth using it or not. An alternative approach is to augment the unit level model 
with a P-spline term of selection probabilities to account for the informativeness of the sampling design. 
This approach has been recently studied by Chatrchi (2018). 
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Small area estimation methods under cut-off sampling 

María Guadarrama, Isabel Molina and Yves Tillé1 

Abstract 

Cut-off sampling is applied when there is a subset of units from the population from which getting the required 
information is too expensive or difficult and, therefore, those units are deliberately excluded from sample 
selection. If those excluded units are different from the sampled ones in the characteristics of interest, naïve 
estimators may be severely biased. Calibration estimators have been proposed to reduce the design-bias. 
However, when estimating in small domains, they can be inefficient even in the absence of cut-off sampling. 
Model-based small area estimation methods may prove useful for reducing the bias due to cut-off sampling if 
the assumed model holds for the whole population. At the same time, for small domains, these methods provide 
more efficient estimators than calibration methods. Since model-based properties are obtained assuming that 
the model holds but no model is exactly true, here we analyze the design properties of calibration and model-
based procedures for estimation of small domain characteristics under cut-off sampling. Our results confirm 
that model-based estimators reduce the bias due to cut-off sampling and perform significantly better in terms of 
design mean squared error. 

 
Key Words: Calibration estimators; Cut-off sampling; Empirical best linear unbiased predictor (EBLUP); Empirical 

best/Bayes predictor (EBP); Nested-error model; Unit level models. 
 
 
1  Introduction 
 

Haziza, Chauvet and Deville (2010) describe cut-off sampling as a technique in which a set of units is 
deliberately excluded from possible selection in the sample. For the Organisation for Economic Co-
operation and Development (OECD), it is a sampling procedure in which a threshold is established such 
that all units above or below the threshold are excluded from selection in a sample. According to Särndal, 
Swensson and Wretman (1992, pages 531-533), this sampling technique is typically used when the 
distribution of the study variable is highly skewed and there is no reliable frame covering the small 
elements. Benedetti, Bee and Espa (2010) recognizes the advantage of cut-off sampling in terms of survey 
reduction cost. This procedure is often used in business surveys, where small firms are deliberately 
excluded from the sample due to difficulty of getting information from them. The cost of obtaining and 
keeping a reliable frame for the whole population does not compensate the subsequent gain in accuracy. 

The monthly survey of manufacturing performed by Statistics Canada is an example of cut-off 
sampling (Benedetti et al., 2010). In Spain, the monthly survey of industrial production index (IPI) 
performed by the Spanish National Statistical Institute (in Spanish, INE) collects data from firms that 
produce a significant volume of products according to the annual industrial survey of products (in Spanish 
EIAP), see INE (2018). Related surveys, e.g., the index of industrial prices (IIP) and the index of business 
turnover (IBT) also use one form of cut-off sampling. Since the inclusion probabilities for the excluded 
units are zero, this procedure leads to biased design-based estimators, see e.g., Särndal et al. (1992) or 
Haziza et al. (2010) among others. To reduce the cut-off sampling bias, Haziza et al. (2010) propose to use 
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auxiliary information either at the design or at the estimation stage; concretely, they propose to use 
balanced sampling and/or calibration. 

In this work, we restrict ourselves to the estimation stage and study how cut-off sampling affects the 
estimation of domain (or area) parameters. We analyze some of the calibration methods proposed by 
Haziza et al. (2010) to reduce this problem. For domains with small sample size (small domains or areas), 
even in absence of cut-off sampling, calibration estimators might be inefficient. To improve efficiency, we 
consider small area estimation methods. For estimation of linear parameters, we consider the empirical 
best linear unbiased predictor (EBLUP) and, for general non-linear parameters, we consider the empirical 
best/Bayes predictor (EBP). We apply the methods studied in this work to the estimation of the total sales 
of certain tobacco product in Spanish provinces. 

In the absence of cut-off sampling, the considered model-based estimators are approximately optimal 
when the model holds for all the population units. However, since no model holds exactly, we wish to 
study whether model-based estimators still perform better than basic design-based estimators (which do 
not depend on models) and calibration estimators under the sampling replication mechanism; i.e., without 
model assumptions and when cut-off sampling is present. 

The article is organized as follows. Section 2 describes the theoretical set-up. The following four 
sections describe the considered estimation methods, namely the basic direct estimators (Section 3), 
different approaches to calibration (Section 4), the EBLUP for estimation of linear parameters (Section 5) 
and the EBP for estimation of more general parameters in small domains (Section 6). Section 7 describes a 
bootstrap procedure for estimating the mean squared error of the proposed small area estimators. Section 8 
compares, through simulation experiments, the performance of several small area estimators under cut-off 
sampling. Section 9 describes the application and, finally, Section 10 draws some conclusions. 
 

2  Cut-off sampling in small domains 
 

We consider a population U  partitioned into m  subsets ,iU = 1, , ,i m  called hereafter domains or 
areas, of sizes ,iN = 1, , ,i m  with 

=1
= .m

ii
N N  We restrict ourselves to the case in which the 

domains act as sampling strata. Then, independent samples are drawn from the different domains, where 
the sample is  of size in  from domain i  is supposed to be drawn by cut-off sampling, = 1, , .i m  This 
is done by excluding a subset of units iE iU U  from the selection. In other words, the domain iU  is 
partitioned into two subsets, iIU  and ,iEU  of known sizes iIN  and iEN  respectively, with 

= .i iI iEN N N+  The set iIU  contains the units that can be potentially selected for the sample, called here 
the set of included units, whereas iEU  contains the excluded units. 

Let ijy  be the value of the target variable y  for the thj  unit within the thi  domain. We focus on 
estimation of domain totals 

=1
= iN

i iji
Y y  or means = ,i i iY Y N = 1, , .i m  Under cut-off sampling 

within each domain, the sample is  is supposed to be drawn from the subset of included individuals, ,iIU  
from domain .i  Then, the inclusion probabilities for the included individuals ( )iIj U  are 

( )= Pr > 0j i ij s   and 1=j i j iw  −  are the corresponding sampling weights. For the excluded units 
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( ) ,iEj U  the inclusion probabilities are zero and, therefore, the corresponding sampling weights are not 
defined. As a consequence, for domains i  with ,iEU    basic design-based estimators of iY  or iY  are 
biased and a design-unbiased estimator does not exist. 

 
3  Basic direct estimators 
 

We first consider basic direct estimators, obtained using only the in  observations of the variable of 
interest from the target area. In the absence of cut-off sampling, these estimators are design-consistent as 
the domain sample size in  increases. Moreover, they are nonparametric in the sense that do not require 
any model assumption. However, they may have unacceptable sampling errors in small domains. In 
addition, as we shall see below, under cut-off sampling, their design-bias might be substantial. 

The usual expansion estimator (Horvitz and Thompson, 1952) of iY  obtained ignoring that the sample 

is  is drawn only from iIU  is given by ˆ = .
i

i ij ijj s
Y w y

  Under cut-off sampling, îY  actually estimates 
the total in the included strata, = ,

iI
iI iji U

Y y
  rather than the overall total = ,i iI iEY Y Y+  where 

= .
iE

iE iji U
Y y

  Indeed, ( )ˆ = ,i iIE Y Y  where E  denotes expectation under repeated sampling, since 
the sampling weights 1=j i j iw  −  in îY  expand to iIU  instead of .iU  No one would use this estimator 
since its bias, ( ) ( )ˆ ˆ= = ,i i i iEB Y E Y Y Y  − −  given in relative terms by the proportion of the total 
represented by the excluded population, ( )ˆRB = ,i iE iY Y Y −  can be substantial. 

When auxiliary information is not available, it makes more sense to use the Hájek estimator (Hájek, 
1971) for the mean ,iY  given by HAˆ ˆ ˆ= ,i i iY Y N  where ˆ = .

i
i ijj s

N w
  The corresponding estimator for 

the total is HA HAˆˆ = ,i i iY N Y  considering that the means in the included and excluded strata are equal. 
Indeed, ignoring the ratio bias (of lower order) and noting that ( )ˆ = ,i iIE N N  the asymptotic (as 

)in →   design-bias of HA
îY  is given in absolute and relative terms by 

 ( ) ( ) ( )HA HAˆ ˆ, RB ,iE iI iE
i iE iI iE i

i i

N Y Y
B Y N Y Y Y

N Y 

−
 −   (3.1) 

where =iI iI iIY Y N  and =iE iE iEY Y N  are the true means of the sets of included and excluded units 
from area i  respectively (Haziza et al., 2010). For the mean, the bias of HA

îY  is obtained dividing by iN  
in (3.1). For a domain i  with ,iEU    the above bias vanishes only when = ,iI iEY Y  which is unlikely in 
the real cases where cut-off sampling is applied, see e.g., Haziza et al. (2010) or Section 9. In the next 
section, we briefly describe calibration techniques as a mean of reducing the cut-off sampling bias. 

Remark 3.1. The Hájek estimator of iY  is a special case of the customary ratio estimator. In many 
monthly business surveys, parameters of interest are actually the changes over time of certain totals, such 
as = ( ) ( 1) ,it i iY t Y t −  where ( )iY t  is the total of the target variable at time t  within domain .i  The 
ratio estimates of change are actually reported instead of the actual totals because it is often believed that 
such ratios are not affected by cut-off sampling bias. Let ˆ ˆ ˆ= ( ) ( 1)it i iY t Y t −  be the basic direct 
estimator of .it  As we have seen above, the bias of the ratio estimator due to cut-off sampling tends to be 
much smaller than that of the absolute totals ˆ ( )iY t  and ˆ ( 1).iY t −  However, as we have also seen, the 
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cut-off sampling bias of ratio estimators vanishes only under strong assumptions. Indeed, ignoring the 
ratio bias, which is negligible for large ,in  the bias of ˆ

it  is given by  

 ( ) ( ) ( )ˆ ,
( 1) ( 1)
iI i

it
iI i

Y t Y t
B

Y t Y t   −
− −

  

where ( )iIY t  denotes the corresponding total for the included units only. This bias is zero only if the ratios 
for the population ( ) ( 1)i iY t Y t −  are the same as those for the included units ( ) ( 1) .iI iIY t Y t −  

 
4  Calibration estimators 
 

Calibration is traditionally applied when the true totals of certain auxiliary variables, which are 
potentially correlated with the study variable, are known. The idea of calibration is to adjust the design 
weights ,j iw  so that the corresponding expansion estimators of the available true totals have zero error. If 
the adjusted weights provide estimators of the available totals of the auxiliary variables that are absent of 
error, then one expects that they will also decrease the error in the estimation of the total of the study 
variable, provided that it is linearly related with the auxiliary variables. Even if there is an underlying 
linear model, in the absence of cut-off sampling, calibration estimators are design-consistent as the area 
sample size in  increases even if the model does not hold. In this sense, they are model-assisted and their 
properties are typically evaluated under the design-based setup. However, if in  is small, the estimates 
may suffer from small sample bias. 

As we shall see below, calibration estimators reduce the bias due to cut-off sampling if the underlying 
linear model holds for the whole population (included and excluded units). However, for small domains, 
they might have unacceptably large sampling errors, apart from non-negligible small sample bias. 

Let us denote by ijx  the vector of auxiliary variables for unit j  within domain .i  Depending on 
whether the domain totals or only the population totals of these auxiliary variables are available, we can 
apply different calibration approaches. First, consider the case whereby the vector of domain totals 

=1
= iN

i ijjX x  is available. Note that iX  is the total in the whole domain = .i iI iEU U U  Then, one 
approach to calibration is to determine calibration weights ,j ih ,ij s  that minimize  

 
( ) 2

s.t. = .
i

i

j i j i j i
j s

j i ij i
j s

h w w

h





−

 x X
 

(4.1)
 

The resulting calibration weights j ih  are given by 

 ( )
1

ˆ= 1 , ,
i

j i j i i i j i ij ij ij i
j s

h w w j s
−



    + −   
   
X X x x x  (4.2) 

provided that 
i

j i ij ijj s
w


 x x  is non-singular. The calibration estimator of the domain total iY  is then 

given by  
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 ( )LCALˆ ˆ ˆ ˆ= = ,
i

i j i ij i i i i
j s

Y h y Y


+ − X X B  (4.3) 

which is the well-known generalized regression (GREG) estimator of ,iY  where  

 
1

ˆ = .
i i

i j i ij ij j i ij ij
j s j s

w w y
−

 


 

 
 B x x x   

The Hájek estimator HA
îY  is a special case of (4.3), with = 1,ijx = 1, , .ij N  In the absence of cut-

off sampling, the above GREG estimator is design-consistent as the domain sample size in  increases, 
although it may suffer from small sample bias. It reduces the variance if the calibration variables are 
linearly correlated with the outcome and the correlation is strong. Under cut-off sampling, the second term 
on the right-hand side of (4.3) corrects for the bias of the basic expansion estimator îY  as estimator of iY  
with the help of the known domain totals in .iX  However, for small domain sample size ,in  this 
reduction in cut-off sampling bias might be transferred to an increase in variance. 

In the above procedure, we have a different calibration problem for each domain. In the case that only 
the overall population total 

=1 =1
= im N

iji j X x  is available, we may seek calibration weights for all the 
domains at once, ,j ig ,ij s = 1, , ,i m  by solving only one calibration problem:  

 
 

( )2

: , = 1, , =1

=1

min

s.t. = .

j i i
i

i

m

j i j i j ig j s i m i j s

m

j i ij
i j s

g w w

g






−

 x X
 

(4.4)

 

In this case, the calibration weights j ig  are given by  

 ( )
1

=1

ˆ= 1 , , = 1, , ,
i

m

j i j i j i ij ij ij i
i j s

g w w j s i m
−



    + −   
   
X X x x x  (4.5) 

provided that 
=1 i

m
j i ij iji j s

w


  x x  is non-singular. The resulting calibration estimator of the domain total 

iY  is then obtained as  

 ( )LCALNˆ ˆ ˆ ˆ= = ,
i

N
i j i ij i i

j s
Y g y Y



+ − X X B  (4.6) 

where  

 
1

=1

ˆ = .
i

m
N
i j j j j i ij ij

j s j s
w w y

−

 


 

 
 B x x x   

In contrast with the GREG estimator, the correction of îY  in LCALN
îY  uses the overall population total X  

and its corresponding expansion estimator. 

The LCAL (or GREG) estimator (4.3) is expected to have smaller cut-off sampling bias than (4.6) 
because it uses auxiliary information from each particular domain .i  On the other hand, for domains with 
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small sample sizes ,in  its variance (and small sample bias) may be large since it uses only domain-
specific data. The alternative calibration estimator given in (4.6) is expected to have slightly larger cut-off 
sampling bias because it uses only aggregated auxiliary information at the national level, but its design-
variance is expected to be smaller. We now study the properties of (4.3). To this end, consider the 
theoretical version of LCAL estimator (4.3), given by  

 ( )LCAL ˆ ˆ= .i i i i iIY Y + −X X B  (4.7) 

Here, ( ) 1
=

iI
iI ij ijj U

−


B x x

iI
ij ijj U

y
 x  is the census version of ˆ

iB  based on the set of included units 
from domain .i  Note that the sample is  is drawn only from iIU  and thus ˆ

iB  estimates .iIB We 
decompose the bias of LCAL

îY  as  

 
( ) ( ) ( )

( ) ( )  ( )

LCAL LCAL LCAL LCAL

LCAL

ˆ ˆ= ,

ˆ ˆ= .

i i i i

i i i iI i

B Y E Y Y B Y

E B Y

  

 

− +

− − +X X B B
 

(4.8)
 

The term ( ) ( ) ˆ ˆ
i i i iI iE N − −X X B B  tends to zero as in →   regardless of whether cut-off 

sampling is applied or not, since ˆ
iB  tends to .iIB  However, for small in  this term may not be negligible; 

that is, the LCAL estimator has small sample bias even if = .iEU   In the absence of cut-off sampling, 
the bias term ( )LCAL

iB Y  in (4.8) is exactly equal to zero. Under cut-off sampling, we know that 
( )ˆ =i iIE Y Y  and ( )ˆ = ,i iIE X X  where = .

iI
iI ijj UX x  Noting that = ,i iI iE−X X X  for 

= ,
iE

iE ijj UX x  we obtain the design-bias of this LCAL theoretical estimator, given in absolute and 
relative terms by 

 ( ) ( ) ( )LCAL LCAL= , RB = .iE iE iE iI
i iE iE iE iI i

i i

N Y
B Y N Y Y

N Y 

−
− − −

X B
X B  (4.9) 

This bias is small when the same model holds for the included and excluded individuals. 

Since the calibration estimator LCAL
îY  is intended to estimate iY  (and not ),iIY  for the domain mean 

=i i iY Y N  we consider the estimator obtained simply dividing CAL
îY  by iN  (instead of ),iIN

LCAL LCALˆ ˆ= .i i iY Y N  The asymptotic bias of LCAL
îY  is given by (4.9) divided by .iN  

We now analyze properties under the model and the sampling replication mechanism. Note that ˆ
iB  in 

the GREG estimator is the weighted least squares (WLS) estimator of the vector of regression coefficients 

iβ  in the following linear regression model for the units in domain :i  

 ( ) ( )2 2= , = 0, = , = 1, , ,ij ij i ij m ij m ij iy E E j N    +x β  (4.10) 

where model errors ij  are all mutually independent. We wish to see the value added by the model to the 
design properties of the estimators; that is, how much would be gained if data were actually generated (at 
least approximately) by the assumed model. Let mE  denote expectation under model (4.10). If the linear 
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regression model (4.10) actually holds for all the units in the domain (included and excluded), then 
( ) =m iI iE B β  and taking expectation of the bias term in (4.9) under model (4.10), we obtain the model-

design bias,  

 ( ) ( ) ( )  ( )LCAL
, = = = 0.m i iE m iE iE m iI iE iE i iE iB Y N E Y E N

  − − − −X B X β X β  (4.11) 

In contrast, assuming exactly the same regression model, the bias of the basic direct estimator HA
îY  

under cut-off sampling is not zero unless the means of the auxiliary variables for the excluded and 
included units are equal. Indeed,  

 ( ) ( ) ( )HA
,

ˆ = = .m i iE m iI iE iE iI iE iB Y N E Y Y N
− −X X β  (4.12) 

Thus, the condition under which the LCAL estimator is design-unbiased, namely that the linear model 
(4.10) holds without error for all the units in the domain, is much weaker than the requirements for the 
basic direct estimator to be design-unbiased. This means that calibration estimators will tend to be less 
biased than the basic direct estimator and can reduce substantially the cut-off sampling bias if the outcome 
is generated by the above domain-specific linear regression model. 

Turning now to LCALN estimator (4.6), we define the corresponding theoretical version  

 ( )LCALN ˆ ˆ= ,N
i i iIY Y + −X X B  (4.13) 

where N
iB  is the census version for the included units,  

 
1

=1
= .

I iI

m
N
i j j ij ij

j U j U
y

−

 


 

 
  B x x x   

Decomposing the bias similarly as in (4.8), we obtain  

 ( ) ( ) ( )  ( )LCALN LCALNˆ ˆ ˆ= .N N
i i iI iB Y E B Y  

− − +X X B B  (4.14) 

Again, ( ) ( ) ˆ ˆ N N
i iI iE N − −X X B B  is not zero for small in  but it tends to zero as in →   even under 

cut-off sampling, whereas ( )LCALN = 0iB Y  only in the absence of cut-off sampling bias. In general, using 
the decomposition = ,I E+X X X  where IX  and EX  are the national totals for the included and 
excluded units respectively, the design bias of LCALN

iY  is given by  

 ( ) ( )LCALN = .N
i iE E iIB Y Y

− − X B  (4.15) 

Consider now the linear model with constant regression coefficients for all the population units, called 
model 2:m  

 ( ) ( )
2 2

2 2= , = 0, = , = 1, , , = 1, , ,ij ij ij m ij m ij iy E E j N i m    +x β  (4.16) 
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where again the model errors ij  are mutually independent. Note that, under this model, ( )
2

N
m iIE B β  in 

general, but if we consider the sum 
=1

= m N
I iIiB B  instead, we have ( )

2
= .m IE B β  This means that the 

theoretical LCALN estimator for a particular domain, LCALN ,iY  is not model-design unbiased, because  

 ( ) ( ) 2 2

LCALN
, = ,N

m i iE E m iIB Y E
 − −X β X B   

is not necessarily equal to zero. However, the national estimator obtained adding those of the domains, 
( )LCALN LCALN

=1
ˆ ˆ= = ,m

i Ii
Y Y Y + − X X B  is actually model-design unbiased, because  

 ( ) ( ) 2 2

LCALN
, = = 0.m E E m IB EY

 − −X β X B   

Hence, under model (4.16) with constant regression coefficients for all the population units, the LCALN 
estimator is not model-design unbiased for a particular domain, but it is unbiased when aggregating for all 
the domains, provided that the same model holds for the included and excluded units in all domains. For 
the mean ,iY  the bias of the theoretical estimator LCALN LCALN=i i iY Y N  is given by (4.15) divided by 

.iN  

We now study the variances. For the theoretical LCAL estimator (4.7), the design-variance is given by  

 ( ) ( )LCAL ˆ ˆ= = ,
i

i i i iI j i ij
j s

V Y V Y V w E  


 
−  

 
X B  (4.17) 

where = ,ij ij ij iIE y − x B .iIj U  We can then apply the usual variance estimators for expansion type 
estimators. In the case of LCALN given in (4.13), the variance is given by 

 ( ) ( )LCALN ˆ ˆ= .N
i i iIV Y V Y  − X B   

Note that X̂  is based on the n  sample units, whereas ˆ
iX  uses only the in  units in domain .i  As a 

consequence, the contribution of X̂  to the variance of LCALN should be much smaller than the 
contribution of ˆ

iX  in (4.17). This means that, provided that the domain and national regression lines are 
similar, the variance of LCALN estimator, obtained from the calibration at the national level, should be 
smaller than that of the domain-specific calibration estimator LCAL. 

 
5  EBLUP under the nested error model 
 

Estimators described so far use only the outcome information coming from the domain. This means 
that, when the domain sample size in  is small, these estimators might be inefficient even in the absence of 
cut-off sampling. Small area (or indirect) estimation methods are designed to reduce the variance by 
increasing the effective sample size; see Rao and Molina (2015) for a comprehensive account of small 
area estimation methods. In this section, we focus on model-based methods, which provide estimators 
with good properties under the distribution induced by the model. Since the model-based properties are 
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well known, we wish to analyze whether the estimators have good properties under the sampling-
replication mechanism, which does not assume that the model actually holds. 

We consider a very popular unit level model introduced by Battese, Harter and Fuller (1988) and often 
called nested error model. Similarly as for model 2m  in (4.16), this model assumes a constant linear 
regression for all the population units, but allows for unexplained heterogeneity between the domains by 
including random domain effects iu  apart from model errors .ije  This model, denoted model 3 ,m  
assumes  

 
( )

( )

iid 2

iid 2

~, 0, ,

~ 0, , = 1, , , = 1, , ,
ij ij i ij i u

ij e i

y u e u N

e N j N i m





= + +x β
 

(5.1)
 

where area effects iu  and errors ije  are all mutually independent. The vectors β  and ( )2 2= ,u e  θ  are 
unknown. Setting 2 = 0u  in (5.1), we obtain model 2m  given in (4.16). If ( )1= , ,

ii i iNy y y  denotes 
the vector of outcomes for domain i  and ( )1= , ,

ii i iN
X x x  the corresponding design matrix, the 

model in matrix notation reads  

 ( )ind 2 2~ , , = , = 1, , ,
i i ii i i i u N N e NN i m  +y X β V V 1 1 I  (5.2) 

where k1  denotes a vector of ones of size k  and kI  is the k k  identity matrix. 

We consider linear domain parameters defined as = ,i i iH b y  where ib  is a non-stochastic vector of 
known elements. The domain mean 1

=1
= = iN

i i i ijj
H Y N y−   is obtained with 1= .

ii i NN −b 1  

A sample is  is supposed to be drawn from the set of included units in domain ,i  that is, .i iIs U  We 
denote by ( )=i iI i iEr U s U−   the set of non-sampled units from domain ,iU  which includes those 
non-sampled units from iIU  and all the units in .iEU  Note that = = .i i i iI iEU s r U U   Then, the 
overall sample s  is composed of the samples is  drawn from the sets of included units in each area ,iIU

= 1, , ,i m  that is, 1= .ms s s   

We decompose the domain vector iy  and the design and covariance matrices iX  and iV  into the 
corresponding subvectors and submatrices for sample and out-of-sample units, indicated with subscripts s  
and r  respectively, as follows  

 = , = , = .is is is isr
i

ir ir irs ir

    
    

    

y X V V
y X V

y X V V
  

The linear parameter =i i iH b y  can then be expressed as = .i is is ir irH  +b y b y  Under model (5.1), the 
best linear unbiased predictor (BLUP) of H  is the model-unbiased linear function of the sample data 

ˆ = ,i is isH α y  which minimizes the model mean squared error (MSE), ( ) ( )
3 3

2ˆ ˆMSE = .m i m i iH E H H−  
The BLUP of =i is is ir irH  +b y b y  is then  

 ( ) ( )BLUP 1ˆ = ,i is is ir ir s irs is is is sH −    + + − θ b y b X β V V y X β  (5.3) 
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where sβ  is the weighted least squares estimator of ,β  given by  

 ( )
1

1 1

=1 =1
= = .

m m

s s is is is is is is
i i

−
− −   

 
 β β θ X V X X V y  (5.4) 

The BLUP of iH  given in (5.3) depends on the true values of the variance components ( )2 2= , ,u e  θ  
which are typically unknown. Replacing them by corresponding model-consistent estimators 

( )2 2ˆ ˆ ˆ= , ,u e  θ  we obtain the so-called empirical BLUP (EBLUP), denoted EBLUP BLUP ˆˆ ˆ= ( ).i iH H θ  

If the domain sampling fraction, ,i in N  is negligible, the BLUP of iY  may be expressed as the 
weighted average  

 ( ) ( )BLUPˆ 1 ,i is is i is s is i sY y     + − + − X x β X β  (5.5) 

where 2 2 2= ( )is u u e in   +  is in the ( )0, 1  interval and tends to 1 as in →   (Rao and Molina, 
2015). Thus, for domains with large sample size ,in BLUP

îY  approaches the survey regression estimator 
( ) ,is i is sy + −X x β  whereas for domains with small sample size ,in BLUP

îY  borrows strength from the 
other domains by approaching the regression-synthetic estimator .i s

X β  Replacing the variance 
components in ( )2 2= ,u e  θ  by consistent estimators ( )2 2ˆ ˆ ˆ= ,u e  θ  in the BLUP, denoting ˆ =is  

( )2 2 2ˆ ˆ ˆu u e in  +  and ( )ˆ ˆ= ,s sβ β θ  we obtain the EBLUP of ,iY  given by  

 ( ) ( )EBLUPˆ ˆ ˆˆ ˆ1 .i is is i is s is i sY y     + − + − X x β X β  (5.6) 

The BLUP is unbiased and optimal under model 3m  in the sense of minimizing the MSE under that 
model. We now study its design properties, which do not assume that the model is correct and hence 
account for bias under model departures. To that end, we consider the census regression parameter for the 
included units, defined as ( ) 1

1 1
=1 =1

= ,m m
I iI iI iI iI iI iIi i

−
− −  B X V X X V y  where ,iIy iIX  and iIV  are the 

corresponding sub-vector and sub-matrices of ,iy iX  and ,iV  for the included units ( ) .iIj U  Again, 
we consider the theoretical version of the BLUP defined in terms of ,IB  

 ( ) ( )BLUP = 1 .i is is i is I is i IY y    + − + − X x B X B  (5.7) 

If each sample is  is drawn from the corresponding domain iIU  by simple random sampling without 
replacement (SRSWOR), then ( ) =is iIE y Y  and ( ) = .is iIE x X  Using these facts, it is easy to calculate 
the design-bias of BLUP

iY  under SRSWOR, which is given by  

 ( ) ( ) ( ) ( ) ( )BLUP = 1 .iE
i is i i I iE iE I is i I i

iI

N
B Y Y Y Y

N      − − − + − − X B X B X B  (5.8) 

This bias will be small if (5.1) holds for the whole population, in which case ( )
3

=m i iE Y X β  and 
( )

3
= .m iE iEE Y X β  Using these results when taking expectation under model 3m  in (5.8), we get 

( )
3

BLUP
, = 0.m iB Y  In fact, the same result also holds under model 2 .m  
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Concerning variance, if is  is obtained by SRSWOR within ,iIU  the design-variance of the theoretical 
BLUP estimator is given by  

 ( ) ( ) ( )
2

BLUP 2
2

ˆ ˆ= = .is
i is is is I i i I

i

V Y V y V Y
N  


 − −x B X B   

Hence, if the census least squared (LS) regression lines for the domains from model (4.10) are similar to 
the national census weighted least squared (WLS) regression line from model (5.1), that is, if ,I iIB B  
then the variance of the BLUP for iY  reduces to that of the LCAL estimator of iY  obtained from (4.17), 
multiplied by the factor ( )2 0, 1 .is   

Under more general sampling designs within ,iIU  we consider the pseudo-EBLUP of iY  proposed by 
You and Rao (2002) instead of the EBLUP. Defining the analogous theoretical estimator that uses the 
weighted sample means ( ) 1=

i i
iw j i j i ijj s j s

y w w y−

    and ( ) 1=
i i

iw j i j i ijj s j s
w w−

  x x  instead 
or the unweighted ones isy  and isx  in (5.7), we obtain the same expressions for the design bias and 
variance, with is  changed to ( )2 2 2= ,iw u u e iw    +  for ( ) 2 2= .

i i
iw j i j ij s j s

w w
−

    

 
6  Empirical best predictor under the nested error model 
 

Estimation of non-linear domain parameters requires more general small area estimation methods, such 
as the best/Bayes predictor (BP), see Molina and Rao (2010). Special non-linear parameters are poverty 
and inequality indicators defined in terms of a welfare measure, such as the family of poverty indicators 
introduced by Foster, Greer and Thorbecke (1984). The best predictor can also be used for the estimation 
of other characteristics such as median, quantiles or even the whole empirical distribution function of the 
variable of interest, see Pratesi (2016). Additionally, it can be used to estimate totals and means of a given 
target variable, when the dependent variable in the considered model is a one-to-one transformation (e.g., 
log or more general Box-Cox transformations) of this target variable. These transformations are typically 
applied in the case of non-normality or heteroscedasticity. 

In this section, the target variable (e.g., the welfare measure) for the thj  unit in thi  domain is denoted 
as ijv  and ( )= ,ij ijy T v  where T  is a one-to-one transformation. We assume that ijy  follows the nested 
error model (5.1). By the inverse transformation ( )1= ,ij ijv T y−  we can express our target parameter 
(defined originally in terms of the target variables )ijv  as a function of the vector ( )1= , ,

ii i iNy y y  of 
model responses for the domain units, ( )= .i iH h y  The best predictor (BP) of ( )=i iH h y  is defined as 
the function of the sample data isy  that minimizes the model MSE, and it turns out to be  

 ( ) ( ) 
3

BPˆ , = ; , ,i m i isH E hβ θ y y β θ  (6.1) 

where the expectation is taken with respect to the model distribution of ,ir isy y  which depends on the 
true values of β  and .θ  The BP of iH  is unbiased with respect to the model (5.1), regardless of the 
complexity of the function ( )h   defining the target parameter. However, it cannot be calculated in practice 
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since model parameters β  and θ  are typically unknown. An empirical best predictor (EBP) of ,iH  
denoted as EBPˆ ,iH  is then obtained by replacing β  and θ  in ( )BPˆ ,iH β θ  by consistent estimators β̂  and 
ˆ ,θ  as ( )EBP BP ˆ ˆˆ ˆ= , .i iH H β θ  The EBP is not exactly unbiased, but the bias arising from the estimation of β  
and θ  is typically negligible when the overall sample size n  is large. In the case of a linear parameter 

= ,i i iH b y  the EBP under the nested error model with normality obtained using ( )ˆ ˆ=s sβ β θ  to estimate 
β  equals EBLUPˆ .iH  

When ( )h   is so complex that the expectation defining the EBP in (6.1) cannot be calculated 
analytically, Monte Carlo methods can be applied to approximate EBPˆ

iH  as proposed in Molina and Rao 
(2010). This is done by simulating, from the model (5.1) fitted to the original sample data, L  replicates 

( ) ; = 1, ,ijy L  of , ,ij iy j r  where ir  are the non-sample units of area ,i  attaching the sample 
elements ,ijy ij s  to form the population vector ( ) ,iy  calculating the corresponding target parameter 

( ) ( )( )=i iH h y  for each = 1, , L  and, finally, averaging over the L  replicates as EBPˆ =iH  
( )1

=1
.L

iL H−   Note that the EBP requires the values ijx  for all units in the population, and not only for 
the included units. For further details, see Molina and Rao (2010). 

 
7  MSE estimation 
 

The EBLUP in Section 5 or the EBP described in Section 6 are based on the nested error model (5.1). 
Calibration estimators described in Section 4 are also assisted by a linear regression model. If we wish to 
have comparable accuracy measures, it seems reasonable to obtain the MSEs of all the estimators under a 
given regression model (model MSE), assuming that the model holds for all the population units (included 
and excluded). Here, we estimate the model MSE using the bootstrap method proposed in Molina and Rao 
(2010), which is based on the original parametric bootstrap method for finite populations of González-
Manteiga, Lombardia, Molina, Morales and Santamaría (2008). According to this procedure, the bootstrap 
MSE of EBPˆ

iH  under the nested error model (5.1) is obtained as follows: i) Fit Model (5.1) to the sample 
data ( ) , ; = 1, , ,is is i my X  to obtain the estimators ˆ ,β 2ˆ u  and 2ˆ e  of ,β 2

u  and 2
e  respectively. ii) 

For = 1, , ,b B  generate independently ( ) ( )iid* 2~ ˆ0,b
i uu N   and ( ) ( )iid* 2~ ˆ0, ,b

ij ee N  = 1, , ,ij N
= 1, , .i m  iii) For = 1, , ,b B  construct bootstrap domain vectors ( ) ( ) ( )( )

1

** *
1= , , ,bb b

i i iNy y y  whose 
elements are generated as 

 ( ) ( ) ( )* * *ˆ= , = 1, , , = 1, , .b b b
ij ij i ij iy u e j N i m + +x β   

From the bootstrap domain vector ( )* ,b
iy  calculate the target bootstrap parameter ( ) ( )( )* *= ,b b

i iH h y  for 
= 1, , .b B  iv) From each bootstrap population vector ( )* ,b

iy  take the sample part ( )* ,b
isy  where the 

sample indices is  are exactly those of the original sample drawn from ,iIU  for = 1, , .i m  Using the 
overall bootstrap sample data ( ) ( ) ( )( )* * *

1= , ,b b b
s s ms

y y y  and the population vectors ,ijx = 1, , ,ij N  
assumed to be known for all population units, calculate the bootstrap EBP of ,iH  denoted as ( )EBP*ˆ ,b

iH
= 1, , .b B  v) A bootstrap MSE estimator for the EBP under model (5.1), ( )

3

EBPˆMSE ,m iH  is obtained 
as  
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 ( ) ( ) ( )( ) 2EBP EBP* *

=1

1ˆ ˆmse = .
B

b b
B i i i

b
H H H

B
−  (7.1) 

Bootstrap estimators of the MSE under the same model of the calibration estimators can be obtained 
similarly. For the special case of a linear parameter, = ,i i iH b y  if ˆ

sβ  is the WLS estimator (5.4), then 
(7.1) is actually an estimator of ( )

3

EBLUPˆMSE .m iH  This naïve bootstrap estimator of the model MSE is 
first-order unbiased in the sense that its model bias is ( )1 ,O m−  but not ( )1 .o m−  Bias corrections existing 
in the literature increase the variance and may yield negative MSE estimates. In the literature, we cannot 
find bootstrap estimators of the MSE that are strictly positive and also second-order unbiased. Thus, for 
simplicity, we consider the naive bootstrap estimator (7.1), which cannot yield negative values and 
performs well for moderate number of areas .m  

 
8  Simulation experiments 
 
8.1  Aims and general description 
 

In this section, we describe simulation experiments designed to compare the small sample properties of 
the estimators of iY  discussed above in the context of cut-off sampling. Specifically, we compare the 
naïve direct estimator HAˆ ,iY  calibration estimators LCAL

îY  and LCALNˆ ,iY  and the EBLUP under the nested 
error model EBLUPˆ ,iY  under two different scenarios. In the first scenario, the values of the target variable 
for all the population units are generated from the same model; in the second, included and excluded units 
are generated from different models. 

In the absence of cut-off sampling, calibration estimators are design-consistent as the domain size in  
increases even if the corresponding model does not hold, but this is not the case for model-based 
estimators. On the other hand, under the corresponding model, the EBLUP of a linear parameter is 
approximately the most efficient linear and unbiased estimator, so making simulations under a model 
would not provide any additional knowledge. The purpose here is to see whether the model-based 
predictors also perform well with respect to the (cut-off sampling) design. For this reason, we run design-
based simulations by generating one population vector ( )1= , , m

 y y y  from the nested error model in 
(5.1), keeping it fixed and repeatedly drawing a new cut-off sample in each MC simulation. Allocation of 
units to the sets of included or excluded units is done by generating a random binary variable ijc  for each 
unit = 1, , ij N  and area = 1, , .i m  The units j  with = 1ijc  are assigned to iIU  and those with 

= 0ijc  to .iEU  In each Monte Carlo (MC) replicate, samples are drawn, independently for each domain 
,i  from the iIU  units, = 1, , .i m  

 

8.2  Common regression model 
 

We consider a population of =N 20,000 individuals divided into =m 80 domains with the same size 
=iN 250, = 1, , .i m  We consider three auxiliary variables, with values generated as ( )iid~ 3, 2 ,ijx N

= 1, 2, 3.  The binary variables ijc  determining the allocation of units in iIU  or iEU  for each domain i  
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are generated independently as ( )ind~ Bern ,ij j ic p  where the probabilities ( )= Pr = 1j i ijp c  are related 
to the vector of auxiliary variables ( )1 2 3= , ,ij ij ij ijx x x x  in the form  

 
( )
( )

exp
= , = 1, , , = 1, , .

1 exp
ij

j i i

ij

p j N i m


+

x ζ

x ζ
  

We take ( )= 0.75, 1, 1 .ζ  Based on this value, the total number of included units (with = 1)ijc  from all 
the domains represents roughly half of the population. 

The values of the target variable ijy  are generated from the nested error model (5.1) using 

( )1 2 3= , ,ij ij ij ijx x x x  and taking ( )= 1, 1.5, 1 ,β ( )22 = 0.75u  and 2 2= 4 ,e  which leads to a 
determination coefficient 2 0.5.R   Then, keeping the population values ( ) , , ; = 1, , ,ij ij ij iy c j Nx  

= 1, ,i m  fixed, we draw =K 1,000 Monte Carlo samples ( ) ,ks = 1, , .k K  Each of these samples 
is obtained by drawing independent domain sub-samples ( )k

is  of size in  from the units in iIU  by 
SRSWOR, = 1, , .i m  The domain sample sizes are taken as  5, 10, 30, 50 ,in   with each sample 
size repeated for 20 subsequent domains. With the data from the thk  sample, we compute the basic direct 
estimator, calibration estimators at the domain level (LCAL) and at the population level (LCALN), and 
EBLUP. Weights, j ih  and ,j ig  in the calibration estimators (4.3) and (4.6) respectively are obtained 
using the function calib from package sampling (Tillé and Matei, 2016) of R (R Development Core 
Team, 2016). EBLUPs are obtained using R package sae (Molina and Marhuenda, 2015), which by 
default estimates the model parameters 2 ,u 2

e  and β  using restricted maximum likelihood (REML). 

Let ˆ
iY  be a generic estimator of iY  and ( )ˆ k

iY  its value obtained with thk  sample. We evaluate the 
performance of estimators in terms of relative bias (RB) and relative root MSE (RRMSE) under the 
design, approximated empirically as  

 ( )
( )( ) ( )

( )( )2
1 1

=1 =1
ˆ ˆ

ˆ ˆRB = 100 , RRMSE = 100 .
K Kk k

i i i ik k
i i

i i

K Y Y K Y Y
Y Y

Y Y 

− −− −    

Averages across domains of absolute RB and of RRMSE are also calculated as  

 ( ) ( )1 1

=1 =1

ˆ ˆARB = RB , RRMSE = RRMSE .
m m

i i
i i

m Y m Y 
− −    

Figure 8.1 displays boxplots of percent RB for the considered estimators of the mean ,iY  where each 
boxplot is for the 20 domains in each group of sample sizes = 5, 10, 30, 50.in  We can see the large 
cut-off sampling bias of the basic direct estimator, with median RB exceeding 20% for all the domain 
sample sizes. This cut-off sampling bias is corrected by all the other estimators. Nevertheless, the LCALN 
estimator shows wider boxplots. This estimator gets large bias for some domains probably because its 
assisting model is not accounting for the domain effects. The LCAL estimator is based on a model that 
accounts for domain effects and performs well in terms of design bias uniformly for all the domain sample 
sizes, although EBLUP also performs rather well in terms of design bias. 
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Looking now at the RRMSE in Figure 8.2, we can see the much smaller RRMSEs of EBLUPs for all 
the domain sample sizes. The LCAL estimator gets closer RRMSEs as the domain sample size grows, but 
for = 5in  it gets huge RRMSEs. We have seen that the LCALN can be substantially biased for some 
domains and it also has large RRMSEs for all the domain sample sizes. Thus, in summary, EBLUP 
exhibits the lowest design RRMSE and at the same time keeps the design bias under control. 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1 Boxplots of domain RBs (%) of basic direct, LCAL, LCALN and EBLUP estimators for 

= 5, 10, 30, 50.
i

n  
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.2 Boxplots of domain RRMSEs (%) of basic direct, LCAL, LCALN and EBLUP estimators for 

= 5, 10, 30, 50.
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Table 8.1 reports averages across all the domains of absolute RB and RRMSE, together with % share 
of squared bias from the total design MSE. We can see again the large cut-off sampling bias of the basic 
direct estimator, with a bias share of 2 MSEB   100%, in contrast to all other estimators. The LCAL 
estimator has the smallest average ARB, followed closely by EBLUP. LCALN performs the best in terms 
of bias ratio because of its large MSE. Thus, we consider that LCAL performs better. As already said, 
EBLUP clearly performs the best when looking at both bias and MSE. 

 
Table 8.1 
Averages across areas of absolute RB, RRMSE and 2 MSEB   for basic direct, LCAL, LCALN and EBLUP 
(in percentage) 
 

Method  ARB  RRMSE  2 MSEB   

DIR   21.82   24.45  98.32  
LCAL   2.96   27.33  2.48  
LCALN   8.97   30.44  0.04  
EBLUP   3.13   4.56  0.18  

 
8.3  Different regression models 
 

In this simulation experiment, we preserve the same population values and sampling scheme as before, 
but the values of the target variable for the included and excluded units are generated from models with 
different parameter values. Of course, this is not a favorable scenario for the considered model-based 
estimators, but it may be realistic since, in practice, the assumed model cannot be checked for the 
excluded units. Thus, instead of a constant β  for all the population units, we take ( )= 1, 1.5, 1I

β  for the 
included units and ( )= 0.5, 1.6, 0.5E

β  for the excluded ones. The values of the explanatory variables 
and variance components 2

u  and 2
e  are taken exactly as before. Again, we draw =K 1,000 samples 

( )ks  by independent SRSWOR within the units in domain i  with = 1,ijc  with the same domain sample 
sizes in  as before. With the sample data from the thk  sample, we compute basic direct, LCAL, LCALN 
and EBLUP estimates of .iY  

Figure 8.3 shows boxplots of the corresponding percent RBs for each domain sample size. In this case, 
all the estimators are biased, but the bias of the basic direct estimator becomes huge, exceeding 40% for 
some of the domains. The bias of LCAL and EBLUP is kept relatively small for all the domains, but that 
of LCALN estimator is still very large in absolute value for some of the domains. In absence of cut-off 
sampling, the calibration estimators are asymptotically design-unbiased as the domain sample size in  
increases, even if the considered model does not hold. However, this is not true under cut-off sampling 
and for this reason the RBs of calibration estimators do not decrease as in  grows. Even under this 
unfavorable scenario of different generating models for included and excluded units, EBLUP shows a 
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moderate bias, which is comparable to that of LCAL estimator, and performs clearly the best in terms of 
RRMSE. 

 

 

 

 

 

 

 

 

 
 

 

 
 
Figure 8.3 Boxplots of domain RBs (%) of basic direct, LCAL, LCALN and EBLUP estimators for 
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Figure 8.4 Boxplots of domain RRMSEs (%) of basic direct, LCAL, LCALN and EBLUP estimators for 

= 5, 10, 30, 50,
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Again, averages across all the domains of absolute RB and RRMSE are shown in Table 8.2, together 
with sq. bias ratio. As already noted, the basic direct estimator has a huge bias, whereas LCAL and 
EBLUP estimators keep an ARB  below 10%. LCALN displays the lowest bias ratio because of a larger 
MSE. Again, EBLUP shows the best performance in terms of efficiency, with an average RRMSE also 
below 10%. 

 
Table 8.2 
Averages across areas of absolute RB, RRMSE and 2 MSEB   for basic direct, LCAL, LCALN and EBLUP, 
when β = (1, 1.5, 1)

I
  for included units and β = (0.5, 1.6, 0.5)

E
  for excluded ones (in percentage) 

 

Method  ARB  RRMSE  2 MSEB   
DIR   31.78   34.11   99.87  
LCAL   8.47   30.83   77.43  
LCALN   12.75   34.49   29.56  
EBLUP   8.73   9.48   75.78  

 
The simulation experiment was repeated taking a value of Eβ  further away from ,Iβ  making the two 

regression models differ substantially. Results are not included due to space constraints but, as one would 
expect, RB and RRMSE values increase for all estimators, but conclusions are similar to the last 
experiment. The basic direct estimator gets the largest RB, calibration estimators and EBLUP clearly 
reduce the cut-off sampling bias of the basic direct estimator and EBLUP gets smaller RRMSE, specially 
for the domains with the smallest sample sizes. 

 
9  Estimation of total sales in Spanish provinces 
 

Here we describe an application to the estimation of the total sales of a certain tobacco product in the 
Spanish provinces. The available data set contains, for =N 12,791 tobacco establishments (practically all 
of them) in =m 48 provinces from Spain (the Canary Islands, Ceuta and Melilla are not included), the 
volume of purchases made by each establishment of this product during the three months previous to 
November 2016 ( ,ijz  in euros). It also contains a variable indicating whether the establishment is supplied 
with a device recording all the required information about each sale. Only the establishments with larger 
sales are supplied with such a device. Those establishments (in total =n 1,842) are able to report proper 
data on sales and therefore the volume of sales ( ,ijv  in euros) of the considered product in November 
2016 is also included in the data for those establishments. 

We estimate the total sales 
=1

= iN
i iji

V v  in each of the =m 48 provinces included in the data using 
the basic direct, the selected calibration estimators and a model-based estimator. Establishments j  with 
both ijz  and ijv  available for a province i  compose the set of included units ,iIU  which equals the 
sample is  in this case (there is no sampling within ).iIU  Then, here the basic direct estimators are given 
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by HAˆ = ,i i iIV N V = 1, , ,i m  which have actually zero variance, but might be severely biased. Since 
true values in real applications are not available and therefore real biases cannot be evaluated (there is no 
information from ),iEU  here we will compare the estimators considering the set of establishments with 
sales recorded from each province as a SRSWOR from that province. Note that this is the best scenario for 
the basic direct estimator. Thus, for the basic direct estimator HA

îV  considering that the actual sample 
=i iIs U  is a SRSWOR from ,iU  the variance equals the MSE (we ignore the bias). A design-unbiased 

estimator of the MSE is then  

 ( )
2

2ˆmse = 1 , = 1, , ,i i
i i

i i

s n
V N i m

n N


− 

 
  

where ( ) ( )1 22 = 1
i

i i ij isj s
s n v v−


− −  is the sample variance of the sales for province i  and here 

= ,i iIn N = 1, , .i m  

For the estimators that consider a regression model, we first make a preliminary descriptive analysis of 
the variables. Histograms of sales ijv  and of purchases ijz  show right-skewed distributions for both 
variables. Moreover, a scatterplot of ordinary LS residuals from a linear model for ijv  in terms of ,ijz  
against ijz  reveals a mild pattern of heteroscedasticity. Transforming the sales with the squared root, that 
is, taking 1 2=ij ijy v  as response variable and ( )= 1, ,ij ijx x  with 1 2=ij ijx z  as covariate seems to 
minimize the problem. Accordingly, we will consider a nested error model (5.1) for the transformed sales 

ijy  in terms of the transformed purchases ,ijx  and EBPs of the total sales in each province, 

=1
= ,iN

i ijj
V v  will be computed based on this model. Note that, in terms of the model responses ,ijy  the 
total sales are given by ( )2

=1
= = .iN

i ij ij
V y h y  Then, the EBP of ( )=i iV h y  is given by EBPˆ =iV  

( ) 
3

ˆ; ,m i isE h y y θ = 1, , ,i m  which can be calculated analytically or approximated by Monte Carlo 
simulation. We estimate the model MSE of the EBP using the parametric bootstrap described in Section 7 
for = ,i iH V  taking ( ) ( )* *=b b

i iH V  and ( ) ( )EBP* EBP*ˆ ˆ=b b
i iH V  and considering that the model holds for 

included and excluded units. Residuals from this model are described below. 

Note that the LCAL (or GREG) estimator is not defined for a non-linear function of the values of the 
response variable in the population units, such as the total sales 2

=1
= iN

i ijj
V y  after the square root 

transformation. Hence, here we calculate the GREG according to (4.3) using ijv  instead of ijy  and ijz  
instead of ,ijx  which is assisted by the linear model (4.10) for the untransformed sales ijv  in terms of 
purchases .ijz  As a measure of uncertainty of the GREG, to make it comparable with that of the EBP, we 
estimated its model MSE through the same bootstrap procedure, replacing ( )EBP*ˆ b

iH  by ( )GREG*ˆ .b
iV  The 

obtained bootstrap MSE estimator actually includes the error due to the fact that the correct model is the 
one with transformed variables. 

Before comparing the estimates, we analyze the residuals from the nested error model (5.1), given by 
ˆˆ ˆ= .ij ij ij ie y u− −x β  Figure 9.1 shows a scatterplot of those residuals against predicted values 

ˆˆ ˆ=ij ij iy u +x β  (left) and a histogram of residuals (right). We can see a few negative outliers on the left 
plot, which agrees with a slightly larger left tail in the histogram. Apart from that, the residuals do not 
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exhibit any remarkable pattern. In fact, in the histogram they appear to be very much concentrated around 
zero, which indicates a high predictive power of the model.  

Figure 9.2 shows the normal Q-Q plot of predicted area effects ˆ .iu  This plot supports the normality of 
ˆ iu  except for one outlier appearing at the left tail of the distribution. This point corresponds to the 

province with the smallest sample size ( =in 3 observations), which suggests that the estimated random 
effect for that province, ˆ ,iu  is not very reliable. Thus, we consider that the nested error model fits 
reasonably well the available data. 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.1 EBP residuals against predicted values (left), and histogram of EBP residuals (right). 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 9.2 Normal Q-Q plot of predicted province effects ˆ .
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We proceed now to compare the obtained estimates. Figure 9.3 left shows EBPs of the total sales of the 
considered tobacco product for each province against direct estimates. Province sample sizes are used as 
point labels. This plot indicates a great similarity of the two types of estimates except for the two 
provinces with the largest sample sizes, where the EBPs are slightly larger than direct estimates, which 
could be due to cut-off sampling bias of the direct estimator. Figure 9.3 right displays EBPs against GREG 
estimates. The great similarity of GREG and EBP estimates shown by this plot supports the fact that direct 
estimators might be actually understating the total sales in this application. 

Finally, we compare the three types of estimates of the total sales for each province in Figure 9.4 left, 
showing the point estimates for each province (x-axis), with provinces sorted from smaller to larger 
sample sizes, and with sample sizes indicated in the x-axis labels. The conclusions are the same as before; 
that is, the three types of estimates take very similar values for all provinces except for a couple of 
provinces with the larger sample sizes, where the basic direct estimator takes slightly smaller values 
(possibly understating the total sales). Figure 9.4 (right) shows the estimated coefficients of variation (CV) 
obtained ignoring the bias due to cut-off sampling. EBP estimators perform uniformly better than the other 
estimators in terms of estimated CV, keeping the CV values below 10% for practically all provinces, 
whereas GREG estimator obtains CV values above 10% for the provinces with the smallest sample sizes. 
We can see some peaks in the estimated CVs for some provinces with not necessarily the smallest sample 
sizes. These larger CV values are due to the presence of zero purchases and sales of the considered 
product in many tobacco shops for those particular provinces (that particular product is not acquired every 
month). Clearly, the direct estimator performs the worst in terms of efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.3 EBPs of total sales for each province against direct estimates (left) and against GREG estimates 

(right). 
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Figure 9.4 Direct, calibration and EBP estimates of total sales for each province (left) and corresponding 

estimated coefficients of variation (right). 

 
Table A.1 in the Appendix reports direct, LCAL and EBP estimates of province total sales of the 

product supplemented with their estimated CVs. This table confirms the better performance of EBP in 
terms of estimated CV under the nested error model, specially for those provinces with small sample sizes. 
Finally, the direct estimator performs poorly in terms of CV even if the bias due to cut-off sampling is not 
accounted for. 

 
10  Conclusions 
 

Cut-off sampling is frequently used in business surveys, when drawing a representative sample from 
the whole population entails a cost that does not really compensate the subsequent gain in accuracy. On 
the other hand, in some surveys, part of the target population may not be actually available for sampling; 
that is, there may be population sectors that cannot be represented in the sample. These situations appear 
more often than desired, providing biased direct estimates as we have seen along this work. 

We have studied the theoretical design properties of basic direct, calibration and model-based 
estimators under cut-off sampling in small areas. Our results show that EBLUP for a linear parameter, 
similarly as calibration estimators, reduce considerably the bias due to cut-off sampling if the models for 
the included and excluded individuals are reasonably similar. In terms of MSE, EBLUP performs 
significantly better than calibration estimators, specially for domains with small sample size. 

In our simulation studies and in the application, we compared the proposed methods by assuming that 
the model is the same for all units in the population (included or excluded). The model assumption could 
be arguable because there is no way of checking the model for the excluded units. In the case that 
estimation for the overall domain (and not only for )iIU  is required as is the case in this work, one will 
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need to rely on subjective prior information concerning the validity of the assumed model for the excluded 
units. In any case, estimates can be considered just as indicatives of what could be the true values in the 
case that the same model holds for all the domain units. In fact, the case of different models for included 
and excluded units was also analyzed in simulations. In this case, model-based estimators remained to be 
the most efficient, with not much larger bias than that of calibration estimators. 

MSEs of calibration and model-based estimators are obtained under the model. Design MSEs are 
preferred by National Statistical Institutes because they do not assume that a model is correct and 
therefore account for model failures. However, finding design-unbiased estimators for the design MSE 
under cut-off sampling encounters the same problems as finding design-unbiased estimators of the target 
domain indicators .iH  We plan to use the ideas of Strzalkowska-Kominiak and Molina (2019), based on 
borrowing strength from the other domains also for estimating the design MSE in a given domain, to find 
design MSE estimators with reduced cut-off sampling bias. 

Finally, we have considered that the domains act as sampling strata and cut-off sampling is applied 
within each domain. Considering that the strata are different from the domains (typically cutting-across 
the domains) and applying cut-off sampling within each strata yields random domain sample sizes. Small 
area estimation is seldom studied under this case in the literature. Nevertheless, putting together the 
subsamples from the different strata corresponding to the same domain we get a sample from each 
domain. Inference could then be done conditionally on the observed domain sample sizes Rao (1985), 
which would reduce to the same problem considered here. 
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Appendix 
 

Estimates of total sales by provinces 
 
Table A.1 
Basic direct, GREG and EBP estimates of total sales for the selected product and estimated coefficients of 
variation (%) for each Spanish province (by increasing sample size) 
 

PROVINCE  i
n  HAˆ

i
V  GREGˆ

i
V  EBPˆ

i
V  HAˆcv( )

i
V  GREGˆcv( )

i
V  EBPˆcv( )

i
V  

SORIA   3   293,020.0   187,824.9   213,325.0   50.0   17.1   6.2  
ZAMORA   7   932,520.0   345,095.8   454,657.0   43.3   18.9   5.5  
ALAVA   11   130,083.6   119,918.5   118,835.3   23.7   14.7   9.7  
ALMERIA   13   1,870,104.6   2,407,333.1   2,272,051.4   30.4   5.8   3.4  
PALENCIA   14   626,340.0   380,367.4   409,775.4   16.7   7.6   4.1  
SALAMANCA   14   1,265,580.0   966,094.1   1,068,230.6   21.9   7.3   3.9  
AVILA   15   708,696.0   392,474.1   418,917.2   19.5   9.2   5.0  
LERIDA   17   817,817.6   1,011,032.3   1,014,770.2   22.5   7.1   4.1  
CIUDAD REAL   18   1,764,000.0   841,228.2   939,994.9   21.4   8.6   4.6  
GUADALAJARA   18   463,047.8   362,148.3   363,856.9   17.1   6.0   4.5  
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Table A.1 (continued) 
Basic direct, GREG and EBP estimates of total sales for the selected product and estimated coefficients of 
variation (%) for each Spanish province (by increasing sample size) 
 

PROVINCE  i
n  HAˆ

i
V  GREGˆ

i
V  EBPˆ

i
V  HAˆcv( )

i
V  GREGˆcv( )

i
V  EBPˆcv( )

i
V  

RIOJA   18   809,900.0   622,488.3   595,178.6   18.2   5.2   3.7  
SEGOVIA   19   610,370.5   386,734.4   402,324.0   15.7   7.5   4.2  
CACERES   20   4,391,826.0  2,081,619.7  2,286,462.0  20.4   5.6   2.7  
GUIPUZCOA   20   181,634.0   136,700.0   156,311.8   18.6   16.7   11.6  
HUESCA   22   377,954.5   372,101.3   371,246.5   24.5   7.7   5.2  
TERUEL   22   534,417.3   446,565.7   465,643.3   19.9   6.0   4.3  
CUENCA   23   588,464.3   587,005.5   586,347.5   19.0   5.8   4.2  
VALLADOLID   24   1,609,875.0  1,210,132.8  1,188,336.1  13.3   4.5   3.4  
BURGOS   28   961,645.7   708,510.0   666,698.1   18.5   4.9   3.4  
CORDOBA   28   4,457,614.3  3,367,169.5  3,312,801.5  17.9   3.4   2.4  
ORENSE   28   148,577.1   88,104.6   108,428.9   17.4   19.0   10.5  
LUGO   30   107,213.3   92,938.7   104,233.7   16.9   13.8   10.7  
ALBACETE   31   1,654,606.5  1,115,182.2  1,073,719.8  13.4   4.2   2.8  
LEON   31   1,528,254.2  1,274,531.6  1,270,341.6  14.5   4.2   3.2 
PROVINCE  i

n  DIRˆ
i

Y  GREGˆ
i

Y  EBPˆ
i

Y  DIRˆcv( )
i

Y  GREGˆcv( )
i

Y  EBPˆcv( )
i

Y  
HUELVA   32   3,031,328.1  2,838,874.0  2,816,281.3  10.5   2.6   2.0  
NAVARRA   33   1,291,343.0   956,737.9   957,660.4   13.2   4.4   3.4  
PONTEVEDRA   33   159,229.1   107,198.9   138,367.4   22.2   19.7   13.4  
VIZCAYA   34   228,618.8   183,267.3   206,304.6   13.1   13.2   9.1  
TOLEDO   35   1,619,939.4   1,529,104.8   1,539,799.3   13.1   4.2   3.2  
CADIZ   38   1,851,521.1   1,585,755.9   1,620,844.2   14.9   4.0   3.4  
BADAJOZ   39   4,571,743.6   3,439,625.5   3,457,692.5   13.5   2.7   2.2  
MALAGA   39   2,499,392.3   3,188,031.1   3,237,081.8   10.9   4.2   2.5  
TARRAGONA   41   2,872,882.0   2,690,969.7   2,656,117.8   11.6   2.6   2.2  
GRANADA   42   2,123,693.3   2,221,155.1   2,241,916.2   12.5   3.8   2.9  
JAEN   43   1,928,229.8   1,940,379.2   1,943,101.0   15.8   3.2   2.7  
ZARAGOZA   43   3,750,210.7   2,564,909.0   2,578,011.3   13.5   3.0   2.3  
GERONA   45   2,029,222.2   1,748,165.7   1,767,490.3   10.4   3.2   2.5  
MURCIA   51   6,700,070.6   7,467,465.0   7,341,434.6   8.7   2.2   1.6  
BALEARES   52   849,950.8   650,012.6   694,416.3   21.5   6.1   4.7  
CANTABRIA   52   285,632.3   204,947.7   226,163.1   10.7   9.5   6.4  
ASTURIAS   55   2,113,034.5   1,702,020.8   1,661,932.8   13.5   3.6   3.1  
CASTELLON   55   1,605,604.4   1,526,618.1   1,530,394.2   8.9   2.5   2.2  
SEVILLA   55   7,458,078.2   6,878,368.2   6,857,368.8   11.0   2.0   1.7  
CORUNA   62   340,200.0   217,028.5   206,041.8   20.2   10.9   10.2  
ALICANTE   66   8,324,589.1   8,390,895.3   8,240,996.9   9.2   1.8   1.6  
VALENCIA   113   7,671,137.7   7,209,128.2   7,153,290.2   6.3   1.7   1.4  
MADRID   123   11,483,342.8   12,892,853.8   12,892,305.0   6.2   1.7   1.5  
BARCELONA   187   22,356,500.5   24,990,558.9   24,797,372.9   4.8   1.0   0.9 
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Model-assisted sample design is minimax for model-based 
prediction 

Robert Graham Clark1 

Abstract 

Probability sampling designs are sometimes used in conjunction with model-based predictors of finite 
population quantities. These designs should minimize the anticipated variance (AV), which is the variance over 
both the superpopulation and sampling processes, of the predictor of interest. The AV-optimal design is well 
known for model-assisted estimators which attain the Godambe-Joshi lower bound for the AV of design-
unbiased estimators. However, no optimal probability designs have been found for model-based prediction, 
except under conditions such that the model-based and model-assisted estimators coincide; these cases can be 
limiting. This paper shows that the Godambe-Joshi lower bound is an upper bound for the AV of the best linear 
unbiased estimator of a population total, where the upper bound is over the space of all covariate sets. 
Therefore model-assisted optimal designs are a sensible choice for model-based prediction when there is 
uncertainty about the form of the final model, as there often would be prior to conducting the survey. 
Simulations confirm the result over a range of scenarios, including when the relationship between the target 
and auxiliary variables is nonlinear and modeled using splines. The AV is lowest relative to the bound when an 
important design variable is not associated with the target variable. 

 
Key Words: Anticipated variance; Model-based inference; Probability sampling; Sample surveys. 

 
 
1  Introduction 
 

Model-based inference about finite population totals relies on an assumed model and usually does not 
make reference to the sampling plan. Probability sampling, where every unit i  has a known probability of 
selection > 0,i  is not strictly necessary, but is often used anyway, because it “eliminates conscious and 
unconscious bias” (Valliant, Dever and Kreuter, 2013, page 310) and ensures the non-informativeness of 
sampling which is required for most model-based procedures (Chambers and Clark, 2012, page 12). 
Särndal, Swensson and Wretman (1992, page 534) note that “proponents of model-based inference 
advocate randomized selection of the sample as a safeguard against selection bias, but the randomization 
probabilities play no role in the inference”. See also Lohr (2010, page 263), Chambers and Clark (2012, 
page 92) and Scott, Brewer and Ho (1978) who suggest probability sample designs for model-based 
predictions. For a review of the model-based approach, see also Valliant, Dorman and Royall (2000). 

Model-assisted inference (e.g., Särndal et al., 1992) is an alternative approach, where estimators are 
design-unbiased (at least asymptotically), that is, unbiased over repeated probability sampling from any 
fixed population. Subject to this constraint, they minimize the anticipated variance (AV), which is the 
variance over both repeated realisations of the population from a model and repeated probability sampling. 
In models with independent errors, the lowest possible AV amongst such estimators (for any given 
probability sample design) is the Godambe-Joshi lower bound (GJLB) (Godambe and Joshi, 1965). The 
lower bound is asymptotically achieved for linear models by the well known generalized regression 
estimator. 
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Model-assisted designs are probability sample designs which are intended to minimize the AV of the 
generalized regression estimator (or, equivalently, to minimize the GJLB). These AV-optimal sample 
designs have been derived for model-assisted inference. In particular, the sample design which minimizes 
the GJLB for fixed expected sample size for models with independence has probability proportional to the 
square root of the model error variance for each unit ( )i  (e.g., Särndal et al., 1992); this will be called a 
PP  design. The PPC  design is a generalization allowing for unequal unit costs (Steel and Clark, 
2014). There are no analogous results on optimal probability sampling for model-based prediction, except 
under strong conditions, a gap that this paper partially fills. Isaki and Fuller (1982) suggested the design-
estimation strategy of using the PP  design for model-based prediction, showing that this design is 
optimal when selection probabilities and their squares are in the column space of the matrix of covariates. 
This condition comes at a price, as will be seen in the simulation in this paper. 

Optimal non-probability samples have been derived for model-based best linear unbiased predictors 
(BLUPs) under linear models. These tend to be somewhat extreme designs, where the units with the 
largest, or the largest and smallest, values of auxiliary variables are chosen (e.g., Royall, 1970). Robust 
model-based balanced designs have been developed, where one or more sample moments of auxiliary 
variables are equal to the corresponding population moments (Royall and Herson, 1973), while “over-
balanced designs” meet a different constraint on the sample moments (Scott et al., 1978). Another 
balanced design was proposed by Kott (1986). These designs are robust to families of polynomial 
alternatives to a working linear model. They are not probability designs, although probability designs have 
been proposed in order to approximately meet balancing constraints (Valliant et al., 2000, Section 3.4). 
Exactly balanced probability designs have also been proposed (Tillé, 2006). The choice of balancing or 
over-balancing strategy depends on which set of polynomial alternatives is postulated. In another non-
probability approach, Welsh and Wiens (2013) find the sample which minimizes the maximum model-
based variance in a neighbourhood of a working model. 

This article derives an asymptotic upper bound for the AV of the BLUP under probability sampling. 
The AV is the most relevant quantity for probability sample design even in the model-based framework, 
because averaging over all possible samples is appropriate in advance of sample selection. The bound is 
applicable to any probability sample design, and is over the space of possible covariate sets. This is useful 
for sample design in practice, because the precise model to be used is not decided until after data have 
been collected. For example, some design variables might not be included in the model if the sample data 
suggests that they have little relevance for the variable whose total is being estimated, but this would not 
be clear prior to surveying. Or splines might be used, with the number and placement of knots guided by the 
sample data. It turns out that the upper bound is the GJLB. This implies that model-assisted designs, such 
as PP  and PPC ,  are minimax strategies for model-based estimation. The upper bound is an equality 
when the model has a particular property, which is satisfied when the model is sufficiently rich and 
includes all design variables. 
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Other researchers have considered the relationship between the BLUP and the model-assisted 
generalized regression estimator, including conditions under which these two estimators are identical (e.g., 
Isaki and Fuller, 1982; Tam, 1988) and modifications to the BLUP so that it is equivalent to a generalized 
regression estimator at the expense of its optimality under the model (e.g., Brewer, Hanif and Tam, 1988; 
Brewer, 1999; Nedyalkova and Tillé, 2008). The results here are new because:  

• Existing results do not cater for situations where both: the surveyor wants to use the BLUP 
because it is model-optimal, and the BLUP and the generalized regression estimators are not 
equal. The case where the two estimators are equal is shown here to be, in a particular sense, the 
worst case for the BLUP.  

• An expression for the AV of the BLUP is derived and shown explicitly to be less than or equal 
to the upper bound. The result seems intuitively reasonable, given that the GJLB is attained by 
the design-consistent generalized regression estimator, whereas the BLUP is not subject to the 
constraint of design-based consistency. However, it is not at all obvious from the expression for 
the BLUP’s AV that the upper bound applies, so it is useful to have an explicit result.  

• The interpretation is made that the upper bound is over the space of possible choices for the 
model covariates .x  Thus, the upper bound is relevant when the sample designer is unsure what 
model will ultimately be adopted once data have been collected.  

 

Section 2 contains the key theoretical results. Section 3 confirms and illustrates the main result in a 
simulation study with a variable of interest Y  and two auxiliary variables: 1x  (continuous) and 2x  
(binary). The expected value of Y  conditional on these variables is defined by a linear and a sinusoidal 
term in 1.x  It does not depend on 2 .x  The probabilities of selection are a function of both 1x  and 2 .x  
BLUPs are calculated based on the model with lowest Bayesian Information Criterion (BIC) from a set 
including the simple linear model in 1x  and splines in 1x  of various degrees, both with and without 2 .x  
The ratio of the simulation prediction mean squared error (MSE) of the BLUP to the GJLB is either less 
than or equal to 1 or just above 1 across a range of scenarios. Section 4 is a discussion. 

Much of the literature comparing model-assisted and model-based estimators and inference has 
focussed on bias due to mis-specified models when either (a) the mean function is incorrect, or (b) some 
design variables are inappropriately excluded. See for example Hansen, Madow and Tepping (1983) and 
the reworking of their simulation study in Valliant et al. (2000, Section 3.4). The simulation in Section 3 
considers (a) and (b) to some extent, but this isn’t the main focus of the paper. The aim here is to see 
whether a committed model-based statistician can use the GJLB as an upper bound for the AV for sample 
design purposes, rather than to adjudicate between model-based and design-based inference. It is assumed 
that a sufficiently good model can be identified using the sample data; this process would be aided by a 
design which minimizes the maximal AV over the space of all linear models. A PP  or PPC  design is 
recommended when there is considerable uncertainty over the form of the final model. 
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2  Upper bound for the AV of the BLUP 
 

Let  = 1, ,U N  denote the finite population. For unit ,i U  the variable of interest is iy  and the 
p -vector of auxiliary variables is .ix  The sample (of size )n  is s  and the non-sample set is = .r U s−

Auxiliary variables are observed for all i U  while iy  is observed for .i s  The aim is to predict 
= .y ii U

t y
  The probabilities of selection are 1 1 1= [ , , , , , ] = [ , ,x x xi N NP i s y y P i s    

] > 0;x N  they are assumed to be a function of the population values of .ix  Let =x ii Ut x  and 
= .xr ii rt x  

The n  by p  matrix of sample values of ,x  which has rows ,T
ix  is denoted .sX  The N n−  by p  

matrix of non-sample values of x  is .rX  The vector of sample values of y  is .sy  

The following linear model M  is assumed:  

   = β xT
M i iE y  (2.1) 

   2 2var = =M i i iy v   (2.2) 

 cov , = 0M i jy y    (2.3) 

for ,i j U  with .i j  The subscripts M  in ,ME varM  and cov M  indicate distributions over repeated 
realisations of the population values from the model. It is generally assumed that iv  are known, i.e., the 
error variances are known up to a constant of proportionality. For example, in business surveys, iv  might 
be a measure of business size, or the square root thereof. The unknown parameters are β  and 2 .  The 
values of ix  are considered to be fixed. 

The best linear unbiased predictor (BLUP) (denoted ˆ )yt  for a generalization of model M  is stated in 
Chapter 2 of Valliant et al. (2000). Its model-based prediction variance is  

 ( )
1

2 2ˆvar = .t x x tT T
M y y xr i i i xr i

i s i r
t t  

−
−

 

 − + 
 
   (2.4) 

(This can be obtained as a special case of Result 2.2.2 on page 29 of Valliant et al., 2000.) 

The anticipated variance is defined as ( ) ( )2ˆ ˆAV =y y M p y yt t E E t t− −  (Isaki and Fuller, 1982). As 
ˆyt  is model-unbiased, its AV is equal to  

 ( )ˆAV = var .p M y yE t t−   

Theorem 1 will derive an approximation for this AV. The asymptotic framework is based on the design-
based asymptotics of Isaki and Fuller (1982). It is assumed that there is a countably infinite population 

= 1, 2, .i  A sequence of finite populations tU  is defined by  = 1, ,t tU N  where 1 2< < .N N  
For each ,t  a sample ts  of size tn  is selected from tU  by arbitrary probability design with probabilities 
of selection ( )  = .ti t P i s   Following (2.7) of Isaki and Fuller (1982), it is assumed that  

 ( )1 20 < < <i t    (2.5) 
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for some constants 1  and 2 .  Isaki and Fuller (1982) note that AVs of estimators of total are typically 
( )tO n  (which is equivalent to ( ))tO N  and the totals themselves are also ( ) .tO n  Population means will 

be denoted as 1=
t

t t iU
N − X x  and the inverse probability weighted estimator of X  is ˆ =X  

( )
1 1 x

t
t ii ts

N − −  (and similarly for Y  and other variables). 

Two new variables are defined for each unit i  by ( ) ( )= i t ii t u x  (a p -vector) and ( ) ( )
2= T

i i ii t i t  −v x x  
(a p  by p  matrix). Their population means are tU  and tV  with inverse probability estimators ˆ

tU  and 
ˆ .tV  

 

Theorem 1. It is assumed that 

  1 1ˆ ˆ ˆ = 0.U V U U V UT T
p t t t t t tt

lim E   
− −

→
−  (2.6) 

Then  

 ( ) ( )ˆ = .p M y y tE var t t AV o n− +  (2.7) 

where  

 ( ) ( ) ( )
1

2 2= 1 1 1 .x x x xT T
i i i i i i i i i i

U U U U
AV      

−
− − − + − 

 
     (2.8) 

 

Notes on Theorem 1  

• Assumption (2.6) is reminiscent of Result (3.24) of Isaki and Fuller (1982), but there is an 
important difference. In Isaki and Fuller (1982), unit variables depend only on ,i  but here ( )i tu  
and ( )i tv  depend on both i  and t  as they both have a factor ( ) .i t  However, ( )i t  are bounded 
by (2.5), so the condition is plausible; it would not be if ( )i t  could be arbitrarily close to zero.  

• It is clear that assumption (2.6) is satisfied if ˆ
tU  and ˆ

tV  are consistent in design probability 
for tU  and ,tV  and ˆ

tV  is invertible in a neighbourhood of .tV  As noted by Isaki and Fuller 
(1982) in a comment on their condition (3.12), a invertibility requirement of this sort seems 
reasonable “for any discussion of regression estimation”. 

 

An upper bound for the asymptotic AV over all possible choices of the auxiliary vector ix  will now be 
derived. This allows for uncertainty about which auxiliary variables will ultimately be included in the 
model, since this decision is typically only made after data is collected. For example, the full set of 
variables used in the design might or might not end up being in the model, or spline functions of 
covariates might be included with knots based on the sample data. Theorem 2 states the upper bound. 
 

Theorem 2. Let AV  be the asymptotic AV defined by (2.8). If 2 T
i i i iU

  − x x  is invertible and > 0i  
for all ,i U  then  

 ( )1 21i i
U

AV  − −  (2.9) 
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with strict equality if and only if there exists a p -vector λ  such that  

 ( )1 21 = λ xT
i i i − −  (2.10) 

for all .i U  
 

The right hand side of (2.9) is the well known Godambe-Joshi lower bound (Godambe and Joshi, 
1965) for the AV of design-unbiased estimators. Here it is an upper bound over model space for model-
based BLUPs. 

Suppose the total cost of running the survey is is
C  plus fixed costs, where iC  is the cost associated 

with surveying unit .i  Then the expected cost is = .E i iU
C C   The sample design which minimizes the 

upper bound in (2.9) subject to fixed cost is the PPC  design which has  

 i i iC   (2.11) 

(Steel and Clark, 2014 who generalize Särndal et al., 1992, page 452) to allow for unequal costs. 
Theorem 2 means that (2.11) is a minimax design when there is uncertainty about the form of the model. 
Note that only the first order inclusion probabilities affect the AV and the bound, but these do not fully 
specify the design. Samples can be selected using these inclusion probabilities in a variety of ways (Tillé, 
2006), including balanced probability sampling (Nedyalkova and Tillé, 2012) which improves the 
robustness to model mis-specification. 

The condition for equality, (2.10), is equivalent to a well known condition for the BLUP to be equal to 
the generalized regression estimator (formula 3 of Tam, 1988). Tam (1988) argued for the use of sample 
designs such that (2.10) is satisfied, such as PP  (provided that the model includes an intercept). 
Nedyalkova and Tillé (2008), building on a result from Royall (1992), showed that PP  is model-based-
optimal under equal costs when both iv  and iv  are linear functions of ,ix  a condition called 
explainable variances. Brewer et al. (1988) noted that (2.10) can also be satisfied if the estimation model 
includes an instrumental variable, which is a suitable function of the selection probabilities. However, 
there are many circumstances under which (2.10) is not satisfied, because some auxiliary variables are 
omitted from the final model, because multiple variables of interest have different variance structures 
(ruling out PP ),  because there are unequal costs, or because instrumental variables are eschewed due to 
the loss of efficiency they entail. Theorem 2 shows that the GJLB is an upper bound under these 
circumstances which are not covered by the results of these authors. The PPC  design in (2.11) is a 
minimax design in this more general setting. 

 
3  Simulation study 
 

A simulation study was conducted to compare the AV of the BLUP and its upper bound in situations 
where Y  has a nonlinear relationship with a continuous auxiliary variable 1.x  A second auxiliary 
variable, 2 ,x  is binary and independent of 1x  and .Y  Probabilities of selection depend on 1x  and 2x  in 
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various ways. For each scenario, 5,000 populations and samples were generated, with a population size of 
6,000 and sample sizes of 500 and 1,500, and with a population size of 100,000 and a sample size of 
25,000. All code is available at www.github.com/rgcstats/AVLB. 
 

3.1  Simulation of populations 
 

The population values of 1x  were the ( ) 101 : = 1, , 100j j  quantiles of a lognormal distribution 
with mean 1 32−  and standard deviation 0.25, with equal frequencies of each of these 100 values. This 
means that 1x  are positive and right-skewed with a mean of 1 and a range of 0.54 to 1.74. The values of 

1x  were non-stochastic and discretized in order to speed up computation, to simplify the generation of 
smooth models (see below), and to facilitate comparison of AVs to the GJLB by making the GJLB 
constant across simulations. A second binary variable 2x  took on the values 0 and 1 with equal frequency 
within each value of 1 ,x  so that the two covariates were orthogonal. 

Conditional on 1x  and 2 ,x  the population values of Y  were generated independently as  

 ( )1=M i i iE Y x +  (3.1) 
where  
 ( )1~ 0, 0.25 .i iN x  (3.2) 
The mean function ( ).  was a smooth but nonlinear function,  

 ( ) ( )1 1 1= 4 sin 2 ,x x x h +  (3.3) 

consisting of a linear term and a sinusoidal term with period .h  When h  is large, ( )  is close to linear 
over the range of 1x  in the population, while for h  small there are frequent cycles in the function. 
Figure 3.1 shows the mean function for the periods used in the simulation (0.5, 1, 2, 5). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1  ( )  1 1=x E Y x  for the periods used in the simulation study. 

 

E 
[ Y

  | x
1]

 
   

  0
   

   
   

   
   

   
  2

   
   

   
   

   
   

 4
   

   
   

   
   

   
  6

 

    0.0                     0.5                     1.0                     1.5 
x1 

period = 0.5 
period = 1 
period = 2 
period = 5 



84 Clark: Model-assisted sample design is minimax for model-based prediction 

 

 
Statistics Canada, Catalogue No. 12-001-X 

3.2  Simulated sampling 
 

The probabilities of selection, ,i  were set to  

 ( )1 21b
i i ix cx  +  (3.4) 

where b  was 0.5, 1 or 2, reflecting light, medium or high dependence on 1 .ix  The values of c  were 0, 0.5 
or 1.5, reflecting no, medium or high dependence on 2 .ix  (Other values of c  were also used for the 
purposes of Figure 3.2 only.) 

The second auxiliary variable, 2 ,x  is unrelated to Y  but may affect the selection probabilities. One 
might expect the BLUP to do better compared to the GJLB when probabilities of selection depend on 2 ,x  
since the BLUP may be based on a model omitting 2 ,x  potentially leading to lower variance. Of course, 
there is also the possibility of the working model omitting 1 ,x  leading to the BLUP being biased, however 
this never occurred in any of the simulations. To explore robustness to incorrect omission of 1 ,x  it would 
be of interest to consider relationships weaker than those shown in Figure 3.1, but this was beyond the 
scope of the paper. 

Inclusion probabilities are forced to obey the proportionality in (3.4) but are truncated above at 1 and 
below at 1/40 and scaled such that they add to the required sample size after truncation. Samples are 
selected by unequal probability systematic sampling with random ordering using the sampling package 
in R (Tillé and Matei, 2016). 
 

3.3  Estimation of the population total of Y  
 

A linear model in 1x  and spline models in 1x  with between 1 and 10 interior knots are fitted to each 
sample. (See for example Breidt, Claeskens and Opsomer, 2005 for the use of splines in model-assisted 
survey estimation.) Another 11 models are defined by also including 2x  as an additive covariate. The 
model with the lowest BIC is then used to calculate a BLUP of .yt  This model selection step would be 
expected to increase the variability of this predictor. The BLUP based on the simple linear model in 1x  is 
also calculated. The process is repeated with working models including the correct variance specification 

( ) 1varM i iy x  and a mis-specification ( ) 2
1var .M i iy x  

 

3.4  Simulation results 
 

Tables 3.1-3.4 show the ratios of the prediction MSEs of various BLUP estimators to the GJLB (the 
right hand side of equation 2.9) for various sample designs and choices of ( )1 .x  The prediction MSEs 
are the means over all simulations of ( )2ˆ

y yt t−  so they are with respect to both model and design, as are 
the results in Theorems 1 and 2. 

Table 3.1a evaluates the BLUP corresponding to the lowest-BIC model for a sample size of 500 with 
correctly specified variances. Nine sample designs are shown corresponding to three choices for b  
(low/medium/high dependency of the selection probabilities on 1 )x  and c  (no/some/high dependency of 
selection probabilities on 2 ).x  The period h  of the sinusoidal component of ( )1x  is also shown (see 
equation 3.3). The table shows that:  
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• The ratio is always either less than or equal to 1 or slightly above 1, consistent with Theorem 2. 
Its range is 0.815 to 1.086.  

• The ratio decreases slightly as h  increases. So, when the true ( )1ME y x  is close to linear, the 
model-based BLUP has lower MSE relative to the GJLB, while for more nonlinear models the 
ratio is closer to 1.  

• The ratio depends on b  to a degree, although the pattern depends on the other parameters.  

• The ratio decreases dramatically as c  increases, with reductions of up to 20% from = 0.c  This 
shows that the BLUP does much better relative to the GJLB when there is a covariate 2x  which 
is relevant in the design but not relevant to Y  so that it can be omitted from the estimation 
model.  

 

Table 3.1b shows results for a much larger sample size of 25,000 from a population of 100,000. These 
results were included to see whether the ratios are less than or equal to 1 for large n  as predicted by the 
theory in Section 2. A larger number of simulations were also used for this panel (15,000 rather than 
5,000). Results are only shown for = 0c  since these were the designs with the highest ratios in 
Table 3.1a. The ratios in 3.1b range from 0.984 to 1.011. The values slightly above 1 may reflect that the 
working spline model does not perfectly capture the sinusoidal functions used to generate the data. 

Table 3.2 shows the same scenarios as Table 3.1a except that the BLUP is based on a mis-specified 
variance model with 2 2

i ix   (the generating model has 2 ).i ix   The ratios of the MSE of the lowest-
BIC-model BLUP to the GJLB are on the whole slightly higher than Table 3.1 (generally by less than one 
percentage point). The ratio is still almost always less than or equal to 1, with a maximum value of 1.089. 

Table 3.3 is similar to Table 3.1a except that the sample size is 1,500 rather than 500. The ratios are 
almost always lower than in Table 3.1a. The maximum ratio is 1.030. 

Table 3.4 shows results for the BLUP based on the simple linear model containing only 1x  with mis-
specified variance. The sample size is 500. When the period is 5, so that the true model is virtually linear 
in 1 ,x  this BLUP does very well. The ratios are then always below 1.1 and can be as low as 0.790. When 
the period is 2, there is visible curvature in ( )1E y x  (as shown in Figure 3.1), but the simple BLUP still 
does well, with all ratios less than 1.2. However, for periods 0.5 and 1, the ratios are well above 1, with a 
maximum value of 3.4. This shows the substantial bias of the BLUP when the model is badly mis-
specified. 

The extent to which the selection probabilities depend on 2x  is the major factor determining the ratio 
of the MSE to the GJLB, as shown by Tables 3.1-3.3. Figure 3.2 shows this phenomenon in more detail 
for correctly specified variance. The sample size is 1,500 with PP  sampling so that 0.5

1 .i ix   Values 
of c  (0, 0.25, ..., 3) are on the x-axis and results are shown for different periods .h  The figure shows that 
the ratio is slightly above 1 for = 0c  and decreases smoothly with ,c  to about 0.6 when = 3.c  Higher 
periods h  (reflecting a smoother relationship between Y  and 1 )x  are also associated with lower ratios, 
but the differences are so small as to be almost indiscernible in Figure 3.2. 
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Table 3.1 
Ratios of MSE of BLUP based on lowest BIC spline model to Godambe-Joshi Lower Bound for sample sizes of 
500 and 25,000 with variance correctly specified. Probabilities of selection are proportional to ( )1 21 .bx cx+  
The period h  controls the smoothness of  1E Y x  
 

(a) sample size of 500  
sample design  period ( )h  

b  c   0.5   1   2   5  
0.5   0   1.086   1.064   1.052   1.057  
0.5   0.5   0.990   0.963   0.951   0.956  
0.5   1.5   0.840   0.827   0.808   0.815  
1  0   1.033   1.015   0.997   1.006  
1  0.5   1.006   0.992   0.973   0.985  
1  1.5   0.877   0.859   0.854   0.858  
2  0   1.080   1.063   1.035   1.081  
2  0.5   1.046   1.021   0.996   1.039  
2  1.5   0.870   0.853   0.839   0.856  

(b) sample size of 25,000  
0.5   0   1.011   1.011   1.011   1.010  
1  0   1.007   1.006   1.006   1.006  
2  0   0.985   0.985   0.984   0.984  

 
Table 3.2 
Ratios of MSE of BLUP based on lowest BIC model to Godambe-Joshi Lower Bound for sample size of 500 
with variance mis-specified. Probabilities of selection are proportional to ( )1 21 .bx cx+  The period h  controls 
the smoothness of  1E Y x  
 

sample design  period ( )h  
b  c   0.5   1   2   5  

0.5   0   1.089   1.068   1.055   1.061  
0.5   0.5   0.996   0.967   0.959   0.962  
0.5   1.5   0.852   0.830   0.819   0.825  
1  0   1.033   1.012   0.998   1.001  
1  0.5   1.006   0.992   0.978   0.988  
1  1.5   0.886   0.863   0.854   0.862  
2  0   1.078   1.061   1.035   1.047  
2  0.5   1.048   1.017   0.997   1.010  
2  1.5   0.878   0.857   0.842   0.856  

 
Table 3.3 
Ratios of MSE of BLUP based on lowest BIC model to Godambe-Joshi Lower Bound for sample size of 1,500 
with variance correctly specified. Probabilities of selection are proportional to ( )1 21 .bx cx+  The period h  
controls the smoothness of  1E Y x  
 

sample design  period ( )h  
b  c   0.5   1   2   5  

0.5   0   1.030   1.023   1.019   1.022  
0.5   0.5   0.928   0.920   0.918   0.922  
0.5   1.5   0.762   0.754   0.750   0.749  
1  0   0.940   0.936   0.930   0.932  
1  0.5   0.979   0.972   0.966   0.968  
1  1.5   0.821   0.817   0.810   0.809  
2  0   1.028   1.008   0.995   1.020  
2  0.5   0.962   0.948   0.941   0.969  
2  1.5   0.798   0.798   0.786   0.804  
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Table 3.4 
Ratios of MSE of BLUP based on simple linear model to Godambe-Joshi Lower Bound for sample size of 500 
with variance mis-specified. Probabilities of selection are proportional to ( )1 21 .bx cx+  The period h  controls 
the smoothness of  1E Y x  
 

sample design  period ( )h  
b  c   0.5   1   2   5  

0.5   0   3.083   2.037   1.109   1.055  
0.5   0.5   2.918   1.860   1.002   0.958  
0.5   1.5   2.452   1.533   0.840   0.790  
1  0   3.086   1.812   1.052   1.007  
1  0.5   3.006   1.792   1.016   0.979  
1  1.5   2.537   1.500   0.880   0.838  
2  0   3.423   2.900   1.174   1.080  
2  0.5   3.243   2.693   1.111   1.025  
2  1.5   2.689   2.291   0.926   0.829  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.2 Ratios of MSE of BLUP based on lowest BIC model to Godambe-Joshi Lower Bound for sample 

size of 1,500 with variance correctly specified, vs ,c  where probabilities of selection are 
proportional to ( )1 21bx cx+  with = 1.b  The period ( )h  controls the smoothness of  1 .E Y x  

 
4  Discussion 
 

The Godambe-Joshi lower bound is shown here to be an upper bound for the AVs of BLUPs based on 
a correct model. Simulation MSEs of BLUPs based on an adaptively chosen spline or linear model are 
consistently less than the GJLB or just above it, even when variances are mis-specified. The MSEs are 
well below the bound if an important design variable does not figure in the model. 

The upper bound result relies on the BLUP being model-unbiased. BLUPs based on a badly mis-
specified model had MSEs well above the bound in the simulation study. Choosing a working model with 
minimum BIC out of a class including spline models avoided this problem. 
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Once data are available, model-based inference conditions on the sample selected. Probability 
sampling nevertheless has many advantages even though it is not the basis of inference (e.g., Särndal 
et al., 1992; Valliant et al., 2013). At the design stage, the AV is then the most relevant objective, because 
it averages over all the possible samples which may then be selected. The upper bound derived here is 
relevant at the design stage because there would usually be considerable uncertainty about the form of the 
model which will ultimately be adopted (there may be exceptions when there are historical or related data 
to support specification of a model or where one is willing to trust that the true model lies in a class of 
polynomial or other specific alternative models). 

A sensible strategy in practice would be: 

i. Set i  so as to give low values for the upper bound ( )1 1i ii U
v −


−  where the model 

variances are proportional to iv  (or a weighted combination of the upper bounds for multiple 
variables of interest) while also respecting cost and practical considerations. If there is a single 
variable of interest, and unit costs are proportional to ,iC  then i i iv C   is recommended 
as it is a minimax strategy.  

ii. Once the sample is selected and data are available, choose a regression model based on this 
data.  

iii. Estimate population totals using the BLUPs under the selected model.  

iv. This may or may not result in condition (2.10) being satisfied, depending on the costs iC  and 
the auxiliary variables selected in the final model.  

 

All optimal sample design results, whether model-based, design-based or model-assisted, rely on 
knowledge of the relative unit or stratum residual variances. This appears to be unavoidable. This paper 
helps when the form of the mean model is not known in advance by giving an upper bound over the space 
of models for the mean. There does not appear to be a correspondingly useful bound over possible 
variance models, so the form of the variance model must be guessed or assumed. 
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Appendix 
 

Proof of Theorem 1 
 

From (2.4),  

 ( ) ( )
1

2 2ˆvar = 1 .t x x tT T
p M y y p xr i i i xr i i

i s i U
E t t E   

−
−

 

  − + −  
  
   (A.1) 
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Making use of the definitions of ˆ
U  and ˆ ,V  and assumption (2.6), the first term of (A.1) becomes  
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(A.2)

 

The result follows immediately from (A.1) and (A.2). 

Lemma 1: Let 1 , , na a  and 1 , , nb b  be scalars where > 0ib  for all .i  Let 1 , , nx x  be p -vectors. 
Then  

 
1

2

=1 =1 =1 =1
x x x x

TN N N N
T

i i i i i i i i i
i i i i

a b a a b
−

     
     

     
     (A.3) 

provided the matrix inverse exists. Equality in (A.3) obtains if and only if  

 1 = λ xT
i i ia b−  (A.4) 

for all = 1, ,i n  for some p -vector .λ  

 
Proof of Lemma 1 
 

Let 
=1

= .n
ii

b b  Let X  be a discrete random variable taking on the values .i ia b  Let Y  be a 
discrete random variable taking on the values ,ix  for = 1, , .i n  Let  = , = =i i i iP Y X a b b bx  
for = 1, , .i n  Write 1 2M M  if 1 2M M−  is negative semi-definite for any matrices 1M  and 2 .M  
Theorem 1 of Tripathi (1999) states that for any random vectors X  and ,Y  

         
1XY YY YX XXT T T TE E E E−

  (A.5) 

provided the matrix inverse exists. With my definition of X  and ,Y  (A.5) becomes  

  
1

1 1 1 1 1 1 2 2

=1 =1 =1 =1
x x x x

N N N N
T T

i i i i i i i i i i i i i i
i i i i

b b a b b b b b a b b b a b
−

− − − − − − −     (A.6) 

which leads directly to (A.3).Tripathi (1999) states that the equality is sharp if  

 1 2 = 0X λ Y λT T+  (A.7) 

with probability 1 for some 1  of the same dimension as X  and 2  of the same dimension as .Y  Here, 
(A.7) becomes  
 1

1 2= T
i i ia b − x λ   

for all ,i  which is equivalent to (A.4). 
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Proof of Theorem 2 
 

Let = 1i ia −  and 2= .i i ib   −  From Lemma 1,  
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with strict equality if and only if  

 ( )1 1 2= = 1λ xT
i i i i ia b  − − −   

for some vector .λ  
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Considering interviewer and design effects when planning 
sample sizes 

Stefan Zins and Jan Pablo Burgard1 

Abstract 

Selecting the right sample size is central to ensure the quality of a survey. The state of the art is to account for 
complex sampling designs by calculating effective sample sizes. These effective sample sizes are determined 
using the design effect of central variables of interest. However, in face-to-face surveys empirical estimates of 
design effects are often suspected to be conflated with the impact of the interviewers. This typically leads to an 
over-estimation of design effects and consequently risks misallocating resources towards a higher sample size 
instead of using more interviewers or improving measurement accuracy. Therefore, we propose a corrected 
design effect that separates the interviewer effect from the effects of the sampling design on the sampling 
variance. The ability to estimate the corrected design effect is tested using a simulation study. In this respect, 
we address disentangling cluster and interviewer variance. Corrected design effects are estimated for data from 
the European Social Survey (ESS) round 6 and compared with conventional design effect estimates. 
Furthermore, we show that for some countries in the ESS round 6 the estimates of conventional design effect 
are indeed strongly inflated by interviewer effects. 

 
Key Words: Design effect; Interviewer effect; Multilevel model; Sample size; European Social Survey (ESS). 

 
 
1  Introduction 
 

Determining the sample size of a survey can be very demanding. The complexity of the task is often 
exacerbated by a lack of information and data on which to plan the survey. That is why survey planners 
seek to reduce the complexity of the problem using simplifications and statistical models. One such 
approach is to use the so-called design effect to select a sample size. The design effect is then defined as 
the ratio between the variance of an estimator under the sampling design of the planned survey and the 
variance of the same estimator under a simple random sample design. As such, the design effect is a 
property of an estimation strategy, i.e., a sampling design and an estimator (Chaudhuri and Stenger, 2005, 
page 4), not of the survey. The weighted sample mean of a single variable is usually used as a reference 
estimator. However, for reasons of simplification, if we speak in the following of the design effect of a 
sampling design, then we do this always with respect to the sampling variance of a weighted sample mean. 

To plan the sample size, an effective sample size target can be set, meaning that the planned sample 
size divided by the planned design effect should be above a certain value. The effective sample size of a 
sampling design is the simple random sample equivalent of its sample size, in terms of efficiency, i.e., if a 
sampling design has an effective sample size of 1,000, then its sampling variance is equal to that of a 
simple random sample of size 1,000.  

Ideally, a survey planner designs a survey with a specific analysis or hypotheses test in mind and 
formulates their opinion about tolerable sampling error levels or type II error probabilities. These opinions 
should be based on two things. First, some level of experience with the substantial research question, and 
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second, on assumptions over target population parameters necessary for sampling error planning and 
power calculations. Assumptions about target population parameters can stem from previous rounds of a 
survey, or be based on data collected during the field test for the survey. Power calculations and sampling 
error planning are much less complex and require less information about the target population if done 
under the assumption of a simple random sampling design. That is why most methods addressing sample 
size planning found in textbooks are suited for determining an effective sample size. The effect of 
complex sampling is then factored in by multiplying the planned effective sample size with a planned 
design effect. Determining a design effect can thus be separated from selecting an effective sample size. 
For example, if a simple random sample of size 1,000 ensures the following: The sampling error of an 
estimator does not exceed a given value with a probability of 95%, or that the power of a statistical test is 
80%, that is, the probability of rejecting a null hypothesis in case the alternative is true should be 80% 
(Ellis, 2010, Chapter 3). Then multiplying 1,000 by the assumed design effect of the a study will give the 
survey planner the required net sample size to achieve set precision targets. 

The decision on an effective sample size also has to reflect a certain trade-off between the cost of the 
survey and the precision of survey estimates. Regarding this trade-off, the survey planner should, for 
example, consider what the consequences are if a type II error is committed, i.e., if a null hypothesis is not 
rejected even though the alternative hypothesis is true. 

For surveys that are primarily intended for secondary analysis, i.e., they provide data to the research 
community with no single application in mind, like the European Social Survey (ESS) or the European 
Value Study (EVS), the decision on an effective sample size cannot be planned for a single research 
question or hypothesis test. For that reason, the ESS uses an average effective sample size. This means 
that ESS sample designs are planned such that the average design effect for a set of items from the ESS 
core questionnaire should have a certain value. The planned average design effect is multiplied by the 
required average effective sample size to calculate the planned net sample size. The net sample size is the 
sample size after unit-nonresponse, i.e., the number of completed interviews. To plan the gross sample 
size – that is, the sample size before unit-nonresponse – the net sample size is divided by the product of 
the assumed response rate and eligibility rate. The eligibility rate is the fraction of sampled persons that 
belong to the target population, which can be lower than 100% because of sampling frame imperfections. 

However, design effects can still be difficult to quantify, given the complexity of the sampling design. 
Hence, to reduce complexity, statistical models for survey data are used to approximate the design effect. 
Such models commonly try to incorporate the effect of cluster sampling, which can have a large effect on 
the sampling variance of estimates. Clusters can be spatial areas like settlements, organizational units like 
municipalities, or institutions such as hospitals and schools. They are either used as so-called Primary 
Sampling Units (PSUs), which are selected first and then an additional sampling takes place within them, 
or they are surveyed in their entirety. For example, the German ESS round 6 (ESS6) sampling design has 
two sampling stages. The PSUs are municipalities, and the secondary sampling units are persons 
registered within the municipalities. Variables of interest can often not be considered as identically 
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distributed over all clusters in the population. In fact, it can be assumed that respondents within the same 
cluster are usually more similar to one another than those belonging to a different cluster. Kish (1965), 
page 162, gives the following formula for a design effect due to clustering: 

 ( )deff 1 1 .b = + −  (1.1) 

This design effect deff consists of two parameters, b  is typically an average cluster size in terms of 
realized respondents, and ,  the intra-cluster correlation coefficient, which is a measure for the 
homogeneity of the measurements of a variable within the same cluster.   can be defined using variance 
decomposition as the between-cluster variance divided by the sum of the within-cluster and between-
cluster variances. The higher the variance between the clusters the higher   will be. 

To use deff when selecting a sample size, assumptions have to be made about the unknown parameter 
.  The cluster size b  does not depend on the measured variable and can be influenced by the survey 

planner. For ,  data from previous surveys can be used to formulate the necessary assumption. Especially 
for repeated cross-sectional surveys, their accumulated data is of great help in planning the sampling 
design for the next implementation of the survey. 

Lynn, Häder, Gabler and Laaksonen (2007) describe how predicted design effects are used by the ESS 
to plan sample sizes that achieve a certain average effective sample size under a given sampling design. 
For recent rounds of the ESS, the prediction of the design effect and its components was informed by 
estimates of these statistics based on data from the preceding ESS rounds (The ESS Sampling Expert 
Panel, 2016). 

An important factor that can also introduce homogeneity to measurements in face-to-face surveys is 
the interviewer. Embedded in the Total Survey Error (TSE) framework (Groves, 2009), different 
mechanisms have been described for how an interviewer can influence survey measurements. Similar to 
cluster sampling, interviewers have long been identified as a source of dependent measurements (Kish, 
1965, page 522, Kish, 1962),with interviewers introducing homogeneity through measurement errors and 
selection effects, rather than the homogeneity of clusters that is intrinsic to the population. West and Blom 
(2017) give an overview of the research on interviewer effects. They detail how interviewer tasks like 
generating and/or applying sampling frames, making contact, and gaining cooperation and consent can 
have a selection effect on the recruitment of respondents. West and Blom (2017) also outline evidence that 
interviewers conducting measurements, making observations and finally recording the gathered 
information can introduce measurement and processing errors into the data that is used for analysis. For an 
overview of other sources of variance in surveys, we refer to the TSE framework as described, e.g., by 
Groves and Lyberg (2010) and Biemer (2010). 

Analysis of interviewer effects using ESS data from different countries and years showed that this 
effect can be considerable (Beullens and Loosveldt, 2016). Such findings raise a question: To what extent 
  in equation (1.1) is driven by intra-cluster correlation, rather than intra-interviewer correlation? Schnell 
and Kreuter (2005) show that the interviewer effect can be higher than the cluster effect, even for 
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variables where a strong spatial correlation can be assumed. Consequently, the estimated design effect for 
face-to-face surveys is typically conflated with the interviewer effect. Hence, the design effect is 
systematically over-estimated in face-to-face surveys. This might pose a problem to surveys that predict 
design effects using historical data to plan sample sizes, as there is a risk of misallocating funds. A survey 
planner could try to offset an increase in the predicted design effect by increasing the sample size to hold 
the effective sample size constant. If the driving factor inflating the predicted design effect is the 
interviewer effect, funds could be more effectively allocated by hiring additional interviewers and/or 
training them better to improve measurement accuracy and reduce selection effects. 

The novel part of the presented approach is that the proposed method allows for estimating a corrected 
design effect that is not conflated with the interviewer effects. With the proposed corrected design effect, 
the survey planner is able to make evidence-based decisions on changes in the sampling design, such as 
sample size and number of PSUs, and/or about the deployment of interviewers. 

The article is structured as follows: Section 2 introduces the framework for describing the effects of the 
sampling design and the interviewer. The framework follows the model based justification of the design 
effect as outlined by Gabler, Häder and Lahiri (1999) and the introduction of an interviewer effect to this 
framework by Gabler and Lahiri (2009). The measurement models used to describe the observed data 
follow a multilevel structure. The influence of multi-stage or cluster sampling, and that of interviewers on 
the observed data, is modeled with the help of random effects that imply a certain variance-covariance 
structure. This approach allows for a factorization of the overall effect into separate sampling and 
interviewer effects. This separation is essential when addressing effects separately in order to control for 
them. 

In Section 3, the sampling and interviewer effects described in Section 2 are estimated for ESS6 data 
with the help of multilevel models. First, we present the results from a simulation study conducted to 
assess the possibility of disentangling cluster and interviewer variances for the observed PSU-interviewer 
structure in the ESS6 data. Afterwards, we evaluate the applicability of the different measurement models 
for a selected set of ESS variables. The selected models are used to estimate the variances of different 
random effects in multilevel models, which are in turn used for estimating the intra-PSU and intra-
interviewer correlation. 

In Section 4, we present our conclusions and give recommendations for survey planners based on both 
our theoretical work in Section 2 and the empirical findings in Section 3. We then point to possible future 
research to adapt our relatively simplistic measurements models to better reflect complex sampling 
designs and the heterogeneity of interviewers. 

 
2  Interviewer and design effects 
 

We define a sample as a set of n  distinct respondents, which we denote as  1, , ,s n=   with 
.n N  For the thk  respondent our variable of interest y  is a real valued variable, where ky  is the 
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observation of this variable for the thk  respondent in our sample .s  The observed data is given by 
( )1, ., ny y= y T  We associate survey weights with every respondent in the sample, given by 
( )1, ,, nw w= w T  where kw  is the weight of the thk  respondent and 0,kw   for all .k s  

We consider the weighted sample mean of y  as our estimator, given by 

 ( ) ,k kk s

n kk s

w y
y

w




= = 


w y
w

w I

T

T
 (2.1) 

where nI  is a column vector of ones of length .n  We focus on one estimator of interest, ( ) ,y w  as it is 
the most common choice for describing interviewer and design effects (Kish, 1965, Section 8.1, Kish, 
1962; Särndal, Swensson and Wretman, 1992, page 53). This choice enables us to use an established 
framework (Gabler et al., 1999) and produce formulas that are recognizable to readers that are already 
somewhat familiar with the topic. However, design effects of other estimators have been studied, notably, 
Lohr (2014), derives design effects for estimators of regression coefficients and Fischer, West, Elliott and 
Kreuter (2018), describe the impact of interviewer effects on the estimation of regression coefficients. 

In the following, the variance of ( )y w  is derived under different measurement models for .y  The 
different models serve to distinguish between complex and simple sampling designs, as well as when there 
is and is not an interviewer effect. It should be noted that the model based variance of estimator ( ) ,y w  
which we use, is, in general, not the same as its design based variances, i.e., the variance of ( )y w  under a 
given sampling design (Särndal et al., 1992, page 492). Design based variances can be very complex and 
thus difficult to display in an accessible fashion, especially for multi-stage sampling. The model based 
approach reduces complexity while retaining the essential property of the complex sampling designs that 
we study, the cluster effect of multi-stage sampling. It also makes it possible to easily integrate cluster and 
interviewer effect into a common framework. 

 
2.1  Simple random sampling without an interviewer effect 
 

To model simple random sampling in the absence of an interviewer effect, i.e., without intra-PSU and 
intra-interviewer correlation, we assume the following measurement model ( )0M  

 ,k k ky = + e  (M0) 

where k  is the value of y  for the thk  respondent and ke  is the measurement error. The measurement 
errors ke  for all k s  are independent and identically distributed (iid) random variables with a variance-
covariance structure of 

 ( )
0

2 , if 
Cov , ,

0, else 
M k l

k l
e e

 == 


 (2.2) 
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where   is a real value parameter greater than zero. Under model ( )0 ,M  the variance of ( )ny I  is given 
by ( )( )

0

2 .nMV y n=I  This variance can be interpreted as the variance of the unweighted sample mean 
under simple random sampling with replacement (Särndal et al., 1992, page 73). Simple random sampling 
with estimator ( )ny I  typically serves as a reference estimation strategy, which is compared with more 
complex sampling designs and estimators. 
 

2.2  Simple random sampling with an interviewer effect 
 

Next, we introduce interviewer variance into our measurement model for .y  Each respondent is 
interviewed by one and only one interviewer. There are 0 ,R  N  interviewers that conduct the 
interviews of all n  respondents. We denote is s  as the set of all respondents that are interviewed by 
the thi  interviewer and  1, , R= R  as the set of all interviewers. The workload of the thi  interviewer 
is given by ,in ( )1, ,I Rn n= n T  is the vector of interviewer workloads and 

1
.R

ii
n n

=
=  Under 

measurement model ( )1 ,M  which follows the explanations of Särndal et al. (1992), page 623, the 
observed values of y  for ik s  are described as  

 ,ik k i iky = + + eI  (M1) 

with iI  being the interviewer effect associated with all measurements conducted for respondents .ik s  

ike  represents the random error due to sources other than the interviewer. All ike  for i R  and k s  
are iid random variables with zero mean and variance 2 .e 1 , , RI I  are iid random variables with zero 
mean and variance 2 ,I  which we call interviewer variance, and they are independent of ike  for all 
i R  and .k s  Särndal et al. (1992) interprets model ( )1M  as a random assignment of interviewers to 
a pre-defined partition of the sample s  into R  disjoint subsets ,is 1, , .i R=   These subsets could 
correspond to different geographical areas where the survey is conducted and the interviewers are then 
randomly allocated to them. In practice, in many surveys fieldwork agencies assign interviewers to 
geographical areas based on experience and proximity. As this process is not necessarily observable by the 
researcher estimating the design effect, we assume a random allocation of interviewers to the PSUs. This 
can be seen as the recruitment of interviewers from an infinite, or very large, pool of possible 
interviewers. 

If we define the random part in iky  as ,ik i ik = + eI  then the variance-covariance structure of iky  
under model ( )1M  is given by 

 ( )
1

2

2

, if ,

Cov , , if , ,

0, else 
ik jlM I

i j k l

i j k l



   

= =


= = 



 (2.3) 

where 2 2 2
I e  + =  and 

2

2
I

I



 =  is the correlation between two different observations of y  made by 

the same interviewer. To derive the variance of ( )y w  under model ( )1 ,M  we first determine the variance 
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of ,
i

ik iki k s
w y

  R
 where ikw  and iky  are the survey weight and the observation for respondent 

,ik s  respectively. Thus we have 
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from which follows 
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 (2.4) 

 
2.3  Multi-stage sampling with an interviewer effect 
 

We consider a two-stage sampling design, where first PSUs are selected, and at the second stage 
respondents are selected from within the sampled PSUs. PSUs are the clustering units and we will treat the 
terms cluster and PSU as interchangeable. The sample of PSUs is denoted  1, , ,K= K  with 1.K   
Each respondent belongs to one PSU and one PSU only. Let qs s  be the set of all respondents 
belonging to the thq  PSU, qn  be the number of respondents observed within the thq  PSU, 

( )1, ,C Kn n= n T  the vector of cluster sizes, and .qq
n n


= K

 Again, each respondent is interviewed 
by one interviewer and one interviewer only. Interviewers can work across PSUs and PSUs can be visited 
by multiple interviewers. Although interviewers might concentrate their work in a particular region, these 
regions are usually composed of multiple PSUs and interviewers do not work exclusively in one PSU 
only. This situation is frequently found in face-to-face surveys across Europe, e.g., in the ESS or EVS. 
Table 3.1 in Section 3.1 gives an overview on the level of interpenetration between PSUs and interviewer 
for countries that use a multi-stage sampling design in ESS6. Interpenetration between PSUs and 
interviewer can be observed across all ESS rounds for countries that use multi-stage sampling design. 

We now introduce measurement model ( )2 ,M  which incorporates both cluster and interviewer 
variance into the observed values of .y  For qi q ik s s s =   we model observations of y  as  

 ,qik k q i qiky = + + + eC I  (M2) 

with qC  defined as a random variable with mean zero and variance 2 ,C  which we call PSU variance, 
common to all respondents in PSU .q 1 , , KC C  are iid random variables and are independent of qike  
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and iI  for all ,i R ,q K  and .qik s qC  introduces a certain degree of similarity between 
respondents from the same PSU. It allows for a permanent random effect of the PSU on the measurement 
of ,y  for the thk  respondent, causing it to deviate from k  (Chambers and Skinner, 2003, page 201). 

To establish the effect of sampling and interviewers on ( ) ,y w  we define the random part of qiky  as 
,qik q i qik = + + eC I  which has the following variance-covariance structure 

 ( )
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2

2
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 
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  

= = =


=  
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 (2.5) 

where 2 2 2 2
C I e   + + =  and 

2

2
C

C



 =  is the correlation between observation from the same PSU. 

The variance-covariance structure of qik  implies that the measurements of y  are correlated if they are 
made within the same PSU or the same interviewer. Further, measurements of y  are more homogeneous 
if they are made by the same interviewer within the same PSU. Model ( )2M  represents a generalization 
of model 4M  of Gabler and Lahiri (2009), by removing the restriction that no interviewer works in more 
than one PSU. 

The variance of ( )y w  under model ( )2M  is given by 
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(2.6)

 

where qikw  and qiky  are the survey weight and the observation for respondent ,qik s  respectively, and 

 ( )
( )
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( )2 2

2 2
and .qi qi

qi qi

qik qiki q k s q i k s
I C

qik qikq i k s q i k s

w w
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= =
     

     
w wR K K R

K R K R

  

We can alter model ( )2M  to allow for a PSU interviewer interaction effect, meaning that the 
covariance between the observations made by the same interviewer within the same PSU is not equal to 
the sum of the intra-PSU and intra-interviewer covariance. We call this measurement model ( )2*M  and 
for qik s  the observation of y  is modeled as  

 ,qik k q i qi qiky = + + + + eC I D  (M2*) 

with qiD  as a random variable with mean zero and variance 2
IC  common to all respondents in PSU q  

that were interviewed by interviewer .i  All qiD  for q K  and i R  are iid random variables and are 
independent of ,qike ,iI qC  for all ,q K ,i R  and .qik s  Random effect qiD  introduces some 
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additional correlation between observations made by the same interviewer within the same PSU, which 
cannot be explained by the separate PSU and interviewer variances. 

For k l  and qik q i qi qik = + + + eC I D  we have under model ( )2*M  ( )
2*

Cov ,M qik qil  =  
( ) 2.I C IC   + +  Thus, we can write the variance of ( )y w  under model ( )2*M  as 
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where 
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2.4  Survey effect 
 

After we establish the variance of ( )y w  under the different measurement models, we can define the 
effect associated with complex sampling and interviewers. We will refer to this effect as the survey effect, 
which we define as 

 ( )
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( )( )

Var
eff ,
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M
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M

y
y

=
w

w
w

 (2.8) 

where aM  is the measurement model assumed for our survey of interest and bM  is the reference model. 
We use the term survey effect to distinguish ( )eff ab w  from design and interviewer effect, as ( )eff ab w  
incorporates both effects. Other sources of variance, as described in the TSE framework, are not 
considered. Consequently, we will use the term survey design for the combination of a sampling design 
and interviewer workplan. 

The survey effect associated with measurement model ( )2 ,M  is given by 

 
( )

( )
( )

( ) ( )  ( ) ( )

2

0

20

Var
eff

Var

eff 1 1  1 ,

M w

M

w I I C C

y
y

m m 

=

= + − + −

w

w w w

 

(2.9)

 

where 
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Factor ( )eff w w  does not depend on the measurement model and can be interpreted as a measure for 
the variance of the weights .w  If we write the variance of the weights as 2 2 21 ,kk s

n w w


= −w  with 
1 ,kk s

w n w


=   this relationship becomes more clear, as ( ) 2eff CV 1,w = +ww  with CV w=w w  as 
the coefficient of variation of the survey weights. If the weights are all equal, then CV 0=w  and 

( )eff w w  becomes 1. Terms ( )Im w  and ( )Cm w  can be seen as measures for the average workload of 
the interviewers and the PSU size, respectively. If all weights are equal, ( )Im w  has the value 

( ) 2 .I n ii
m n n


=  R

I  Furthermore, if all interviewers have the exact same workload, i.e., in n R=  for 
1, , ,i R=   we have ( ) .I nm n R=I ( )Cm w  has similar properties.  

Following Gabler et al. (1999) and Gabler and Lahiri (2009) we can give the following upper bound 
for the survey effect. 
 

Result 1. 

 ( ) ( ) ( )2
* *
20 0eff eff eff ,w nw w I   

where 20
*eff  is the survey effect under the condition that in n R=  for all i R  and qn n K=  for all 

.q K  The upper bound of ( )20
*eff ,w  given in Result 1, follows from ( )Im n Rw  if in n R=  for 

all i R  (Gabler et al., 1999). The proof is given in the Appendix. For ( )Cm w  an analogous result 
holds. It should be noted that, in general, we do not have 

 ( ) ( )
22

20 20eff eff 1 1 1 .qi
n I C

i q

nn
n n

 
 

  
 = + − + −  

   
 w
R K

I  (2.10) 

That is, we cannot say that the survey effect is greater or equal to the survey effect of an equally 
weighted design. If the weights have the same relative frequency distribution across all sets qis  inequality 
(2.10) holds (Gabler and Lahiri, 2009), i.e., if we have 

 , 1, , ,qi
qig g

n
n n g G

n
= =   (2.11) 

where G  is the number of unique values in ,w gn  the frequency of the thg  weighting value, and qign  the 
frequency of the thg  weighting value for respondents interviewed by the thi  interviewer in the thq  PSU. 

We can, however, give a lower bound to ( )20eff .w  Using the same argument that Gabler and Lahiri 
(2009) give in the proof of their Result 6, we get 

 ( )20eff 1 1 1 .I C

n n
R K

 
    

 + − + −    
    

w  (2.12) 

With the right-hand side of inequality (2.12) an easy to calculate minimum of ( )20eff w  is given, 
which does not depend on the weights, the distribution of interviewer workloads, or the PSU sizes. This 
gives some valuable guidance at the planning stage of a survey design, as the planned survey effect of the 
survey should be at least as high as ( )0

*
2eff .nI  The practical utility of the upper bound in Result 1 is 

somewhat limited by strong assumptions about In  and .Cn  The further the values of In  and Cn  deviate 
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from the one point distribution of interviewer workloads and PSU sizes, the less this bound should serve 
as a guide. To give survey planners a less complex statistic to plan the value of ( ) ,Im w  Lynn and Gabler 
(2004) proposed using 

 ( )  ,I
I

H
m

H
 = n

w

w  (2.13) 

as a predictor for ( ) ,Im w  where ( )2
I ii

H n n


=n R
 is the Herfindahl index for the interviewer 

workload, a concentration measure, with 1 1
I

R H n  (Fahrmeir, Heumann, Künstler, Pigeot and Tutz, 
1997, page 83). 1

I
H =n  corresponds to 1R =  and 1

I
H R=n  corresponds to in n R=  for all .i R  

( )2
k kk s k s

H w w
 

=  w  is the Herfindahl index for the weights. If equation (2.11) holds, we have 
( ) ( ) ,I Im m=w w  but for most surveys this will not apply. For that reason, Lynn and Gabler (2004) 

suggested looking at ( )Cov , ,qik iw n  the covariance between the weights and interviewer workloads. The 
closer ( )Cov ,qik iw n  is to zero the smaller the distance between ( )Im w  and ( ) .Im w  Planning a survey 
with assumed values for 

I
H n  and H w  should be easier than with exact values of In  and .w  Finding 

reasonable values for 
I

H n  and H w  could be guided by comparing these values from surveys with similar 
survey designs. Under equation (2.11) the findings are analogous for ( ) .Cm w  

It should be noted that we can also write ( )eff w w  as 

 ( )eff .w H n= ww  (2.14) 

The expression of ( )eff w w  in equation (2.14) might also be useful at the planning stage of a survey, 
showing that it is possible to plan with a certain weight concentration, instead of specific values for .w  

Giving a general close upper bound for ( )20eff w  is difficult if there are no restrictions on the values 
of ,In Cn  and .w  However, survey weights are usually scaled to either the sample or the population size 
and it is not uncommon for them to be bounded. For example, the ESS provides weights to its users that 
are greater than zero and smaller or equal to 4 and scales them to the sample size (ESS, 2014c, 2014b). If 

ka w b   for all k s  with b    and 0,a   then with a given value for In  (or )Cn  upper limits of 
( ) ,Im w  (or ( ))Cm w  can be found, by solving a linear optimization problem. An upper limit for 
( )eff w w  can be deduced for given values of a  and ,b  as shown in equation (A.5) in the Appendix. 

The obtained upper bound of ( )20eff w  will correspond to weight distributions with a very high 
concentration, i.e., a maximal number of the highest possible weights. However, adjusting the constraints 
of the linear optimization problem, based on the weight distribution of surveys with comparable sampling 
designs, can help to find bounds that are of higher practical relevance. (See Appendix for the formulation 
of this linear program.) 
 

2.5  Corrected design effect 
 

Now that we have established the survey effect of a survey design, we propose a new type of survey 
effect that we call corrected design effect. This statistic aims at quantifying the marginal effect of a 
complex survey design if an interviewer effect is present. We do this by defining the following effect 
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where 

 ( )2
eff .I

I ii

n
n n n



=
+ − R

  

The reference model ( )1M  in ( )21eff w  models a simple random sample with an interviewer effect. 
Factor eff ,I  indicates how close the corrected design effect to the survey effect is. For eff 1I =  the 
corrected design and survey effect are equal and the closer eff I  is to zero the further apart are both 
effects. Hence, we can use eff I  to construct a measure for the contribution of the interviewer effect to the 
survey effect 20eff .  For this, we first establish the following bounds for eff I  given in Result 2. 
 

Result 2. 

 
( ) ( ) ( )

1
eff 1.

1 I
I I

n R
n n R n R n R n R 

   
− − + + + −

  

The proof for Result 2 can be found in the Appendix. 

Now we define a measure of the contribution of the interviewer effect to the survey effect inv I  as 

 
 
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1
inv , 1 0, 1 ,

1 1
inv : for 1 .

1

:I

I

n

n a
a a

n n

 
 
 
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 (2.16) 

For any given value of interviewer workloads ,In  measure ( )inv effI I  is strictly increasing with 
decreasing eff .I  The maximum of ( )inv effI I  occurs at 1R =  and 1,I =  which occurs when there is 
only one interviewer that always produces the same measurement. The minimum of ( )inv effI I  occurs at 

0I =  for any given value of .In  If the concentration of the distribution of the workload over the 
interviewers increases and I  stays fixed, ( )inv effI I  also increases. This relation becomes clearer if we 
write 

 ( )
1

eff .
1 1

I

I
I H n

=
+ −n

 (2.17) 

Alternatively, the coefficient of variation for the interviewer workloads CV ,
I I

R n=n n  with 
( )22 21 ,

I ii
R n n R


= −n R

 could also be used to describe eff ,I  since ( )21 CV
I I

H R= +n n  (Lynn 
and Gabler, 2004). Note that for 2 0

I
 =n  we have ( )( )eff .I IR R n R = + −  
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Using Results 1 and 2, as well as inequality (2.12), we can give the following bounds for the corrected 
design effect. 
 

Result 3. 
 

 
( ) ( )

( ) ( ) ( )
( )

( )20 21 20
* * *eff eff eff eff ,

1 n w n
I I

n R
n R n R n R n R 

 
− − + + + −

w wI I   

where 21
*eff  is the corrected design effect when there are equal interviewer workloads and equal PSU 

sizes. The bounds of 21
*eff ,  given in Result 3 , do not depend on ,In  but it should be noted that in the 

lower bound of ( )21
*eff ,w eff I  takes on its value for the maximum concentration in ,In  whereas 

( )20
*eff nI  corresponds to the minimal concentration of .In  Since eff I  does not depend on ,w  an upper 

(or lower) bound for ( )21eff w  can be found by obtaining the upper (or lower) bounds of ( ) ,Im w ( )Cm w  
and ( )eff w w  as described in the Appendix. 

Finally, we introduce a corrected design effect that assumes the measurement model ( )2* ,M  given by 
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(2.18)

 

Similarly to Result 3 we can establish the following bounds for ( )2*1eff .w  
 

Result 4. 
 

 
( ) ( )

( ) ( ) ( )
( )

( )2*0 2*1 2
* * *

*0eff eff eff eff .
1 n w n

I I

n R
n R n R n R n R 

 
− − + + + −

w wI I   

Here *1
*
2eff  corresponds to the case where ,qin  the number of respondents that belong to the thq  PSU 

and are interviewed by the thi  interviewer, is a constant, i.e., ( )qin n RK=  for all i R  and .q K  
This also implies that for 2*1eff  we have in n R=  and .qn n K=  The proof of Result 4 can be found in 
the Appendix. Using model ( )2*M  instead of ( )2M  gives some additional flexibility in fitting the 
measurement model to the observed data. Whether this is required is a part of Section 3.2, where the 
different measurement models are tested against each other for ESS6 data. 

 
3  Empirical findings from the ESS 
 

After we established the effects associated with interviewers and multi-stage or cluster sampling, we 
now estimate the survey effect and our proposed corrected design effect for ESS6 data (ESS, 2016). 

There were 29 participating countries in ESS6 (ESS, 2018a), but not all have been considered in our 
analysis. We excluded all countries with a single-stage design (there were no single-stage cluster sampling 
designs in ESS6). In addition, we excluded those countries that had a multi-domain sampling design. 
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These countries employed different sampling designs in different regions of the country, but they all refer 
to a certain level of the Nomenclature of Territorial Units for Statistics (NUTS), as established by Eurostat 
(ESS, 2013, pages 21-22). For example, Norway used a single stage sample for its more densely populated 
regions, which, combined, contained almost 75 percent of the target population, and a two-stage sampling 
design for the rest of the country.  

First, in Section 3.1 we assess whether the estimation of the measurement models described in 
Section 2 is generally feasible, given the PSU-interviewer structure found in ESS6. To this end, we use a 
model-based simulation study. In Section 3.2, we test the different measurement models against each other 
in order to use the most appropriate ones for the estimation of the survey effect and the corrected design 
effect. Afterwards, we compare our results with the design effect that was used by the ESS to plan the 
sample size. 

The PSU and interviewer identification variables needed for our simulation study and the estimation of 
the effects were obtained from the so-called Sampling Design Data Files (SDDFs) and the Interviewer 
Questionnaire, respectively (ESS, 2014a). The SDDFs contain information on the sampling design, 
including a PSU identifier. For ESS6, the SDDFs have to be downloaded individually for each country 
(ESS, 2018b). 
 

3.1  Simulation for the stability assessment of effect estimates 
 

Interviewers and sampling have long been recognized as principal sources of survey error. The way 
interviewers are deployed during fieldwork makes it difficult to separate the interviewer variance from the 
PSU variance. To make data collection more efficient, interviewers are usually assigned to work 
exclusively in certain regions (Von Sanden, 2004, Section 1.3). Correspondingly, interviewers in ESS6 
seldom work across regions. For ESS6, we observe the following situation: In general, interviewers work 
in a number of PSUs within a certain area, but never in all PSUs. PSUs might be visited by more than one 
interviewer, but never by all of them. For 25% of all considered countries, the mean number of regions 
(variable region, ESS (2013), pages 21-22) an interviewer visited was 1.017 or lower. For 75% of all 
countries, the mean number of regions per interviewer was 1.256 or lower. 

The non-hierarchical structure of PSUs and interviewers can be considered typical of large scale social 
surveys like the ESS. A so-called fully interpenetrated survey design, where all interviewers work in all 
PSUs, is in general unfeasible for country-wide surveys. This makes it difficult to decide what amount of 
observed similarity between observations made by an interviewer is due to intra-interviewer correlation or 
instead due to intra-PSU correlation. This problem has been addressed in a number of studies. For 
instance, by using a fully nested survey design, where multiple interviewers work in the same PSU but not 
across them (Schnell and Kreuter, 2005). But also so-called partially interpenetrated surveys, where 
different interviewers work in multiple PSUs and PSUs are visited by multiple interviewers, have been 
analyzed, (Davis and Scott, 1995; O’Muircheartaigh and Campanelli, 1998). These partially 
interpenetrated surveys resemble more the situation we observe for ESS6. 
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To test our measurement models and to disentangle the different variance components, we fit a 
multilevel model with crossed random effects. In another context, Raudenbush (1993) proposes to allow 
for so-called crossed effects in the random effects structure. These crossed effects allow for the situation 
of partially interpenetrated factors, and are able to estimate all three variance components of measurement 
model ( )2* ,M 2 ,I 2 ,C  and 2 .IC  

Vassallo, Durrant and Smith (2017) show, using simulations on synthetic data, how well a multilevel 
model with crossed random effects for cluster and interviewer can estimate the variance-covariance 
structure of the data model under different patterns of interpenetration between cluster and interviewer. 
They identify the sample size, the number of interviewers and PSUs, and the level of interpenetration as 
the driving factor for the quality of the estimates of the variance components. The level of interpenetration 
plays a decisive role for the quality of the variance component estimates. Vassallo et al. (2017) found that 
already 2-3 interviewers per PSU lead to relatively stable estimates of the variance components. However, 
their survey designs were all balanced and symmetric, meaning that the interpenetration of PSUs by 
interviewers was constant for all PSUs and vice versa. This is not the case for countries in ESS6. 
Therefore, we perform a simulation to test whether under the partial interpenetrated survey designs of 
ESS6 the variance components of our measurement model ( )2M  can be estimated or not. 

For the simulation, we generate samples from a n -dimensional multi-variate normal distribution 
( )MVN , .μ  The vector of means μ  contains, for each dimension, the same value. The covariance 

matrix   follows the variance-covariance structure of measurement model ( )2M  and was constructed for 
each country based on the observed PSU-interviewer structure. The variance components were set to 

2
I = 0.2, 2

C = 0.08, 2 = 2. We generated 1,000 samples from the superpopulation model 
( )MVN , μ  for each country and estimated measurement model ( )2M  for each of these samples. The 

simulation was implemented in R (R Core Team, 2019). The samples for the simulation were generated 
with the help of the mvtnorm package (Genz, Bretz, Miwa, Mi and Hothorn, 2019) and the estimation of 
the model was done using the lme4 package (Bates, Mächler, Bolker and Walker, 2015, 2019). 

Table 3.1 depicts the relative Monte Carlo bias of the estimators for the variance components of model 
( )2 .M  For an estimator ̂  of   we define this measure as 

 
MC

MC-RBias ,
ˆ

1ˆ 



= −   

where MC 1
ˆ ,ˆD

dd
D 

=
=    is the true value, ˆ

d  the value of ̂  for the thd  sample of the simulation 
and D  is the total number of samples generated, i.e., D = 1,000, in our simulation. We see that 2

I  and 
2
C  are estimated with a relative low bias for all considered countries in ESS6. In addition to the relative 

Monte Carlo bias, we have added the number of PSUs ,K  the number of interviewers ,R  the sample size 
,n  the average number of PSUs that an interviewer works in ,IK  and the average number of interviewer 

that work in a PSU CR  to Table 3.1. IK  and CR  are used as measures for the level of interpenetration of 
PSUs by interviewers and interviewers by PSUs, respectively. For all countries, other than Germany, there 
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are more PSUs than interviewers and IK  is greater than .CR IK  reaches from 1.423 in Germany to 
17.396 in Albania. The level of IK  observed for all countries seems to be high enough to disentangle the 
variance components of model ( )2 .M  We can observe a negative relationship between IK  and MC-
RBias 2ˆ ,I  which can be mediated by n  and .K  Higher n  and K  correspond to a higher accuracy of 

2ˆ .I  An analogous observation can be made for MC-RBias 2ˆ .C  A higher CR  also improves the precision 
of the estimates and can compensate for a low .IK  A high enough one-sided interpenetration, either of 
the PSUs by the interviewers or vice versa, is sufficient to accurately estimate 2

I  and 2
C  for model 

( )2 .M  For example, the Czech Republic, which has the lowest ,CR  but a IK  of round 1.848, enables 
relative precise estimates for the variance components. 

It should be noted that for measurement model ( )2* ,M  both IK  and CR  are of importance. For 
example, 2

C  and 2
IC  cannot be estimated with precision if CR  is too low. For example, in a similar 

simulation for model ( )2* ,M  it was not possible to obtain accurate estimates of 2
C  and 2

IC  for the 
Czech Republic, although the relative bias of 2ˆ I  was around 1 percent. 

For Bulgaria and Czech Republic 1,CR =  that is, their PSUs are nested within the interviewers. In this 
case, we do not have crossed random effects, but nested random effects, as we never have the case where 
respondents are within the same PSU but not interviewed by the same interviewer. For this special case, 
strictly speaking, 2

C  should be labeled 2 .IC  But, for simplicity, for both cases we use 2
C  as a label for 

the variances of the PSU random effect. This is not entirely unjustified, as 2
IC  defines the additional 

correlation between respondents that are in the same PSU, compared to those respondents that are 
interviewed by the same interviewer, but are in different PSUs. 

 
Table 3.1 
Relative bias of random effect variance estimates  
 

 2MC-RBia  ˆs
I

  2MC-Bias ˆ 
C

  K  R  n   
I

K   
C

R  
Albania 0.00 -0.02 264 53 1,201 17.40 3.49 
Belgium 0.00 -0.02 363 155 1,869 3.00 1.28 
Bulgaria -0.01 0.04 400 247 2,260 1.63 1.00 
Czech Republic 0.01 -0.01 426 231 2,009 1.85 1.00 
France 0.01 0.01 267 165 1,968 1.99 1.23 
Germany 0.01 -0.00 156 194 2,958 1.42 1.77 
Ireland -0.01 0.01 212 116 2,628 2.15 1.17 
Israel -0.00 0.01 190 114 2,508 3.00 1.80 
Italy -0.02 0.05 129 117 960 1.49 1.35 
Kosovo 0.01 -0.02 160 72 1,295 2.29 1.03 
Slovakia -0.02 0.04 249 132 1,847 1.93 1.02 
Slovenia -0.01 0.00 150 50 1,257 3.30 1.10 
Spain -0.01 0.03 422 74 1,889 8.20 1.44 
Ukraine 0.00 0.00 306 237 2,178 1.44 1.11 
United Kingdom -0.01 0.00 226 150 2,286 2.36 1.57 
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Our simulation study confirms and extends the findings of Vassallo et al. (2017) for the unbalanced 
situation of the ESS6. We also saw that the PSU-interviewer structure observed for ESS6 does not prohibit 
the disentanglement of 2

C  and 2
I  for measurement model ( )2 .M  

 

3.2  Survey effects in ESS round 6 
 

As seen in our simulation study, the estimation of the interviewer and cluster variance is feasible in 
ESS6. Now we test, for a set of selected variables from the ESS main questionnaire (ESS, 2013), each 
variance component of model ( )2*M  on its significance. All used variables, except age and gender, have 
an ordinal scale, but are treated as metric variables for the purpose of this analysis. A list of all used 
variables can be found in the Appendix. 

As a variance component has its minimum at zero, the test is performed on the boundary of the 
parameter space, which imposes classical problems from test theory. Scheipl, Greven, and Kuechenhoff 
(2008) proposed a restricted likelihood ratio test, designed to test for a zero random effects variance. We 
use their implementation of this test in the R-Package RLRsim and perform three test decisions. 

First, we test on the significance of the interaction variance of interviewers and PSUs, when assuming 
relevant interviewer and PSU variances. Our null hypothesis is 2

0: 0ICH  =  versus alternative hypothesis 
2: 0.A ICH   The per country average of rejected null hypothesis over the different variables is displayed 

in Table 3.2. The first two columns correspond to two different type I error levels for the test of 
2

0: 0,ICH  =  indicated by  = 0.01 and 0.05. Israel is the country that has the highest number for 
significant interaction variance 2

IC  on all type I error levels. For all other countries the null hypothesis is 
not rejected for all variables at a significance level of 1%. Although not displayed in Table 3.2 it can be 
noted that at a 10% significance level two-thirds of the countries have at least some variables with a 
significant interaction variance. Therefore, the possibility of an interaction effect should be considered 
when estimating survey effects.  

In our second test decision an interviewer variance but no interaction variance is assumed. The null 
hypothesis is that the PSU variance is not relevant, that is 2

0: 0CH  =  versus the alternative hypothesis 
2: 0.A CH    Average test results for the different type I error levels can be found in the columns 3 to 4 of 

Table 3.2. For some variables, the PSU variances are not significant as an addition to the interviewer 
variance. This result is especially strong for Belgium, where only 3% of the variables seem to have a PSU 
variance. However, also for France and Slovenia, the PSU variance is only significant at a level of 1% for 
a relative small number of the variables and for Albania for none of the variables. In contrast to that, 
Bulgaria, Ireland, Israel and Slovakia have significant PSU variance for the majority of variables. Overall, 
the PSU variance appears to be relevant in most countries and thus should be considered when estimating 
survey effects. 

For the third test decision we perform, a PSU variance but no interaction variance is assumed. The null 
hypothesis is that the interviewer effect is not relevant 2

0: 0IH  =  versus the alternative hypothesis 
2: 0.A IH    Average test results can be found in columns 5 to 6 of Table 3.2. The lowest rejection rates 
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are found in Germany and France, although 19% of the variables for Germany and 23% for France still 
have a significant interviewer variance at a 1% significance level. The other countries show a far higher 
proportion of variables with significant interviewer variance. On the 1% and 5% significance level, the 
interviewer variance has a higher rejection rate than the PSU variance for 13 out of the 15 countries. Thus, 
the interviewer variance appears to be of relevance for all countries in ESS6, indicating that possible 
interviewer effects should be taken into account when assessing the efficiency of survey designs. 

 
Table 3.2 
Rejection rates for existence of variance components 
 

0: H  2 0
CI

 =  2 0
C

 =  2 0
I

 =  
  0.01 0.05 0.01 0.05 0.01 0.05 
Albania 0.00 0.03 0.00 0.16 0.55 0.77 
Belgium 0.00 0.00 0.03 0.03 0.77 0.90 
Bulgaria 0.00 0.00 0.81 0.90 0.90 1.00 
Czech Republic 0.00 0.00 0.52 0.58 1.00 1.00 
France 0.00 0.00 0.10 0.23 0.23 0.45 
Germany 0.00 0.00 0.26 0.61 0.19 0.42 
Ireland 0.00 0.06 0.77 0.81 0.94 0.97 
Israel 0.13 0.32 0.94 1.00 0.84 0.94 
Italy 0.00 0.03 0.10 0.32 0.42 0.65 
Kosovo 0.00 0.00 0.45 0.58 0.94 0.97 
Slovakia 0.00 0.00 0.77 0.90 0.97 0.97 
Slovenia 0.00 0.00 0.03 0.16 0.74 0.84 
Spain 0.00 0.00 0.13 0.23 0.74 0.84 
Ukraine 0.00 0.00 0.55 0.74 0.90 0.94 
United Kingdom 0.00 0.03 0.19 0.35 0.71 0.87 

 
Based on the selected models for the different variables, survey effects defined in equation (2.8) are 

estimated. Table 3.3 shows the country specific average of estimated survey effects over all considered 
variables. In addition Table 3.3 also contains the average of design effect deff, as it is used by the ESS to 
plan sample sizes. In our notation this design effect has the form 

 ( )( )( )deff eff 1 1 .w C Cm= + −w   

To estimate C  in deff we used an ANOVA estimator (The ESS Sampling Expert Panel, 2016; 
Ganninger, 2010, page 45) and do not test for the significance of the PSU variance. Measurement model 
a  used in 0eff a  can include interviewer, PSU and interaction variance, if the model selection identifies it 
as significant at a level of 0.05. The same applies to measurement model a  used in 1eff ,a  i.e., the 
corrected design effect. If interviewer variance is identified as not significant for a variable, then 1eff a  
becomes 0eff .a  To measure the influence of the interviewer on the survey effect inv I  is also shown.  

By comparing deff and 1eff a  in Table 3.3 an interesting observation can be made: For Germany deff is 
clearly lower than for Ireland and the Czech Republic. From this we could deduce that Germany would 
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need a much lower sample size to achieve the same average effective sample size as Ireland and the Czech 
Republic. However, if we look at 1eff ,a  this relation switches. Table 3.3 shows that the cluster effect of 
the complex sampling design is higher in Germany than it is in Ireland or the Czech Republic. Meaning 
that, if we are interested in equal average effective sample across countries, Germany would need a higher 
sample size than in Ireland or the Czech Republic. For example, for the Czech Republic to achieve an 
effective sample size of 1,500 with the standard design effect deff from Table 3.3 we would plan with a 
net sample of round 3,925 and for Germany with one of 3,115. If instead we use the corrected design 
effect 1eff ,a  to base the planning of the net sample size solely on the effect of the sampling design, we 
would select a net sample size of round 1,707 and 2,598, for the Czech Republic and Germany, 
respectively. This finding is also reflected in the values of inv ,I  which indicates that a large part of 0eff a  
for Ireland and the Czech Republic can be attributed to an interviewer effect, whereas for Germany, the 
interviewer effect is smaller and 0eff a  seems to be dominated by the cluster effect. Apart from Israel, 
Slovakia, and Slovenia, all countries have different ranks for deff and 1eff ,a  indicating that the allocation 
of the sample size over all countries would be very different, if the corrected design was used to plan 
effective samples sizes, instead of the conventional design effect deff. 

 
Table 3.3 
Average effect sizes for ESS6 
 

 deff  0eff
a

 1eff
a

 inv
I

 

Albania 2.07 2.87 1.68 0.35 
Belgium 1.18 1.75 1.01 0.37 
Bulgaria 2.32 3.88 1.21 0.65 
Czech Republic 2.62 6.58 1.14 0.78 
France 1.69 1.80 1.46 0.16 
Germany 2.08 2.28 1.73 0.19 
Ireland 3.32 5.42 1.26 0.73 
Israel 2.41 4.67 1.42 0.61 
Italy 1.76 2.20 1.32 0.34 
Kosovo 4.01 10.97 1.51 0.80 
Slovakia 5.02 20.28 2.27 0.85 
Slovenia 1.59 3.03 1.06 0.55 
Spain 1.16 2.01 1.05 0.42 
Ukraine 2.97 5.61 1.18 0.73 
United Kingdom 1.76 2.24 1.32 0.38 
deff: average design effects as defined in equation (1.1). 

0effa : average survey effect with measurement model of interest ( )aM  and ( )0M  as reference. 

1eff a : average corrected design effects with measurement model of interest ( )aM  and ( )1M  as reference. 
inv I : average contribution of interviewer effects to the design effect as defined in equation (2.16). 

 
1eff a  is smaller than deff for all countries, and their distance, 1deff eff ,a−  has a positive but non-

linear relationship with inv .I  The lowest values of 1deff eff a−  are observed for Spain, Belgium, 
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France, and Germany, which are all countries whose inv I  value is below the median of inv .I  The 
opposite is observed for Slovakia, Kosovo, Ireland, and Ukraine, the countries with the highest distance 
between deff and 1eff .a  These countries all have a value of inv I  that is higher than the median value of 
inv .I  These patterns for countries with a relatively high distance between deff and 1eff a  are consistent 
with what we would expect if there is a high interviewer effect present in the data. The opposite can be 
said for countries when a relatively small distance between deff and 1eff a  is observed. 

Interviewer effects depend on many different factors (West and Blom, 2017), including the type of the 
question asked and the used ESS6 data is mostly gathered from attitude questions. Hence, the presented 
results in this section cannot be extrapolated to other types of surveys in the same countries. 

 
4  Conclusions 
 

Using a design effect to select a sample size is a commonly used method to account for the loss of 
efficiency that a complex sampling design might entail. However, the design effect can be inflated by an 
interviewer effect in face-to-face surveys. This can lead to erroneous conclusions about the effect that 
complex sampling has on the efficiency of a sampling strategy. As a consequence, this could lead to 
misallocation of resources. The planned sample size might be too high, if it is based on an overestimated 
design effect. Therefore, we propose to consider both the design and the interviewer effect simultaneously 
when planning a sample size. The survey effect, which we develop in Section 2, accounts both for 
interviewer and PSU variance to assess the efficiency of a survey design. Based on the survey effect we 
introduce a corrected design effect, which uses as a reference design a simple random sample with an 
interviewer effect. As a result, the corrected design effect is no longer conflated with the interviewer effect 
and can be used to better base the decision on the samples size on the effect the sampling design has on 
the precision of survey estimates. 

For ESS6, our empirical findings in Section 3.2 show that high design effects are related to high 
interviewer effects. The average corrected design effects that we observe suggest that the sampling design 
influences the variance of an estimator to a lesser degree than interviewers for many countries in the 
ESS6. The ability to estimate the corrected design effect, e.g., from historical data as guide for the survey 
planner, depends mainly on the PSU-interviewer structure and the allocation of interviewer workloads and 
cluster sizes. We find a partially interpenetrated survey design, i.e., on a regional level, can be sufficient to 
disentangle PSU and interviewer variance. In our simulation study an average number of 1.5 PSUs per 
interviewer or interviewers per PSU was enough to estimate the variance components of measurement 
model ( )2 .M  For actual survey data, that is categorical, this level of interpenetration might not be high 
enough, but a high number of PSUs, interviewers, and a large sample size might off-set a low 
interpenetration. For practical applications, we recommend testing via simulation if the assumed 
measurement model can be estimated with the given PSU-interviewer structure, as we did in Section 3.1. 
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When using the survey effect and corrected design effect for the planning of a sample size it can be 
helpful to work with the upper and lower bounds of these statistics. In Section 2, we derive such bounds, 
but under somewhat unrealistic assumptions regarding the distribution of survey weights, interviewer 
workloads and PSU sizes. However, if realistic assumptions about the concentration of survey weights, 
interviewer workloads and PSU sizes can be made, then we propose to use a linear optimization, as shown 
in the Appendix, to derive bounds that are of much higher practical relevance and can serve as valuable 
guidance for survey planners. Generally, we recommend to have lowly concentrated distributions of 
interviewer workloads and PSU cluster sizes in order to increase the precision of survey estimates. Thus, 
interviewer workloads and PSU cluster sizes should be as equal as possible for any given number of 
interviewer and PSUs. 

The measurement models we introduce in Section 2 are arguably simplistic. This makes the models 
applicable to most survey designs. The only information, besides the survey data, used to compute the 
estimates for Table 3.3 were the PSU and interviewer indicators. However, there are certain aspects of 
survey measurements that could be incorporated into a practical measurement model, such as 
stratification, which, in general, increases the efficiency of an estimation strategy (Särndal et al., 1992, 
Section 3.7). This was neglected in our analysis, despite the fact that many ESS6 countries used a 
stratified design for their PSU sample. Gabler, Häder and Lynn (2006) develop a design effect for 
estimation strategies that combine different sampling designs for sampling domains. This approach could 
possibly be adapted to add a stratification effect to the PSU variance. Furthermore, it might be plausible to 
assume that interviewers differ with regard to the degree of homogeneity that they add to their 
measurements. This interviewer heterogeneity could be incorporated into a measurement model by 
allowing groups of interviewers to have different distributions of ,iI  i.e., values for 2

I  (West and Elliott, 
2014). However, a procedure to classify interviewers would be needed. Preferably one that does mainly 
rely on the survey data and not so much on information available about the interviewers, which might 
differ from survey to survey. 

A future application for the presented framework of the survey effect would be to find an optimal 
budget allocation with respect to the number of PSUs and interviewers, for a given effective sample size. 
Such an optimization requires a cost model for the deployment of interviewers to a possible set of PSUs. 
Fieldwork institutes could possibly provide the necessary information to calculate such a model for a 
particular country. Such a method could help survey planners to conduct face-to-face surveys more 
effectively, which is of increasing importance as surveys based on probability samples are under pressure 
from the comparably cheap alternative of recruiting respondents from online-access panels. 

Further research could also focus on the development of survey effect for other estimators than the 
weighted sample mean. For estimators that can be described as functions of estimated totals, which 
includes the Ordinary Least Square Estimator for regression coefficients (Särndal et al., 1992, 
Section 5.10), it should be possible to derive survey effects, under the framework shown in Section 2, that 
allow for a similar factorization as the survey effect presented in this work. 
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Appendix 
 

For the Appendix we will introduce a short notation of multiple sums, where, for example, qikqik
y  

will be shorthand for 

 .
qi

qik
q i k s

y
  
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Proof: We need to show that 
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and 

 
( )2

2

qiki qk

qikqik

w n
w K


 


 (A.2) 

hold, if n
i Rn =  and ,n

q Kn =  for all 1, ,i R=   and 1, , .q K=   

As shown in Gabler et al. (1999), if 1qika =  for all , , ,qiq i k s  K R  using the Cauchy-
Schwarz inequality, we know that 
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If we have n
i Rn =  for all 1, , ,i R=   then it follows that 
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The proof for inequality (A.2) is analogous to the one above, which completes the proof of Result 1. 
 

Upper bounds for ( ) ,w
I

m ( )w
C

m  and ( )eff w
w  

 

For given In T  and CnT  and  ,kw a b  with ,a b + R  for all ,k s  and kk
w n=  we can 

construct an upper bound for ( )Im w  and ( ) .Cm w  

We know that 
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Now we need to find a sufficiently high value for 2 .i qiki qk
n w   For this we define 2

i qikqk
x w=   

and 1( , , ) .Ix x= x T  Thus we have to solve the following problem: 
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where 

 ( ) ( ) ( )2 2, , 1 ,sqm

n nb n nb n nb
f a b n b n nb a b b a n

a b a b a b
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where    means rounded to the nearest lower integer. The problem formulated in equation (A.4) can be 
solved using a solver for linear programs, e.g., with the solveLP function from the R package Henningsen 
(2012). Function sqmf  gives a maximum of 2

kk
w  given the upper and lower bounds of the weights a  

and b  and the fact that the weights are scaled to ,n  i.e., .kk
w n=  The sum of squares is maximized by 

giving as many weights their highest possible value b  under the condition that each weight must have at 
least a value of a  and that .kk

w n=  The problem can then be solved using a simplex algorithm. An 
upper bound for Cm  can be determined in the same fashion. Changing the problem to minimization and a 
lower bound for 20eff  can be found. However, it is not guaranteed that separate optimization of Cm  and 

Im  will yield values of x  that allow for a value of w  that jointly maximizes (or minimizes) Cm  and .Im  
Although, if, Cx  and Ix  are the vectors that optimizes Cm  and Im  respectively, it should be possible to 
find a possible value for ,w  e.g., using iterative proportional fitting. 

For ( )eff w w  we have under the same assumptions as made above 

 ( )
( )2 , ,

1 eff .k sqxk s
w

w f a b n
n n
 = 

w  (A.5) 

 

Result 2 
 

( ) ( ) ( )
eff .

1 I
I I

n R
n R n R n R n R 

 
− − + + + −

  

Proof: The upper bound in Result 2 can be shown by using the Cauchy-Schwarz inequality, which gives 
us 

 

2
2

2
2 .

i i
i i

i
i

R n n

n
n

R

 
  
 



 



 (A.6) 

With a some algebra we can formulate the upper bound of eff .I  
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To prove the lower bound in Result 2 we solve the following problem: 

 
0

max

s.t.

.

R
I

I I

i
i

n n



=

n
n n

N

T

 (A.7) 

A solution to the problem formulated in (A.7) can be found by considering that if we have 1 1in −   
and i jn n  it follows that ( ) ( )2 2 2 2 .1 1i j i jn n n n− + +  +  Thus for maxj i in n= R  we can increase 

2R
ii

n  if we reduce any 1in i j   by one and add one to .jn  Hence, if 1in =  for all i j R  and 
1jn n R= − +  then 2

ii
n  is at its maximum, with ( ) ( )22 1 1 .ii

n R n R= − + − +  
 

Result 4 
 

Proof: Given Result 2, to prove the right-hand side of Result 4 we need to show that 

 ( )
( )

2

2
*
2*0eff 1 1 1 1 .

qikqik
I C IC

qikqik

n w n n n
R K RKw

  
       

 + − + − + −      
       




w  (A.8) 

To prove inequality (A.8) we only need to show that 

 
( ) 2

2
.

qikqi k

qikqik

w n
RKw


 


  

The rest follows from the proofs of inequalities (A.1) and (A.2). Thus it is sufficient to show that 

 
2 2

2 2 2 ,qik qik qik qi qik qik qik
k k k k k

w w a n w a w  =  =   
  

      

if 1qika =  for all , , ,qiq i k s  K R  which also follows from the Cauchy-Schwarz inequality. 
Inequality (A.8) then follows if n

qi RKn =  for 1, ,i R=   and 1, , .q K=   

The left-hand side of Result 4 follows from the proof of Result 6 in Gabler and Lahiri (2009) and 
Result 2. 

 
ESS6 variables used for empirical evaluation 
 
Table A.1 
ESS6 variables used for empirical evaluation 
 

pplfair trstprt stfdem imueclt iorgact 
pplhlp trstep stfedu imwbcnt agea 
polintr trstun stfhlth happy gndr 
trstprl lrscale gincdif aesfdrk  
trstlgl stflife freehms health  
trstplc stfeco euftf rlgdgr  
trstplt stfgov imbgeco wkdcorga  
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The definition of these variables including question text can be found in ESS (2013). 
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A new double hot-deck imputation method for missing 
values under boundary conditions 

Yousung Park and Tae Yeon Kwon1 

Abstract 

In surveys, logical boundaries among variables or among waves of surveys make imputation of missing values 
complicated. We propose a new regression-based multiple imputation method to deal with survey nonresponses 
with two-sided logical boundaries. This imputation method automatically satisfies the boundary conditions 
without an additional acceptance/rejection procedure and utilizes the boundary information to derive an 
imputed value and to determine the suitability of the imputed value. Simulation results show that our new 
imputation method outperforms the existing imputation methods for both mean and quantile estimations 
regardless of missing rates, error distributions, and missing-mechanisms. We apply our method to impute the 
self-reported variable “years of smoking” in successive health screenings of Koreans. 

 
Key Words: Hot-deck; Two-sided boundary conditions; Multiple imputation; Item nonresponse. 

 
 
1  Introduction 
 

Survey nonresponse (or item nonresponse) arises in many censuses or sample surveys, and several 
methods for filling in such missed items have been proposed. Some missing variables in a survey are 
logically bounded. For example, in the U.S. National Health Interview Survey, some families did not 
report exact income but did report income categories, which provides bounds of the exact family income 
values. When personal earnings within a family are reported for some family members but not for the 
others, the sum of the reported personal earnings gives a lower bound of the family income (Schenker, 
Raghunathan, Chiu, Makuc, Zhang and Cohen, 2006). Geraci and McLain (2018) addressed several 
examples of bounded missing variables in surveys which include psychometric scales, clinical scores, and 
school grades. 

Waves in panel surveys and panel data sets often provide logical constraints for missing variables. In 
the periodic health screening data released by the national health service of Korea, the missing smoking 
period of a smoker at the current wave is bounded below by his/her smoking period reported at the 
previous wave and bounded above by his/her age. We observed from 2011 and 2013 health screening data 
of Korea that the 2013 data contain up to 73.5% missing values for smoking periods when we treat the 
smoking periods that violate such logical constraints as missing. In particular, the mean age of respondents 
to the smoking periods question is 9 years younger than that of non-respondents, implying that the missing 
mechanism of the smoking period is not missing completely at random (MCAR) and hence imputation is 
required. 

Geraci and McLain (2018) proposed a quantile-based imputation method for one-sided or two-sided 
missing variables in which upper and lower values are fixed constants, and showed that their method had 
advantages, especially when the sample size is moderately large and the true model is strictly non-linear. 
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The most common way to accomodate the logical boundaries to a multiple imputation method is by 
adopting truncation or an acceptance/rejection step. However, our simulation studies shows that this 
additional step to existing multiple imputation methods introduces bias as long as the two-sided 
boundaries are asymmetric. 

We propose a new regression-based multiple imputation method without an acceptance/rejection or 
truncation procedure. This new method utilizes the two-sided boundaries for imputing missing values, 
automatically meets the boundary constraints, and includes the imputation method given in Kwon and 
Park (2015) as a special case. We call this new method double hot-deck boundary information matching 
proportioned residual draw method (DBM-PRD), because two hot-deck steps are used to reduce the 
number of donor candidates and to choose an appropriate proportional residual that is defined by the usual 
residual divided by the distance between an observation and its lower or upper bound. This proportioned 
residual was used in Kwon and Park (2015). 

Hot-deck imputation that replaces a missing value with a “similar” observation can improve the 
imputation performance relative to imputation methods that are derived only from model-assisted 
schemes. Andridge and Little (2010) showed that, in particular, when a model is used to define matches, 
hot-deck is less vulnerable to model misspecification than model-assisted methods. 

Multiple imputation incorporates imputation uncertainty into statistical inference by substituting 
missed values several times. The basic method given in Rubin (1978) is to impute the missing value with a 
sampled value from the normal posterior distribution. It has been extended for imputation of missing 
values with a logical boundary (Raghunathan, Lepkowski, Van Hoewyk and Solenberger, 2001) by using 
a truncated normal posterior distribution (T-NORM). Rubin and Schenker (1986) and Rubin (2004) 
adopted the empirical distribution of the observed standardized residuals based on a fitted regression 
model. They proposed an imputation method adjusted for uncertainty of the mean and variance (MV), 
which imputes the missing value with its predictive mean plus residuals that are randomly chosen from 
their empirical distribution. 

Extended from these basic ideas of hot-deck and multiple imputation, most existing methods assume 
the distribution of the data (usually normal) and employ a truncated distribution (usually truncated 
normal) to meet a logical boundary of the missing value (van Buuren and Groothuis-Oudshoorn, 2010; 
Honaker, King and Blackwell, 2012; Su, Gelman, Hill, Yajima, 2011; Raghunathan et al., 2001; 
Raghunathan, Solenberger and Van Hoewyk, 2002). The predictive mean matching method (PMM) 
imputes a missing value with a randomly selected observation having a similar predictive mean to that of 
missing value (Little, 1988). Schenker and Taylor (1996) proposed the local residual draw method (LRD), 
which replaces each missing value with its predictive mean plus a randomly drawn residual whose 
predictive mean is close to that of missing value. Instead of the residual in LRD, Kwon and Park (2015) 
used the proportioned residual whose distance from the predicted mean to its boundary value is close to 
that of the missing value in order to meet an one-sided boundary imposed on the variables of interest. 

The DBM-PRD method is essentially along the same lines as Kwon and Park (2015). However, DBM-
PRD employs one more matching procedure to take into account two-sided boundaries and to resolve 
asymmetric boundary information. This additional matching is based on which boundary is closer to the 
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predictive mean of each missing value. Meanwhile, DBM-PRD imputes the missing value with its 
predictive mean plus a proportioned residual multiplied by the distance between the predicted mean and 
the corresponding upper or lower bound. Although DBM-PRD belongs to a mixed method as it uses a 
regression model in the first step and a double hot-deck imputation of missing values in the second step, 
the DBM-PRD method is new in that it directly adjusts for the boundary information instead of truncating 
the designated distribution and uses the boundary information to determine the similarity between 
observations and missings. 

This paper consists of five sections. Our new imputation method is described and its properties 
discussed in Section 2. By simulation studies in Section 3, we compare our method with T-NORM and 
MV, PMM, and LRD with additional truncation procedure to meet boundary constraints and PRD-series 
methods to examine the effect of the double hot-deck step of our method, DBM-PRD. In Section 4, we 
apply DBM-PRD and the existing imputation methods to the 2013 health screening data of Korea for 
missing values of smoking periods. Finally, a brief conclusion is found in Section 5. 

 
2  Double hot-deck boundary information matching proportioned 

residual draw 
 

Suppose data are composed of a fully observed explanatory variable vector X i  and response variable 

iY  for = 1, , ,i n  for which some of ’siY  are missing (i.e., item missingness). Regardless of the 
missingness, let iY  be individually bounded and values of the boundaries be given by  

 , ,i L i i UC Y C   (2.1) 

where ,i UC  and ,i LC  are the upper and lower boundaries of ,iY  0 0= 1, , , 1, , ,i n n n+  and the first 

0n ’siY  are observed and remaining ( )0n n− ’siY  are missing. 

Following Rubin (1987), we generate the regression coefficients *  and variance *2  from the 
posterior distributions given by  

 ( ) ( )( )
obs

12*2 2 * *2
OLS obs 1 OLS

ˆˆ~ , ~ , T
nn q N X X     

−
−−  (2.2) 

where X  is the fully observed q  covariates, and OLS̂  and 2
OLS̂  are the OLS estimates of regression 

coefficients and variance, respectively, from the regression model fitted to the observations. We then 
obtain the predictive means denoted by obs

îY  for observed iY  and missˆ
jY  for missing .jY  Then each obs

îY  or 
missˆ
jY  is located in one of following three intervals kS  where = , 0, :k − +   

 ( ) ( ) ( )0= , , = , , = , .iL iL iU iUS C S C C S C− +−    

For observed iY  (i.e., 0= 1, , ),i n  we define the upper and lower proportioned residuals ,i Ur  and 

, :i Lr  

 
obs

, obs

ˆ
=  ˆ

i i
i U

iU i

Y Y
r

C Y
−

−
 and 

obs

, obs

ˆ
= ˆ

i i
i L

iL i

Y Y
r

C Y
−

−
 (2.3) 
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where we assume that there is no Ŷ  which is exactly equal to its own upper or lower boundary. 

These ,i Ur  and ,i Lr  in equation (2.3) are then both divided into three sets based on the kS  to which 
obsŶ  belongs. For = , 0, ,k − +   

  obs
,

ˆ= ;k k
U i U iR r Y S  and  obs

,
ˆ= ; .k k

L i L iR r Y S   

Finally, we impute the missing jY  for 0= 1, ,j n n+  with  

 ( )* miss * miss
, , ,

ˆ ˆ=j U j j U j U jY Y r C Y+ −  or ( )* miss * miss
, , ,

ˆ ˆ= .j L j j L j L jY Y r C Y+ −  (2.4) 

In order to select *
,j Ur  or *

,j Lr  in (2.4), we now employ a hot-deck method that considers similar values as 
their candidates (i.e., possible donors). Hot-deck is a method for handling missing data in which each 
missing value is replaced with an observed response randomly selected from a donor containing similar 
units (Andridge and Little, 2010). We employ the following double hot-deck scheme. 
 

1. [The first hot-deck] If missˆ k
jY S  for = , 0,k − +  and missˆ

jY  is closer to jUC  than ,jLC  then 
we select the corresponding upper proportioned residual set k

UR  as the set of possible donors for 
sampling * .jUr  Likewise, if missˆ

jY  is closer to ,jLC  we select k
LR  for sampling * .jLr   

2. [The second hot-deck] We construct possible donors from the k
UR  or k

LR  selected in the first 
hot-deck. The possible donors for sampling *

jUr  consist of , ’si Ur  whose obsˆ
iU iC Y−  is close to 

missˆ
jU jC Y−  for .k

UR  Similarly, possible donors of , ’si Lr  whose obsˆ
iL iC Y−  is close to 

missˆ
jL jC Y−  for .k

LR   

3. [Imputing] Then ,i Ur  or ,i Lr  is randomly sampled from the corresponding possible donors to 
impute missing jY  with *

,j UY  or *
, ,j LY  respectively and the selected ,i Ur  and ,i Lr  for 

0= 1, ,i n  are denoted by *
,j Ur  or *

,j Lr  for 0= 1, , .j n n+  Here the cases with 
*
, ,j U j LY C  and/or *

, ,j L j UY C  are excluded from the possible donor set. This is rare, although 
it does occur.  

 

Theorem 1 The values *
,j UY  and *

,j LY  always satisfy their boundary conditions.  

 *
, , ,j L j U j UC Y C   and *

, , , .j L j L j UC Y C    

The proof is given in the Appendix. 

Theorem 1 states that the boundary conditions of jY  for 0= 1, ,j n n+  are always satisfied as 
DBM-PRD imputes missing jY  with *

,j UY  or *
, .j LY  We may assume that there exists only an upper 

boundary value such that , =i LC −   for = 1, , .i n  Then the first hot-deck is not needed because k
UR  

is automatically selected and *
, , = .j U j LY C −   

 

Corollary 1.1 The DBM-PRD method is reduced to the boundary information matching method in Kwon 
and Park (2015), when there is only an upper or lower bound. 
 

To examine the double hot-deck procedures used in DBM-PRD, we consider three variations of DBM-
PRD. The first variation is a proportioned residual draw method (PRD) which removes the two 
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hot-decksteps from DBM-PRD and the second variation removes the first hot-deck procedure denoted by 
SPRD. Thus in PRD we randomly sample from all elements in k

UR  and .k
LR  In SPRD, the possible donor 

set is based on the minimum distance from either boundary to the predictive mean. Among possible 
donors for *

,j Ur  and *
, ,j Lr  we select and construct final donors based solely on the distance order, without 

distinction between upper and lower bounds. The third variation, denoted by 2SPRD ,  also removes the 
first hot-deck step as in SPRD and additionally changes the matching method in the second hot-deck step. 
The possible donor in 2SPRD  consists of ,i Ur  and ,i Lr  whose predicted mean obs

îY  is close to missˆ .jY   

 
3  Simulation 
 

We use the following abbreviations for imputation methods discussed in Section 1 and 2; OBS 
(available cases), T-NORM (truncated normal imputation in Rubin (1978); Raghunathan et al. (2001)), 
MV (method adjusted for uncertainty of the mean and variance in Rubin and Schenker (1986)), PMM 
(predictive mean matching in Little (1988)), LRD (local residual draw method in Schenker et al. (2006)) 
and three variations of DBM-PRD denoted by PRD, SPRD and 2SPRD .  We compare these eight 
imputation methods with our DBM-PRD where a truncation procedure is added in MV, PMM, and LRD 
to accommodate the boundary constraints, denoted by T-MV, T-PMM, and T-LRD, respectively. 

We consider a sample size of 1,000 with a 20% or 50% missing rates from the following linear model:  

 = ,i i iY X +  where iL i iUC Y C   for = 1, , ,i n  (3.1) 

and ’siX  are independently generated from ( )2, 2N  and i.i.d. i  are simulated from ( )0, YN   or the t-
distribution with degree of freedom dft . The boundary values ,i UC  and ,i LC  are generated with 

,i i UY Z+  and ,i i LY Z−  where ( ), ~ 0,i U UZ N   and ( ), ~ 0, ,i L LZ N   respectively. We set 
( )Cor ,X Y  to be 0.7 or 0.9 by adjusting Y  (or ),dft  and ( )Cor , UY C  and ( )Cor , LY C  to be between 0 

and 0.9 by adjusting U  and .L  The correlation ( )Cor , UY C ( )( )Cor , LY C  denoted by , uy c ( ), ly c  
indicates that the upper bound UC  has stronger information for Y  than the lower bound LC  when , uy c  
is greater than , Ly c  in absolute value. 

Two types of missing mechanisms are considered. First, 20% of Y  values are randomly chosen and 
treated as missing to reflect the “missing completely at random (MCAR)” missing mechanism. Second, 
we set 80% of ’siY  to missing when the corresponding iX  is greater than its mean and 20% of ’siY  to 
missing when the corresponding iX  is less than its mean. This results in approximately 50% of ’siY  with 
missing values overall and reflects “missing at random (MAR)”. Note that no imputation is needed for 
missing values under MCAR, while imputation for missing values under MAR is required (Scheffer, 
2002). 

We repeat each simulation scenario 1,000 times with the number of imputations M  equal to 5 and the 
number of possible donors in the selection pool for imputation dm  equal to 6. A possible donor size dm  is 
allowed to be smaller than 6 when there is not enough sample to compose a donor, but there is no such 
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case when the sample size is 1,000. We choose the commonly used fixed numbers = 5M  and = 6dm
(Geraci and McLain, 2018; Schafer, Ezzati-Rice, Johnson, Khare, Little and Rubin, 1996; Schenker and 
Taylor, 1996), because it is known that such a setup does not affect the performance of imputation 
methods significantly as shown in Schafer (1999) and Schenker and Taylor (1996). 

The imputation methods are compared in terms of estimation accuracy and efficiency for population 
quantities: mean ( )  and the 5th, 25th, 50th, 75th, and 95th percentiles. Statistical inference after multiple 
imputation proceeds as in Rubin (2004) and Schafer et al. (1996). We use the mean absolute error (MAE), 
root mean squared error (RMSE), a coverage rate of 95% confidence interval (CR) and an average width 
of 95% confidence interval (AWCI) as evaluation criteria for measuring the estimation accuracy and 
efficiency (Yucel and Demirtas, 2010; Yucel, He and Zaslavsky, 2008; Gelman, Van Mechelen, Verbeke, 
Heitjan and Meulders, 2005). 

 
3.1  Simulation results under MCAR 
 

Figure 3.1 shows the distribution of ̂ −  (bias) in 1,000 simulated data sets with 20% of MCAR 
missing values under ( ), ,, = (0.8, 0)

l uy c y c   and , = 0.7.x y  Since no imputation is necessary for 
missing values under MCAR in the estimation of mean and variance of ,Y  OBS is unbiased for the mean 
of ,Y  as expected. However, Figure 3.1 shows that all imputation methods, except for DBM-PRD, reveal 
an over-estimation problem. Observe that the lower boundary has strong information for ,( = 0.8)

ly cY   
but the upper boundary has no information ,( = 0).

uy c  Except for OBS and DBM-PRD, this asymmetric 
boundary information pushes up imputed values in the other imputation methods. To see the effect of 
asymmetric boundary information on imputation accuracy, different values of ( ), ,,

l uy c y c   are 
considered in Table 3.1. 

When upper and lower boundaries provide boundary information for Y  in a symmetric way (i.e., 
( ), ,, = (0.9, 0.9))

l uy c y c   all imputation methods are comparable and are competitive with OBS. 
However, in the presence of asymmetric boundary information , ,( , ) = (0.8, 0)

l uy c y c   or 

, ,( , ) = (0.5, 0.8),
l uy c y c   the estimation accuracy of the existing T-NORM, T-MV, T-PMM, and T-

LRD is much worse than OBS and DBM-PRD. In particular, the coverage rate of 95% CIs (CR) is 
dramatically decreased as the degree of asymmetry increases. On the other hand, those of the PRD series 
(i.e., PRD, SPRD, DBM-PRD) are resistant to such asymmetry, indicating that the proportioned residual 
draw is resistant to asymmetric boundary information. Among the PRD series, DBM-PRD outperforms 
PRD and SPRD and is even better than OBS in terms of MAE and RMSE. 

Notice that, except OBS and DBM-PRD, the imputed values by all other imputation methods make the 
distribution of Y  lean toward the boundary with weaker boundary information. More precisely, all the 
imputation methods except OBS and DBM-PRD tend to over-estimate the true mean of ( )( )= 2Y E Y  for 

( ), ,, = (0.8, 0)
l uy c y c   because , ,< ,

u ly c y c   whereas they tend to under-estimate the true mean for 
( ), ,, = (0.5, 0.8)

l uy c y c   because , ,> .
u ly c y c   This dependency is also observed with the MAR 

missing mechanism as discussed in the following section. 
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Figure 3.1 Distribution of bias, ̂ −  in mean estimation with 20% MCAR missing values with normal 

error and ( ), ,, = (0.8, 0)
l uy c y c

   and , = 0.7.
x y

  
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Table 3.1 
Simulation results of mean estimation ( )= 2  with 20% MCAR missing values with normal error 
 

,x y
  ( ), ,,

l uy c y c
     OBS   T-NORM   T-MV   T-PMM   T-LRD   PRD   T-PRD  SPRD   DBM-PRD 

 0.9 (0.9, 0.9) ̂   2.003   2.003   2.003   2.003   2.003   2.003   2.003   2.003   2.003  
   MAE   0.064   0.056   0.057   0.057   0.057   0.057   0.057   0.057   0.057 
   RMSE   0.081   0.071   0.071   0.071   0.072   0.071   0.071   0.071   0.071  
   CR (%)   94.9   95.8   95.3   95.5   94.8   95.6   95.2   95.5   95.2  
   AWCI   0.310   0.280   0.280   0.279   0.279   0.283   0.279   0.279   0.278 

 0.7 (0.8, 0)  ̂   2.000   2.171   2.171   2.171   2.170   2.043   2.044   2.055   2.000  
   MAE   0.080   0.174   0.174   0.174   0.173   0.083   0.084   0.088   0.075 
   RMSE   0.101   0.194   0.195   0.195   0.194   0.103   0.103   0.109   0.094  
   CR (%)   94.9   54.1   54.3   52.1   53.7   92.3   91.4   89.8   94.2  
   AWCI   0.393   0.367   0.366   0.362   0.363   0.362   0.358   0.358   0.359  

 0.7 (0.5, 0.8)  ̂   2.000   1.906   1.906   1.906   1.907   1.927   1.973   1.979   1.983  
   MAE   0.080   0.108   0.109   0.109   0.109   0.096   0.076   0.075   0.074 
   RMSE   0.102   0.131   0.132   0.132   0.132   0.118   0.096   0.095   0.094 
   CR (%)   94.2   83.0   83.7   83.0   82.6   88.7   93.3   93.7   94.0  
   AWCI   0.393   0.362   0.361   0.359   0.359   0.379   0.358   0.356   0.355  

 
3.2  Simulation results under MAR 
 

Table 3.2 summarizes the results with 50% MAR missing values under normal and ( )= 3dft t  
distribution errors. As expected, OBS which uses only observed values in estimation is much worse than 
any imputation method for estimating the true mean = 2.  The results related to asymmetric boundary 
information are along the same lines as the MCAR simulation results. The accuracy and efficiency of T-
NORM, T-MV, T-PMM, and T-LRD are much worse than those of the PRD series when the boundary 
information is asymmetric. This shows the effect of the two hot-deck steps and the proportioned residual 
draw on the accuracy and efficiency of mean estimation. Except for the symmetric boundary information 
under normal and t  distributions, the CRs of T-NORM, T-MV, T-PMM and T-LRD are less than 50%, 
much smaller than the target 95%. All imputation methods except DBM-PRD produce the empirical 
distribution of Y  biased to the boundary with weaker boundary information under both normal and t  
error distributions. This implies that only DBM-PRD is resistant to asymmetric boundary information and 
error distributions regardless of the missing mechanism. As a result, DBM-PRD outperforms the other 
imputation methods in all simulation scenarios. 

In order to see the effect of the double hot-deck procedures employed in DBM-PRD, we compared 
DBM-PRD with SPRD. The effect of the first hot-deck step can be examined by comparing DBM-PRD 
and SPRD as the first hot-deck step of DBM-PRD is removed in SPRD. DBM-PRD is consistently better 
than SPRD regardless of the evaluation measure as long as the boundary information is asymmetric. The 
CR of SPRD relative to that of DBM-PRD, becomes worse as the boundary information becomes more 
skewed to one side. Thus, the first hot-deck step has an important role in resisting asymmetry of the 
boundary information. 

The role of the second hot-deck step can be checked by comparing SPRD and PRD where PRD does 
not adopt both hot-deck steps. SPRD is better than PRD when the boundary information is moderately 
asymmetric in normal error or t  distributed error, implying that the second hot-deck step works for a 
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heavier tail distribution than normal. This comparison is further discussed in the following evaluation for 
percentile estimation. 
 

As we described before, the 2SPRD  is the same as SPRD except for the method of matching to 
construct possible donors. The possible donor in 2SPRD  consists of ,i Ur  and ,i Lr  whose predicted mean 

obs
îY  is close to missˆ .jY  Thus, by comparing SPRD and 2SPRD ,  we examine the effect of the boundary 

information matching used in DBM-PRD. Table 3.2 shows that SPRD outperforms 2SPRD  regardless of 
boundary information and error distributions, implying that the boundary information matching works 
better than the usual mean matching for imputation of bounded missing data. 
 
Table 3.2 
Simulation results of mean estimation ( )2 =  when 50% MAR 
 

( ), , ,, ,
l ux y y c y c

      OBS   T-NORM   T-MV   T-PMM   T-LRD   PRD   SPRD  2SPRD   DBM-PRD 
normal distributed error 

(0.9, 0.9, 0.9) ̂   1.045   2.002   2.002   1.995   2.002   2.001   2.001   2.000   2.001  
  MAE   0.955   0.057   0.059   0.058   0.059   0.059   0.059   0.06   0.06  
  RMSE   0.958   0.072   0.075   0.074   0.074   0.074   0.075   0.076   0.075  
  CR (%)   0.0   95.3   94.0   94.5   94.1   94.6   93.8   93.2   93.7  
  AWCI   0.355   0.291   0.287   0.282   0.283   0.294   0.285   0.29   0.285  

(0.7, 0.8, 0) ̂   1.043   2.426   2.425   2.417   2.424   2.097   2.103   2.098   1.993  
  MAE   0.957   0.426   0.425   0.417   0.424   0.12   0.123   0.124   0.088  
  RMSE   0.963   0.44   0.442   0.434   0.441   0.148   0.15   0.152   0.109  
  CR (%)   0.0   4.0   5.2   3.6   3.6   80.5   77.7   78.5   92.0  
  AWCI   0.467   0.454   0.428   0.393   0.395   0.398   0.379   0.382   0.38  

(0.7, 0.5, 0.8) ̂   1.045   1.77   1.771   1.761   1.771   1.822   1.952   1.828   1.961  
  MAE   0.955   0.231   0.23   0.239   0.229   0.182   0.091   0.177   0.087  
  RMSE   0.961   0.249   0.251   0.259   0.249   0.205   0.114   0.203   0.11  
  CR (%)   0.0   36.4   36.5   27.5   31.7   62.3   90.0   62.7   90.3  
  AWCI   0.467   0.396   0.379   0.361   0.362   0.42   0.375   0.408   0.375  

(0.55, 0.5, 0.5) ̂   1.041  1.992  1.990  1.983  1.991  1.989   1.991  1.990  1.991  
 MAE  0.959  0.110  0.124  0.118  0.118  0.123  0.123  0.131  0.124  
 RMSE  0.971  0.138  0.155  0.148  0.149  0.155  0.155  0.165  0.156  
 CR (%)  0.0  95.6  89.9  88.7  89.0  93.1  89.4  89.3  89.4 
 AWCI  0.611  0.557  0.520  0.486  0.488  0.584  0.508  0.555  0.513  

(0.55, 0.5, 0.8) ̂   1.042  1.613  1.613  1.604  1.613  1.754  1.902  1.761  1.906  
 MAE  0.958  0.387  0.387  0.396  0.387  0.249  0.128  0.243  0.126  
 RMSE  0.969  0.404  0.406  0.414  0.406  0.276  0.158  0.271  0.156  
 CR (%)  0.0  11.3  11.2  8.1  9.4  56.1  85.8  53.4  86.5  
 AWCI   0.610  0.495  0.480  0.460  0.461  0.514  0.467  0.504  0.465 

t(3) distributed error 
(0.77, 0.9, 0.9) ̂   1.049   2.005   2.005   2.000   2.005   2.004   2.005   2.004   2.005  

  MAE   0.951   0.067   0.069   0.067   0.067   0.069   0.069   0.069   0.07  
  RMSE   0.956   0.084   0.087   0.084   0.084   0.087   0.087   0.086   0.087  
  CR (%)   0.0   96.2   95.2   95.5   96.0   95.5   95.1   95.5   95.4  
  AWCI   0.428   0.341   0.335   0.328   0.329   0.341   0.333   0.336   0.334  

(0.77, 0.9, 0) ̂   1.042   2.401   2.357   2.354   2.356   2.128   2.091   2.12   2.005  
  MAE   0.958   0.401   0.357   0.354   0.356   0.138   0.108   0.131   0.076  
  RMSE   0.964   0.421   0.375   0.374   0.375   0.165   0.133   0.156   0.097  
  CR (%)   0.0   2.7   6.5   4.9   5.2   71.3   80.1   72.3   93.2  
  AWCI   0.429   0.407   0.391   0.37   0.37   0.36   0.338   0.348   0.342  

(0.77, 0.5, 0.9) ̂   1.045   1.776   1.818   1.809   1.817   1.866   1.955   1.872   1.963  
  MAE   0.955   0.224   0.185   0.192   0.185   0.142   0.086   0.137   0.083  
  RMSE   0.961   0.244   0.207   0.212   0.205   0.165   0.107   0.161   0.104  
  CR (%)   0.0   31.7   44.0   37.1   42.1   67.7   87.6   67.3   88.7  
  AWCI   0.431   0.355   0.342   0.326   0.329   0.359   0.338   0.351   0.338  
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We also investigate the percentile estimation by evaluating how well each imputation method estimates 
the probability that Y  is greater than 5%, 25%, 50%, 75%, 95% quantiles. Denote the thp  quantile by 

( )1y p−  satisfying ( )( )1> = 1 .P Y y p p− −  The five percentiles are chosen to test how different the true 
distribution of Y  and the estimated distribution of Y  are for different imputation methods. Table 3.3 
shows the results of percentile estimation when 50% missing values under MAR with normal error when 

( ), , ,, , = (0.7, 0.5, 0.8)
l ux y y c y c    and (0.7, 0.8, 0). From the first line of each table, the existing 

methods clearly produce distributions skewed to the right when ( ), , ,, , = (0.7, 0.5, 0.8)
l ux y y c y c    

because , ,> ,
u ly c y c   while they produce distributions skewed to the left when , , ,( , , ) =

l ux y y c y c    
(0.7, 0.8, 0)  because , ,< .

u ly c y c    

 
Table 3.3 
Simulation results of percentile ( ,

k
P  where 1= ( ( ))

k
P P Y y k−  and 1 ( )y p−  satisfying 

1( > ( )) = 1 )P Y y p p− −  estimation when 50% MAR missing with normal error 
 

Criterion Parameter OBS T-NORM T-MV T-PMM T-LRD PRD SPRD 2SPRD  DBM-PRD 

, , ,( , , ) = (0.7, 0.5, 0.8)
l ux y y c y c

    
mean 0.05P   0.922   0.947   0.947   0.947   0.947   0.935   0.950   0.936   0.951  
 0.25P   0.637   0.732   0.732   0.731   0.732   0.733   0.750   0.734   0.752  
 0.50P   0.350   0.467   0.467   0.465   0.466   0.494   0.497   0.495   0.500  
 0.75P   0.139   0.216   0.216   0.216   0.217   0.232   0.240   0.233   0.241  
 0.95P   0.022   0.037   0.037   0.036   0.037   0.045   0.043   0.044   0.043  
MAE  0.05P   0.028   0.006   0.006   0.007   0.007   0.015   0.005   0.015   0.005  
 0.25P   0.113   0.019   0.019   0.021   0.021   0.018   0.011   0.018   0.011  
 0.50P   0.150   0.034   0.033   0.036   0.035   0.014   0.013   0.015   0.013  
 0.75P   0.111   0.034   0.034   0.035   0.034   0.020   0.015   0.021   0.014  
 0.95P   0.028   0.013   0.013   0.015   0.014   0.007   0.008   0.008   0.009  
CR (%)  0.05P   21.6   95.1   95.0   90.4   92.3   57.6   96.8   56.3   96.9  
 0.25P   0.0   81.9   80.3   72.9   73.7   82.5   96.3   82.4   96.6  
 0.50P   0.0   60.7   59.7   50.5   52.3   95.5   95.6   92.5   95.5  
 0.75P   0.0   51.9   47.1   43.4   45.4   83.3   93.0   77.8   92.2  
 0.95P   7.5   77.4   77.7   58.3   63.0   97.6   93.9   92.9   92.3  

, , ,( , , ) = (0.7, 0.8, 0)
l ux y y c y c

    
mean 0.05P   0.921   0.956   0.956   0.956   0.956   0.952   0.953   0.952   0.950  
 0.25P   0.637   0.780   0.781   0.781   0.781   0.761   0.764   0.762   0.750  
 0.50P   0.350   0.558   0.558   0.559   0.559   0.519   0.519   0.519   0.500  
 0.75P   0.137   0.314   0.314   0.313   0.313   0.257   0.260   0.257   0.249  
 0.95P   0.021   0.076   0.076   0.074   0.075   0.055   0.051   0.055   0.049  
MAE  0.05P   0.029   0.007   0.007   0.007   0.007   0.005   0.006   0.006   0.006  
 0.25P   0.113   0.031   0.031   0.031   0.031   0.015   0.017   0.015   0.012  
 0.50P   0.150   0.058   0.058   0.059   0.059   0.022   0.021   0.023   0.014  
 0.75P   0.113   0.064   0.064   0.063   0.063   0.015   0.016   0.018   0.012  
 0.95P   0.029   0.026   0.026   0.025   0.026   0.007   0.006   0.009   0.006  
CR (%)  0.05P   21.8   90.5   90.0   87.8   87.6   97.9   95.2   96.5   96.4  
 0.25P   0.0   48.1   45.9   43.8   43.7   89.3   84.0   86.6   95.9  
 0.50P   0.0   8.4   9.6   11.4   11.1   82.9   80.6   75.8   95.8  
 0.75P   0.0   7.0   6.6   11.0   9.9   93.6   88.2   83.8   96.7  
 0.95P   6.3   33.8   31.9   35.8   31.9   93.4   96.0   86.8   97.4  
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The degree of skewness is considerably weakened in the PRD series where DBM-PRD shows the best 
performance in percentile estimation. When the boundary information is moderately asymmetric (i.e., 

( ), , ,, , = (0.7, 0.5, 0.8)),
l ux y y c y c    the second hot-deck step is important whereas the first hot-deck 

step is less important because SPRD is better than PRD but is comparable to DBM-PRD. On the other 
hand, when ( ), , ,, , = (0.7, 0.8, 0)

l ux y y c y c    the first hot-deck step is more important to choose a 
correct boundary due to the extremely asymmetric boundary information, and DBM-PRD is best among 
PRD series because only it contains the first hot-deck step. In addition, SPRD is better than 2SPRD  in 
percentile estimation. In summary, double hot-deck procedures including boundary information matching 
and proportioned residual draw are essential not only for boundary restrictions but also for asymmetric 
boundary information and even for symmetric boundary information and heavy tail distributions. 

 
4  Empirical analysis 
 
4.1  Data 
 

Health insurance services in Korea are national and compulsory by law, and the data related to medical 
information for the entire Korean population are recorded in a national health information database. A 
sample cohort database is constructed by stratified random sampling from this national health information 
for research purposes. It maintains a cohort structure continued from a sample in 2002 (Lee, Lee, Park, 
Shin and Kim, 2016). Based on this recently published medical big data, several medical studies have 
been conducted (Kwon, Lim and Park, 2017; Kim, Kwon, Yu, Kim, Choi, Baik, Park and Kim, 2017; 
Kim, Lee, Kim, Kim, Choi, Baik, Choi, Pop-Busui, Park and Kim, 2015; Ko, Yoon, Kim, Kim, Kim and 
Seo, 2016; Ko, Jo, Park, Kim, Kim and Park, 2016; Rim, Kim, Han and Chung, 2015). 

We apply imputation methods to this sample cohort data, in particular, to missing values of self-
reported variables. In health screening records, there are variables measured by health-care professionals, 
such as height, weight, blood pressure, and blood sugar. They are reliable and completely observed. On 
the other hand, some health screening variables such as smoking period, exercise frequency, and drinking 
habits are self-reported. They are likely to be incomplete and inaccurate as discussed by Crossley and 
Kennedy (2002), Cambois, Robine and Mormiche (2007), and Kwon and Park (2016). 

Using health screening data of the sample cohort data for 2011 and 2013, we impute the missing values 
of smoking periods (in years) of current smokers in 2013 whose ages were between 20 and 84 and who 
had health screening records both in 2011 and 2013. Let self

,k iY  be the self-reported smoking period and 

,AGE k i  be the minimum value of age categorized in 5-year classes for person i  in year ,k  respectively. 

There is no missing data in self
2013, iY  as we limited our analysis to those who answered that they were 

current smokers in 2013. Unreasonable values of smoking periods in self
2013, iY  are treated as missing, by 

comparing smoking periods and ages in 2011 and 2013; i.e. if self
2013, iY  meets any of the conditions 

self
2013, 2013,> AGE ,i iY a−  self self

2013, 2011, 1< 2 ,i iY Y b+ −  or self self
2013, 2011, 2> 2i iY Y b+ +  where a  is a minimum age 
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started smoking, and 1b  and 2b  are tolerances according to human memory. We denote by 2013, iY  the new 
smoking period in 2013 to distinguish it from self

2013, iY  with no missing values. 

As Raghunathan et al. (2001) did, we set the upper bound, ,UiC  to be 2013,AGE i −minimum age 
started smoking. Although Raghunathan et al. (2001) defined the minimum smoking age to be 18 years 
old, we take the minimum age to be 10 which is the lowest smoking age observed in the sample cohort 
data. We set self

2011, iY  for a lower boundary .LiC  When self
2011, iY  is missing which is 0.09% of data, we set LiC  

to 0. If self
2011, iY  is the same as 2013, iY  then we set the LiC  to self

2011, 0.001iY −  to ensure that no denominator of 
the proportioned residual given in equation (2.3) is zero. 

By adjusting 1b  and 2b  which show the extent to which we allow the error due to human memory, the 
missing rate ranges from 44.0% to 73.5%. By taking 1 2= = 2b b  when we may allow up to two years of 
human memory error, the rate of missing data is 44.0%. When we do not allow any error at all, that is, 
letting 1 2= 1, = 1b b  for those who smoked in 2013 and did not smoke in 2011 and letting 

1 2= 2, = 1b b  for those who smoked both in 2013 and 2011, the rate of missing data is 73.5%. 

In order to fit the regression model for smoking periods, we use sex, age and income level as 
siginificant predictors, Table 4.1 shows the summary of data we use in this paper. Individual income 
information used to estimate health insurance premiums was observed in the form of a categorized ordered 
variable with 11 levels. We re-categorized the income groups into 3 groups: high (top 30%), low (bottom 
30%), and medium (others) as this improved the fit. 

 
Table 4.1 
Summary of data 
 

  missing rate (%) n mean age male ratio (%) income group ratio (%) 
top 30% bottom 30% 

 with   2 years tolerance   obs. missing 44.0 19,601 42.6 95.8 47.6 10.4 
15,414 48.5 95.2 44.3 15.6 

 without tolerance  obs. missing 73.5 9,266 38.7 95.9 49.1 7.6 
25,749 47.6 95.4 45.1 14.5 

  total  35,015 45.2 95.6 46.1 12.7 

 ( )2013 2013cor , AGEY  ( )self self
2013 2011cor ,Y Y  

 with   2 years tolerance  0.79 0.99 
 without tolerance 0.71 0.99 

 
The average age of people who did not respond to the smoking period question 2013 is about 6 to 9 

years older than that of respondents. The distribution and average of the income indicate that the 
nonrespondent’s income level is lower than the respondent’s income level. Since age and income level are 
important predictors for smoking period, it is hard to assume that missing mechanism of the smoking 
period is MCAR. 
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As seen in Table 4.1, the correlation between 2013, iY  and self
2011, iY  is as high as 0.99 because of treating 

self
2013Y  as a missing value when not satisfying the logical constraints under the assumption that self

2011Y  is 
correct. However, self

2011Y  of course has the same problem as self
2013Y  and it is not reliable either. Despite such a 

very high correlation, this is the reason for not including self
2011, iY  as a predictor. Erroneous boundary 

information only affects the individual imputed values, but erroneous boundary information as a predictor 
affects the overall regression model estimates, which greatly affects the overall reliability of imputation. 
Hence, we only use the measured variables such as sex, age, and income which are collected by the 
government as a basis for the collection of national medical insurance premiums. Note that the age 
variable is also used as upper boundary information. 

Since it is highly possible that the self-reported smoking periods in 2011 are not correct, there should 
be a criticism for setting self

2011Y  to be a lower bound. Thus, we consider another lower bound with = 1LiC  
which is the observed smallest smoking period of current smokers. 

 
4.2  Results 
 

The regression model for the smoking period in 2013, 2013, iY  is fitted with fully observed cases as 
given by Table 4.2. 

In Table 4.2, sex(female) is a dummy variable with value 1 indicating female, age is the central value 
of age categorized in 5-year classes, and income(low) and income(mid) are both dummy variables with 
value 1 indicating membership to the particular income group. 

 
Table 4.2 
Regression model for the smoking period in 2013 
 

 with   2 year tolerance without tolerance 
 estimate  t-value  estimate  t-value  
intercept  -9.42   -54.00   -6.70   -23.97  
sex(female)   -8.38   -40.51   -8.58   -28.41  
age  0.69   182.34   0.64   96.56  
income(low)   -0.32   -2.25   -0.76   -3.21  
income(mid)   -0.50   -5.77   -0.99   -7.81  
R square   0.66   0.55  

 
Table 4.3 shows the mean of 2013, iY  estimated by each of five imputation methods with = 5M  and 
= 6.dm  A possible donor size dm  is allowed to be smaller than 6 when there is not enough sample to 

compose a donor, but there is no such case in our data. We consider four different scenarios made up of 
two settings of lower boundaries and two tolerances of human memory errors. 

Different from the simulation results, T-NORM under-estimates more seriously than OBS when 
= 1.LiC  The distribution of observed smoking periods is slightly skewed to the right as the distance 

between Q50 and Q95 is farther than that between Q50 and Q5. However, T-NORM imputes a predictive 
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mean plus a random residual generated from a truncated normal distribution not from the empirical 
distribution of residuals which is right-skewed. Since the lower bound, = 1,LiC  is far from the mean, the 
possibility of selecting a negative error is higher from the truncated normal than from the right skewed 
empirical distribution of residuals. This leads to the underestimation of T-NORM. All other imputation 
methods estimate the mean smoking period higher than OBS as they use empirical residuals. 

OBS produces higher mean of smoking periods with tolerance than without tolerance as the regression 
coefficient of age is higher with tolerance than without tolerance as shown in Table 4.2. Except with T-
NORM, the estimated smoking periods are longer without tolerance than with tolerance, and the gap is 
smaller when = 1LiC  than 2011,= .Li iC Y   

The DBM-PRD method is the most robust regardless of how we define missing values and the lower 
boundary. This is a desirable property of imputation when the boundary information is unreliable. On the 
other hands, the estimation results of the existing imputation methods (i.e., T-Norm, T-MV, T-LRD, T-
PMM) clearly depend on the choice of boundary and human memory tolerance. The estimated 
distributions of smoking period by the existing methods move substantially to the right when 2011,=Li iC Y  
relative to when = 1LiC  since 2011, iY  is a more informative boundary than the constant boundary. 
However, the distribution with DBM-PRD is only marginally changed for different boundaries. 

 
Table 4.3 
Estimated mean, 5, 25, 50, 75 and 95% quantiles of smoking years of Korean current smokers in 2013 
 

 with   2 years tolerance due to human memory (missing rate = 44.0%)  

 2011,=
Li i

C Y  = 1
Li

C  

mean  Q5   Q25   Q50   Q75   Q95  mean  Q5   Q25   Q50   Q75   Q95  

OBS   19.55   7.00   12.00   20.00   25.00   40.00   19.55   7.00   12.00   20.00   25.00   40.00  
T-NORM   21.46   8.00   14.00   20.00   27.98   40.22   17.66   3.92   10.00   16.99   22.91   35.00  
T-MV   22.79   9.00   15.00   20.05   30.00   41.80   21.45   7.01   14.45   20.00   28.17   40.00  
T-LRD   22.63   9.00   15.00   20.00   30.00   40.20   21.32   7.00   14.00   20.00   30.00   40.00  
T-PMM   22.64   9.00   15.00   20.00   30.00   40.53   21.31   7.00   14.00   20.00   30.00   40.00  
DBM-PRD   20.61   6.31   13.00   20.00   26.90   40.00   21.33   7.00   14.00   20.00   30.00   40.00  
 without any tolerance due to human memory (missing rate = 73.5%)  

 2011,=
Li i

C Y  = 1
Li

C  

mean  Q5   Q25   Q50   Q75   Q95  mean  Q5   Q25   Q50   Q75   Q95  

OBS   17.25   5.00   11.00   16.00   22.00   32.00   17.25   5.00   11.00   16.00   22.00   32.00  
T-NORM   21.92   8.00   14.77   20.66   28.00   40.75   14.61   2.70   8.13   13.64   20.00   30.00  
T-MV   24.01   10.00   16.75   22.85   30.34   42.67   21.63   7.19   15.00   20.95   27.68   37.87  
T-LRD   24.40   10.00   16.00   23.00   30.00   47.40   21.44   5.00   13.00   20.00   28.80   42.00  
T-PMM   24.41   10.00   16.00   23.00   30.00   47.45   21.47   5.00   13.00   20.00   28.80   42.00  
DBM-PRD   21.11   7.00   13.00   20.00   27.00   41.80   21.42   5.00   13.00   20.00   28.80   42.00  

 



Survey Methodology, June 2020 135 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Figure 4.1 presents the kernel density estimates of smoking periods using OBS and DBM-PRD under 
two lower boundary settings and two tolerances of human memory errors. Imputation by DBM-PRD 
moves the distribution of smoking period to the right and spreads it widely, compared to the distribution 
constructed only by observations (OBS). 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.1 Kernel density estimates of smoking periods using OBS and DBM-PRD under two lower 
boundary settings and two tolerances of human memory errors. 

 
 

5  Conclusion 
 

We proposed a method for multiple imputation of missing variables when the missing values are 
logically bounded, which is often encountered in censuses or sample surveys. The existing imputation 
methods with an additional truncation or acceptance/rejection step produced biased estimates, depending 
on the extent of asymmetry of the boundary information. Their imputation values shrank toward the 
boundary with lower correlation with the missing variable. However, by employing a proportioned 
residual draw, boundary information matching, and a double hot-deck procedure, our DBM-PRD method 
produced more accurate and efficient estimates for the mean and percentiles, regardless of missingness 
rates, missing data mechanism, and distributions of the missing variable. 

Moreover, our DBM-PRD imputation method is resistant to asymmetric boundary information in the 
sense that its imputed values do not depend on the extent of asymmetry of the boundary information. 
Especially, when there are two or more variables for the boundary information, or when reliability of the 
lower boundary information is suspected, DBM-PRD imputation is a powerful tool for estimating the 
parameters of interest accurately. 
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The DPM-PRD method also will work for a single imputation. There may be cases when (especially in 
official statistics) a single definitive output dataset is needed, and when users do not have the 
sophistication to deal with multiple imputation. 
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Appendix 
 

Proof of Theorem 1 
 

It suffices to show that *
jU jUY C  and *

jL jLY C  because of the constraints in the imputation step. 

1. If miss 0ˆ ,jY S  then *
jUr  is sampled from 0

UR  whose element 1iUr   for all i  because i iUY C  
and ˆ > 0iU iC Y−  for 0 .iU Ur R  Since *

jUr  is one of such ’s,iUr  we have * 1.jUr   Furthermore 
missˆ > 0jU jC Y−  gives  

                     ( ) ( )* miss * miss miss miss
, , , ,

ˆ ˆ ˆ ˆ= 1 = .j U j j U j U j j j U j jUY Y r C Y Y C Y C+ −  +  −  (A.1) 

Similarly, if miss 0ˆ ,jY S  then *
jLr  is randomly selected from 0

LR  whose element 1iLr   for any 
i  because i iLY C  and ˆ < 0iL iC Y−  for 0 .Li R  Since *

jLr  is one of such ,iLr  * 1.jLr   Using 
miss

,
ˆ < 0j L jC Y−  because miss 0ˆ ,jY S  we have  

                     ( ) ( )* miss * miss miss miss
, , ,

ˆ ˆ ˆ ˆ= 1 = .j L j jL j L j j j L j jLY Y r C Y Y C Y C+ −  +  −  (A.2) 
 

2. If missˆ ,jY S +  then *
jUr  is sampled from UR+  whose element 1iUr   for all i  because 

,i i UY C  and ˆ < 0.iU iC Y−  Since *
jUr  is one of such ’s,iUr  we have * 1.jUr   Furthermore 

missˆ < 0jU jC Y−  gives  

                     ( ) ( )* miss * miss miss miss
, , , ,

ˆ ˆ ˆ ˆ= 1 = .j U j j U j U j j j U j jUY Y r C Y Y C Y C+ −  +  −  (A.3) 

Similarly, if missˆ ,jY S +  then *
jLr  is randomly selected from LR+  whose element 1iLr   for any 

i  because i iLY C  and ˆ < 0iL iC Y−  for .Li R+  Since *
jLr  is one of such ,iLr  * 1.jLr   Using 

miss
,

ˆ < 0j L jC Y−  because of missˆ ,jY S +  we have  

                     ( ) ( )* miss * miss miss miss
, , ,

ˆ ˆ ˆ ˆ= 1 = .j L j jL j L j j j L j jLY Y r C Y Y C Y C+ −  +  −  (A.4) 
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3. If missˆ ,jY S −  then *
jUr  is sampled from UR−  whose element 1iUr   for all i  because i iUY C  

and ˆ > 0iU iC Y−  for .iU Ur R−  Since *
jUr  is one of such ’s,iUr  we have * 1.jUr   Furthermore 

missˆ > 0jU jC Y−  gives  

                     ( ) ( )* miss * miss miss miss
, , , ,

ˆ ˆ ˆ ˆ= 1 = .j U j j U j U j j j U j jUY Y r C Y Y C Y C+ −  +  −  (A.5) 

Similarly, if missˆ ,jY S −  then *
jLr  is randomly selected from LR−  whose element 1iLr   for any 

i  because i iLY C  and ˆ > 0iL iC Y−  for .Li R −  Since *
jLr  is one of such ,iLr  * 1.jLr   Using 

miss
,

ˆ > 0j L jC Y−  because missˆ ,jY S −  we have  

                     ( ) ( )* miss * miss miss miss
, , ,

ˆ ˆ ˆ ˆ= 1 = .j L j jL j L j j j L j jLY Y r C Y Y C Y C+ −  +  −  (A.6) 
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